JPH0196368A - Manufacture of thin film of ferroelectric substance - Google Patents

Manufacture of thin film of ferroelectric substance

Info

Publication number
JPH0196368A
JPH0196368A JP62251038A JP25103887A JPH0196368A JP H0196368 A JPH0196368 A JP H0196368A JP 62251038 A JP62251038 A JP 62251038A JP 25103887 A JP25103887 A JP 25103887A JP H0196368 A JPH0196368 A JP H0196368A
Authority
JP
Japan
Prior art keywords
thin film
sputtering
substrate
ferroelectric substance
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62251038A
Other languages
Japanese (ja)
Other versions
JPH0762235B2 (en
Inventor
Ryoichi Takayama
良一 高山
Yoshihiro Tomita
佳宏 冨田
Atsushi Abe
阿部 惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62251038A priority Critical patent/JPH0762235B2/en
Publication of JPH0196368A publication Critical patent/JPH0196368A/en
Publication of JPH0762235B2 publication Critical patent/JPH0762235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To easily form a film of ferroelectric substance excellent in characteristics by using an MgO plane as a substrate and regulating film-forming velocity so that it is lower than a specific velocity at the time of forming a thin film of ferroelectric substance with a specific composition on a substrate by means of sputtering. CONSTITUTION:A single-crystal MgO cleaved along the (100) plane and subjected to mirror-finish polishing is used as a substrate and a compound having a composition represented by formula 1 (where Y means 0.05-0.4) is used as a sputtering target and, as a sputtering gas, a gaseous mixture of Ar and O2 is used under <=3Pa pressure, and further, the substrate is heated to 550-675 deg.C, so that a thin film of a ferroelectric substance having a chemical formula Pb(Zr1-xTix)O3 [where the symbol (x) stands for >0.46-<1] is formed by means of sputtering at <=50A/min film-forming velocity. By this method, the thin film of ferroelectric substance suitable for pyroelectric-type infrared detecting element, piezoelectric element, and electrooptical element can be easily manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線検出素子、圧電素子、電気光学素
子に用いられる強誘電体薄膜の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a ferroelectric thin film used in pyroelectric infrared detection elements, piezoelectric elements, and electro-optical elements.

従来の技術 強誘電体のエレクトロニクス分野における応用は、赤外
線検出素子、圧電素子、光変調素子、メモリー素子など
さまざまなものがある。近年の半導体技術の進歩による
電子部品の小型化にともない、強誘電体素子も薄膜化が
進みつつある。
BACKGROUND ART There are various applications of ferroelectric materials in the electronics field, such as infrared detection elements, piezoelectric elements, light modulation elements, and memory elements. As electronic components become smaller due to advances in semiconductor technology in recent years, ferroelectric elements are also becoming thinner.

ところで、強誘電体の自発分極Psの変化を出力として
取り出す、例えば焦電型赤外線検出素子や圧電素子等で
は、強誘電体材料のPsが一方向に揃っている時、最も
大きい出力が得られる。
By the way, in pyroelectric infrared detection elements, piezoelectric elements, etc. that extract changes in the spontaneous polarization Ps of a ferroelectric material as an output, the largest output can be obtained when the Ps of the ferroelectric material is aligned in one direction. .

発明が解決しようとする問題点 現在、赤外線検出素子や圧電素子等に用いられている強
誘電体磁器は多結晶体であり、結晶軸の配列に方向性は
無く、従って自発分極Psもでたら目に配列している。
Problems to be Solved by the Invention Currently, the ferroelectric ceramics used in infrared detection elements, piezoelectric elements, etc. are polycrystalline, and there is no directionality in the arrangement of crystal axes, so if spontaneous polarization Ps occurs. Arranged in the eye.

エピタキシャル強誘電体薄膜、配向性強誘電体薄膜は結
晶の分極軸は揃っているが、電気的な自発分極Psは1
80°ドメインを作り交互に配列している。そこで、こ
れら材料を上述のようなエレクトロニクス素子として用
いる場合、材料に高電界(〜100 k V / cm
 )を印加してPsの向きを揃える分極処理が必要であ
る。
In epitaxial ferroelectric thin films and oriented ferroelectric thin films, the crystal polarization axes are aligned, but the electrical spontaneous polarization Ps is 1.
80° domains are created and arranged alternately. Therefore, when these materials are used as electronic devices as mentioned above, the materials are subjected to a high electric field (~100 kV/cm
) is required to align the direction of Ps.

また、PbTiOs・PZT−PLZTなどの薄膜の作
製に関しては多くの報告があるが、それらの強誘電相の
領域の薄膜について、その分極軸であるC軸に配向した
薄膜、自発分極までも一方向に配向した薄膜の製造方法
については全(解明されていない。
In addition, there are many reports on the production of thin films such as PbTiOs and PZT-PLZT, but for thin films in the ferroelectric phase region, thin films oriented along the C axis, which is the polarization axis, and even spontaneous polarization are unidirectional. The method for manufacturing thin films oriented in this direction has not yet been fully elucidated.

強誘電体材料に高電界を印加してPsを揃える方法では
次のような問題点が生じる。
The following problems arise in the method of aligning Ps by applying a high electric field to a ferroelectric material.

(1)分極処理により絶縁破壊が生ずる場合があり、歩
留まりが下がる。
(1) Dielectric breakdown may occur due to polarization treatment, resulting in lower yield.

(2)高分解能アレイ素子の様に多くの微小う;Q子が
高密度に配列しているものでは、それらを均一に分極す
ることが困難である。
(2) In a high-resolution array element in which many microscopic cavities (Q elements) are arranged at high density, it is difficult to uniformly polarize them.

(3)半導体デバイス上に強誘電体薄膜を形成した集積
化デバイスでは、分極処理そのものが不可能な場合があ
る。
(3) In an integrated device in which a ferroelectric thin film is formed on a semiconductor device, polarization itself may not be possible in some cases.

問題点を解決するための手段 化学式がPb(Zr、、、、xTi、)03で組成範囲
が0、46<x<lである強誘電体薄膜を基板上にスパ
ッタリングにより作製する工程において、基板にM g
O(too)面を用いるとともに、その成膜速度を50
A/min、より遅くする。
Means for Solving the Problem In the step of producing a ferroelectric thin film on a substrate by sputtering, the chemical formula is Pb(Zr, , , xTi,)03 and the composition range is 0, 46<x<l. niMg
In addition to using the O (too) plane, the film formation rate was set to 50
A/min, slower.

作用 上記のような製造方法による強誘電体落脱においては、
Psが既に一方向に揃った自然分極が得られ、分極処理
をおこなう必要が無く、歩留まり良く、高性能の強誘電
体薄膜が実現できる。
Effect When the ferroelectric material falls off due to the manufacturing method described above,
Natural polarization in which Ps is already aligned in one direction can be obtained, there is no need for polarization treatment, and a high-performance ferroelectric thin film can be realized with a high yield.

実施例 (100)でへき関し鏡面研摩したMgO単結晶を基板
とし、下部電極として膜厚0.2μmのpt薄嗅をスパ
ッタリングにより形成した。スパッタガスはAr−02
混合ガスである。ついで、強誘電体薄膜Pb(Zr、−
xTix)0.(PZT)を1〜4μm成長させた。
The MgO single crystal that had been mirror-polished in Example (100) was used as a substrate, and a 0.2 μm thick PT film was formed as a lower electrode by sputtering. Sputtering gas is Ar-02
It is a mixed gas. Next, a ferroelectric thin film Pb(Zr, -
xTix)0. (PZT) was grown to a thickness of 1 to 4 μm.

方法は高周波マグネトロンスパッタ法で、Arと02の
混合ガスを用い、スパッタリングターゲットは、+ (
1−Y)・F’声4r x 3T+  O”Y4bO1
の粉末である。表1に代表的なスパッタリング条件を示
す。
The method is high frequency magnetron sputtering, using a mixed gas of Ar and 02, and the sputtering target is + (
1-Y)・F'voice 4r x 3T+ O”Y4bO1
powder. Table 1 shows typical sputtering conditions.

表  1 ついでこの薄膜上に上部電極を設けて、誘電特性を測定
した。
Table 1 Next, an upper electrode was provided on this thin film, and the dielectric properties were measured.

第1図に、組成の異なるPZT薄膜のX線回折パターン
を示す。ペロブスカイト構造の(001)と(100)
反射、及びその高次の反射のみ観察される。また(00
1)反射の強度が(100)のそれと比べて著しく大き
いのでC軸配向膜であることがわかる。C軸配向率αを
次の式で定義する。
FIG. 1 shows X-ray diffraction patterns of PZT thin films with different compositions. (001) and (100) of perovskite structure
Only reflections and their higher order reflections are observed. Also (00
1) Since the intensity of reflection is significantly higher than that of (100), it can be seen that it is a C-axis oriented film. The C-axis orientation rate α is defined by the following equation.

α−1(00+)/l’+(001)++(+0011
ここでl(o旧)、および+(+00)はそれぞれ(0
01)と(100)反射の回折強度を表す。なお、組成
はX線マイクロアナライザーで解析した結果、ターゲッ
トとほぼ同じであった。
α-1(00+)/l'+(001)++(+0011
Here, l(o old) and +(+00) are respectively (0
It represents the diffraction intensity of 01) and (100) reflections. The composition was analyzed using an X-ray microanalyzer and was found to be almost the same as the target.

C軸配向率α及び結晶性はスパッタリング条件である成
膜速度・スパッタリングガス・ガス圧・基板温度・ター
ゲットにより変化することが明確となった。
It has become clear that the C-axis orientation ratio α and crystallinity vary depending on the sputtering conditions: film formation rate, sputtering gas, gas pressure, substrate temperature, and target.

第2図はC軸配向率αと成膜速度との関係を示す。図よ
り成膜速度が速くなるとC軸配向率αは低下する。ター
ゲットのPbOのMAYは、0.2〜0゜3のとき、C
軸配向率α及び1(oo+1はほぼ最大となる。また、
基板温度:Tが575〜650℃のとき、C軸配向率α
は高い値を示す。第3図は、ガス圧を変えたとき C軸
配向率α 及び1(0011の変化の様子を示す。但し
基板温度: T−600℃のときである。
FIG. 2 shows the relationship between the C-axis orientation rate α and the film formation rate. As shown in the figure, as the film formation rate increases, the C-axis orientation rate α decreases. Target PbO MAY be 0.2 to 0°3, C
Axial orientation ratio α and 1 (oo+1 is almost the maximum. Also,
Substrate temperature: When T is 575 to 650°C, C-axis orientation rate α
shows a high value. FIG. 3 shows how the C-axis orientation rate α and 1(0011 change when the gas pressure is changed. However, this is when the substrate temperature is T-600°C.

ガス圧が増加すると、C軸配向率αは低下する。As the gas pressure increases, the C-axis orientation rate α decreases.

以上の結果をもとにして、組成0.46<X<1の範囲
でC軸配向率αが972以上のPZT薄膜が得られるよ
うになった。
Based on the above results, it has become possible to obtain a PZT thin film with a C-axis orientation ratio α of 972 or more in a composition range of 0.46<X<1.

次に、C軸配向率が高いPz■薄膜の焦電係数;γ及び
誘電率:εを測定した。第4図に組成Xと焦電係数及び
誘電率との関係を示す。誘電率はそれぞれの組成でセラ
ミクスと同等の値を示した。分極処理をしな(でも焦電
電流が検出され、焦電係数は4.5xlO−8C/ c
JK程度の大きな値が測定できた。
Next, the pyroelectric coefficient γ and dielectric constant ε of the Pz thin film having a high C-axis orientation were measured. FIG. 4 shows the relationship between composition X, pyroelectric coefficient, and dielectric constant. The dielectric constant of each composition was equivalent to that of ceramics. Even without polarization treatment, pyroelectric current was detected and the pyroelectric coefficient was 4.5xlO-8C/c
A value as large as JK could be measured.

この焦電係数の値は、200℃で100kV/cm印加
して分極処理を行ったPbTiOsセラミクス(γ−1
,8x10’c/c+JK)とくらべてかなり大きい。
The value of this pyroelectric coefficient is based on the PbTiOs ceramics (γ-1
, 8x10'c/c+JK).

このことは分極Psが既に一方向に揃った自然分極が得
られていることを意味している。なおPZTは組成がo
、sj<x<tの範囲で結晶構造は正方晶系で、C軸が
分極軸である。また、分極処理(200℃で100kV
/c+J 10分印加)を行なった後測定した結果、配
向率が高い場合、分極処理面後で焦電係数及び誘電率の
値はほとんど変化しなかった。
This means that natural polarization in which the polarization Ps is already aligned in one direction has been obtained. Note that PZT has a composition of o
, sj<x<t, the crystal structure is tetragonal, and the C axis is the polarization axis. In addition, polarization treatment (100kV at 200℃)
/c+J (applied for 10 minutes) and then measured. As a result, when the orientation rate was high, the values of the pyroelectric coefficient and dielectric constant hardly changed after the polarization treatment surface.

以上述べたとおり、本実施例で作製したPZT薄膜では
、薄膜作製時に十分にC軸に配向しておれば分極処理を
行わなくても自発分極が揃っている。
As described above, in the PZT thin film produced in this example, if the film is sufficiently oriented along the C-axis during production, the spontaneous polarization is uniform even without polarization treatment.

本実施例で作製した強誘電体薄膜をデバイスとして利用
する場合、全く分極処理を行わなくても大きな出力が取
り出せる。これは焦電型赤外線センサばかりでなく圧電
素子、電気光学素子等においても有用である。
When the ferroelectric thin film produced in this example is used as a device, a large output can be obtained without any polarization treatment. This is useful not only for pyroelectric infrared sensors but also for piezoelectric elements, electro-optical elements, etc.

発明の効果 本発明によれば、製造される強誘電体薄膜は、分極処理
が不要であり、また特性も優れていて、作製も容易であ
るから、実用的にきわめて有効である。
Effects of the Invention According to the present invention, the ferroelectric thin film manufactured does not require polarization treatment, has excellent characteristics, and is easy to produce, so it is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発明の一実施例における強誘電体薄膜のX線回
折パターンを示す図、第2図は本発明の一実施例に於け
る強誘電体薄膜のC軸配向率と成膜速度との関係を示す
グラフ、第3図はC軸配向率及び(001)強度とガス
圧との関係を示す図、第4図は組成と焦電係数及び誘電
率の関係を示す図である。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 29 (deg、1 纂 2 図 成膜速7¥(A/mjIn] 第3図 ガス圧(Pa )
FIG. 1 is a diagram showing the X-ray diffraction pattern of a ferroelectric thin film in an embodiment of the invention, and FIG. 2 is a diagram showing the C-axis orientation ratio and film formation rate of the ferroelectric thin film in an embodiment of the invention. FIG. 3 is a graph showing the relationship between C-axis orientation ratio and (001) intensity and gas pressure, and FIG. 4 is a graph showing the relationship between composition, pyroelectric coefficient, and dielectric constant. Name of agent: Patent attorney Toshio Nakao and one other person Fig. 1 29 (deg, 1 thread 2 Fig. Deposition speed 7 yen (A/mjIn) Fig. 3 Gas pressure (Pa)

Claims (4)

【特許請求の範囲】[Claims] (1)化学式がPb(Zr_1_−_xTi_x)O_
3で組成範囲が0.46<x<1である強誘電体薄膜を
基板上にスパッタリングにより作製する工程において、
基板にMgO(100)面を用いるとともに、その成膜
速度を50A/min.より遅くすることを特徴とする
強誘電体薄膜の製造方法。
(1) The chemical formula is Pb(Zr_1_-_xTi_x)O_
In the step of producing a ferroelectric thin film having a composition range of 0.46<x<1 on a substrate by sputtering in step 3,
A MgO (100) plane was used for the substrate, and the film formation rate was 50 A/min. A method for producing a ferroelectric thin film, characterized by slowing down the production process.
(2)強誘電体薄膜をスパッタリングにより作製する際
、スパッタリングターゲットとして組成式{(1−Y)
PbZr_1_−_xTi_xO_3+Y PbO}に
おいて、Yが0.05〜0.4の範囲にある材料を用い
ることを特徴とする特許請求の範囲第1項記載の強誘電
体薄膜の製造方法。
(2) When producing a ferroelectric thin film by sputtering, the composition formula {(1-Y)
2. The method of manufacturing a ferroelectric thin film according to claim 1, wherein a material is used in which Y is in the range of 0.05 to 0.4 in PbZr_1_-_xTi_xO_3+YPbO}.
(3)強誘電体薄膜をスパッタリングにより作製する際
、基板温度を550〜675℃の範囲にして作製するこ
とを特徴とする特許請求の範囲第1項記載の強誘電体薄
膜の製造方法。
(3) The method for producing a ferroelectric thin film according to claim 1, wherein the ferroelectric thin film is produced by sputtering at a substrate temperature in the range of 550 to 675°C.
(4)強誘電体薄膜をスパッタリングにより作製する際
、スパッタリングガス圧を3Paより低くすることを特
徴とする特許請求の範囲第1項記載の強誘電体薄膜の製
造方法。
(4) The method for producing a ferroelectric thin film according to claim 1, characterized in that when the ferroelectric thin film is produced by sputtering, the sputtering gas pressure is lower than 3 Pa.
JP62251038A 1987-10-05 1987-10-05 Method of manufacturing ferroelectric thin film Expired - Lifetime JPH0762235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251038A JPH0762235B2 (en) 1987-10-05 1987-10-05 Method of manufacturing ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251038A JPH0762235B2 (en) 1987-10-05 1987-10-05 Method of manufacturing ferroelectric thin film

Publications (2)

Publication Number Publication Date
JPH0196368A true JPH0196368A (en) 1989-04-14
JPH0762235B2 JPH0762235B2 (en) 1995-07-05

Family

ID=17216691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251038A Expired - Lifetime JPH0762235B2 (en) 1987-10-05 1987-10-05 Method of manufacturing ferroelectric thin film

Country Status (1)

Country Link
JP (1) JPH0762235B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499863A (en) * 1990-08-13 1992-03-31 Sharp Corp Production of ferroelectric multiple oxide containing pb
JPH0657412A (en) * 1992-03-30 1994-03-01 Anelva Corp Production of pzt thin film and sputtering device
WO1996020503A1 (en) * 1994-12-27 1996-07-04 Seiko Epson Corporation Thin-film piezoelectric element, process for preparing the same, and ink jet recording head made by using said element
JP2009202690A (en) * 2008-02-27 2009-09-10 Nissin Kogyo Co Ltd Brake fluid pressure control device for bar handle vehicle
JP2010084160A (en) * 2008-09-29 2010-04-15 Fujifilm Corp Film deposition method of lead-containing perovskite-type oxide film, piezoelectric device, and liquid ejecting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121119A (en) * 1982-12-28 1984-07-13 Matsushita Electric Ind Co Ltd Production of thin film of ferroelectric material
JPS61292384A (en) * 1985-06-19 1986-12-23 Toyota Motor Corp Piezoelectric ceramic compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121119A (en) * 1982-12-28 1984-07-13 Matsushita Electric Ind Co Ltd Production of thin film of ferroelectric material
JPS61292384A (en) * 1985-06-19 1986-12-23 Toyota Motor Corp Piezoelectric ceramic compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499863A (en) * 1990-08-13 1992-03-31 Sharp Corp Production of ferroelectric multiple oxide containing pb
JPH0657412A (en) * 1992-03-30 1994-03-01 Anelva Corp Production of pzt thin film and sputtering device
WO1996020503A1 (en) * 1994-12-27 1996-07-04 Seiko Epson Corporation Thin-film piezoelectric element, process for preparing the same, and ink jet recording head made by using said element
US5814923A (en) * 1994-12-27 1998-09-29 Seiko Epson Corporation Piezoelectric thin-film device, process for producing the same, and ink jet recording head using said device
JP2009202690A (en) * 2008-02-27 2009-09-10 Nissin Kogyo Co Ltd Brake fluid pressure control device for bar handle vehicle
JP2010084160A (en) * 2008-09-29 2010-04-15 Fujifilm Corp Film deposition method of lead-containing perovskite-type oxide film, piezoelectric device, and liquid ejecting device

Also Published As

Publication number Publication date
JPH0762235B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
Zhang et al. Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films
KR20030029114A (en) Microelectronic piezoelectric structure
TW201907030A (en) Film structure body and method for manufacturing the same capable of enhancing a piezoelectric property of a piezoelectric film and improving detection sensitivity of a pressure sensor using the piezoelectric film
JPH09186376A (en) Ferroelectric thin film, substrate coated with ferrorelectric thin film, capacitor structure element and deposition of ferroelectric thin film
JPH0196368A (en) Manufacture of thin film of ferroelectric substance
JPH07106658A (en) Thin film material
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JPS6096599A (en) Production of superconductive thin film of oxide
JPH08186182A (en) Ferroelectric thin-film element
TW201900415A (en) Membrane structure and method of manufacturing same
JP2568505B2 (en) Ferroelectric thin film element
JPH1087400A (en) Oxide having laminar crystal structure and its production
JP2718414B2 (en) Method for producing lead titanate thin film
Wang et al. Preparation of Zr-rich PZT and La-doped PbTiO3 thin films by RF magnetron sputtering and their properties for pyroelectric applications
JPS59121119A (en) Production of thin film of ferroelectric material
Trolier-McKinstry Piezoelectric films for MEMS applications
JP2532410B2 (en) Dielectric thin film element
JP2006510566A (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method
JPS6369104A (en) Manufacture of ferrodielectric thin film element
JPS62252005A (en) Ferrodielectric thin film device
JPH10219460A (en) Ceramic thin film and its production
JP2568505C (en)
JPS63266705A (en) Manufacture of ferroelectric thin film element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070705

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13