JPS5934788B2 - Manufacturing method of surface nitrided steel - Google Patents

Manufacturing method of surface nitrided steel

Info

Publication number
JPS5934788B2
JPS5934788B2 JP3733478A JP3733478A JPS5934788B2 JP S5934788 B2 JPS5934788 B2 JP S5934788B2 JP 3733478 A JP3733478 A JP 3733478A JP 3733478 A JP3733478 A JP 3733478A JP S5934788 B2 JPS5934788 B2 JP S5934788B2
Authority
JP
Japan
Prior art keywords
steel
hardness
nitriding
core
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3733478A
Other languages
Japanese (ja)
Other versions
JPS54128448A (en
Inventor
政司 高橋
敏男 酒井
昭二 朝倉
真志 柴田
正良 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Sumitomo Metal Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Toyota Motor Corp filed Critical Sumitomo Metal Industries Ltd
Priority to JP3733478A priority Critical patent/JPS5934788B2/en
Publication of JPS54128448A publication Critical patent/JPS54128448A/en
Publication of JPS5934788B2 publication Critical patent/JPS5934788B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 この発明は、軟窒化処理によつて表面硬化されていると
同時に、芯部の強度も著しく高い鋼を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing steel that is surface hardened by nitrocarburizing treatment and that also has extremely high core strength.

たとえば、自動車部品等の高面圧下で使用される機械部
品には、耐摩耗性、耐ピッチング性、耐焼付性等が要求
されるため、浸炭あるいは窒化等の表面処理が施される
ことが多い。
For example, mechanical parts used under high surface pressure, such as automobile parts, are required to have wear resistance, pitting resistance, seizure resistance, etc., so surface treatments such as carburizing or nitriding are often applied. .

しかし、上記のよラた渚性質を満たすには、表層部の硬
さがビッカース硬さ(Hv)で700以上であることと
共に、硬化深さが十分に深いことが必要である。この硬
化深さは、表面下の最大剪断応力を考慮した場合、ビッ
カース硬さ500以上の深さで0.3工以上必要である
。従来、上記のような表面硬化層を形成させるために、
肌焼鋼を素材として浸炭焼入れする処理が行なわれてい
る。
However, in order to satisfy the above-mentioned rough beach properties, it is necessary that the hardness of the surface layer is 700 or more in terms of Vickers hardness (Hv), and that the hardening depth is sufficiently deep. This hardening depth is required to be 0.3 or more at a depth with a Vickers hardness of 500 or more, considering the maximum shear stress below the surface. Conventionally, in order to form the above-mentioned surface hardening layer,
Case-hardened steel is used as a material and undergoes carburizing and quenching.

この方法では表面硬さおよび硬化深さは十分得られるが
、焼入時に歪が発生し、機械部品としての精度不良につ
ながるため歪取り作業が必要になると共に、ある程度の
ランニングストツクが必要となり、生産性の低下および
コストアップを招くという大きな欠点がある。上記浸炭
焼入法に対して、歪の発生の少ない表面硬化法として、
低温(約500℃)で鋼中に窒素を浸入させて窒素と親
和力の高い合金元素との窒化物を生成させ、又鉄格子に
大きなひずみを生ぜしめることによつて表面を硬化させ
る窒化法が知られており、そのための代表的な鋼種とし
てSACM鋼(中C−Cr−Mo−Al鋼)がJISに
定められている。
Although sufficient surface hardness and hardening depth can be obtained with this method, distortion occurs during quenching, leading to poor precision as a mechanical part, requiring work to remove the distortion, and a certain amount of running stock is required. However, there are major drawbacks such as decreased productivity and increased costs. In contrast to the above carburizing and quenching method, as a surface hardening method that causes less distortion,
A nitriding method is known in which nitrogen is infiltrated into steel at low temperatures (approximately 500°C) to form nitrides with alloying elements that have a high affinity for nitrogen, and the surface is hardened by creating large strains in the iron lattice. SACM steel (medium C-Cr-Mo-Al steel) is specified by JIS as a typical steel type for this purpose.

しかし、この窒化法は、前記のような所望の硬さと硬化
深さを得るためには、50−100時間という極めて長
時間の処理を必要とするため、量産には適しない。
However, this nitriding method is not suitable for mass production because it requires an extremely long treatment time of 50 to 100 hours in order to obtain the desired hardness and hardening depth.

これらの表面硬化法の外に従来から軟窒化と称されてい
る方法があり、そのひとつにガス軟窒化法がある。
In addition to these surface hardening methods, there is a method conventionally called soft nitriding, one of which is gas soft nitriding.

ガス軟窒化法は、アンモニアガスとプロバンガス、ブタ
ンなどの吸熱型変成ガス(以下RXガスという)、また
は発熱型ガス(以下NXガスという)の混合ガス中で部
品を処理し、窒素とともに一部の炭素を鋼中に浸入させ
、表層部を硬化させるものである。この方法は、浸炭一
焼入法の如く被処理物に歪を生じさせることがなく、又
、窒化法の如く長時間を要することもないので、自動車
部品等の量産に適した方法であるが、これに適する鋼種
の開発は未だ十分でない。更に、表面の硬さだけでなく
、部品芯部の強度が要求される場合、従来の浸炭、窒化
用鋼を用いる通常の処理方法では、所望の性質は得られ
ない。本発明は、表面硬さと硬化深さだけでなく、芯部
強度においても十分な性能をもつ鋼製品の製造方法を提
供することを目的とする。
In the gas nitrocarburizing method, parts are treated in a mixed gas of ammonia gas, an endothermic gas such as propane gas, or butane (hereinafter referred to as RX gas), or an exothermic gas (hereinafter referred to as NX gas), and a part of the gas is treated with nitrogen. Carbon is infiltrated into steel to harden the surface layer. This method is suitable for the mass production of automobile parts, etc., because it does not cause distortion in the treated object like the carburizing-quenching method, and it does not require a long time like the nitriding method. However, the development of steel types suitable for this has not yet been sufficient. Furthermore, when not only surface hardness but also core strength of the part is required, the desired properties cannot be obtained by conventional processing methods using conventional carburizing and nitriding steels. An object of the present invention is to provide a method for manufacturing a steel product that has sufficient performance not only in surface hardness and hardening depth but also in core strength.

上記の目的は、素材鋼として、Tiを含有する特殊な組
成のものを用いること、こQ鋼を特定温度範囲で加熱し
て急冷する溶体化処理を行うこと、この溶体化処理の後
に軟窒化処理を行うこと、の組合せによつて達成される
The above purpose is to use a material steel with a special composition containing Ti, to perform solution treatment by heating this Q steel in a specific temperature range and rapidly cooling it, and to perform nitrocarburizing after this solution treatment. This is achieved by a combination of:

即ち、本発明は、 C:0.03〜0,25(f)と、Ti:4×C(:f
)+0.01%〜4×C%+1.00I)を含有する鋼
を、900〜1300℃で加熱し、この温度域から急冷
した後、450〜700℃の温度域で軟窒化処理を行う
ことを特徴とする表面窒化処理鋼の製造方法、を要旨と
する。
That is, the present invention provides C: 0.03 to 0.25(f) and Ti: 4×C(:f
)+0.01% to 4×C%+1.00I) is heated at 900 to 1300°C, rapidly cooled from this temperature range, and then subjected to soft nitriding treatment in a temperature range of 450 to 700°C. The subject matter is a method for producing surface nitrided steel characterized by the following.

本発明方法において使用する素材鋼は、CおよびTiを
必須成分として含有する必要があるが、更に、下記の成
分をそれぞれの規定範囲内で含有するのが望ましい。
The steel material used in the method of the present invention must contain C and Ti as essential components, but it is also desirable to contain the following components within their respective specified ranges.

Si:0.01〜1.0(:fl) Mn:0.1〜1.5% Cr:0.1〜2.5% Al :0.08(f)以下 上記成分の外、更に強度、靭性を高めるために201)
以下のNiおよび/またはMOを含有させてもよく、ま
た、機械加工性向上のために、0.35%以下のPb,
O.3%以下のS等を含有させることもできる。
Si: 0.01-1.0 (: fl) Mn: 0.1-1.5% Cr: 0.1-2.5% Al: 0.08 (f) or less In addition to the above components, strength, 201) to increase toughness
The following Ni and/or MO may be included, and in order to improve machinability, 0.35% or less Pb,
O. It is also possible to contain S or the like in an amount of 3% or less.

窒化処理方法としては、タフトラード法、イオン窒化法
、ガス軟窒化法等が採用できるが、量産部品の効率的生
産にはガス軟窒化法が最も実用的である。
As the nitriding method, the Tufftrade method, ion nitriding method, gas soft nitriding method, etc. can be adopted, but the gas soft nitriding method is the most practical for efficient production of mass-produced parts.

上記本発明方法によれば、表面硬さがHv7OO以上で
、しかも十分な硬化深さを有し、かつ芯部硬さHl7O
〜350の鋼成品の製造が可能となる。
According to the method of the present invention, the surface hardness is Hv7OO or more, the hardening depth is sufficient, and the core hardness is Hl7OO.
~350 steel products can be manufactured.

しかも後述するように、芯部硬さを上げる溶体化処理と
、軟窒化処理の二つの組合せ条件を選ぶことにより製品
に要求される性能に応じて芯部強度を調整することがで
きる。また溶体化処理は、冷材の再加熱だけでなく、熱
間鍛造等の加工を900℃以上の温度範囲で行い、直ち
に水冷、または油冷することによつて行なつてもよい。
軟窒化処理は製品に歪を与えることがないから、この処
理に先立つて、切削加工、表面仕上加工等を行なえば、
精度の高い表面硬化機械部品が能率よく製造できる。次
に、本発明における各要件の限定理由について述べる。
Furthermore, as will be described later, by selecting the combination of the solution treatment to increase the core hardness and the nitrocarburizing treatment, the strength of the core can be adjusted according to the performance required of the product. Further, the solution treatment may be performed not only by reheating the cold material, but also by performing processing such as hot forging in a temperature range of 900° C. or higher, and immediately cooling with water or oil.
Since nitrocarburizing does not cause distortion to the product, if cutting, surface finishing, etc. are performed prior to this treatment,
Highly accurate surface-hardened mechanical parts can be manufactured efficiently. Next, reasons for limiting each requirement in the present invention will be described.

まず、素材鋼の含有成分について、Cは0.03%より
少ないと芯部の硬さを十分高くすることができず、0.
25(F6を越えて存在すると、900℃〜1300℃
の加熱時に固溶しないTiCが増加するだけで、靭性の
劣化、所要Ti量の増加等有害なだけで芯部強度増加に
は役に立たなくなる。
First, regarding the components contained in the steel material, if C is less than 0.03%, the hardness of the core cannot be made sufficiently high;
25 (if present above F6, 900℃~1300℃
If the amount of TiC that is not dissolved during heating increases, it will only cause harmful effects such as deterioration of toughness and increase in the amount of Ti required, and will not be useful for increasing the strength of the core.

Tiは軟窒化後の表面硬さの確保および硬化深さの増大
に重要であると共に、軟窒化時にTiCを析出させて芯
部の硬さを高めるのに重要である。Tiの表面硬化の作
用は、軟窒化処理の際に鋼中に浸入する窒素と結合して
窒化物(TiN)を生成させることによるものであるか
ら、この窒化物形成のための有効Ti量が、表面硬さの
向上と硬化深さの拡大に極めて重要である。有効Tiは
全Ti量からTiCを形成するTi量を差し引いたもの
、即む全Ti−C%×4となる。有効Ti量は、その量
が多くなるに従つて硬化深さを拡大するが、1.0%を
越えて存在すると、生地の脆化を招くとともにコスト高
になる。
Ti is important for ensuring surface hardness and increasing hardening depth after soft nitriding, and is also important for precipitating TiC during soft nitriding to increase the hardness of the core. The surface hardening effect of Ti is due to the formation of nitrides (TiN) by combining with nitrogen that enters the steel during soft nitriding treatment, so the effective amount of Ti for the formation of nitrides is , is extremely important for improving surface hardness and expanding hardening depth. Effective Ti is obtained by subtracting the Ti amount forming TiC from the total Ti amount, that is, total Ti-C%×4. As the amount of effective Ti increases, the hardening depth increases, but if it exists in excess of 1.0%, it causes embrittlement of the fabric and increases cost.

また有効Tiが0.01%より少なくなると、軟窒化処
理後の表面硬さ及び硬化深さが不十分となる。従つて、
Ti含有量は、4×C(L+0.01%から4×C(f
l)+1.0%の範囲とすべきである。SiおよびMn
は鋼の溶製時の溶鋼の清浄比および鋼の素地に対する強
度の調整に必要であるが、Siは1,0%、Mnは1.
5%を越えての添加は加工性、被削性等に好ましくない
。Crは窒化処理時の表面かたさの確保に必要であるが
、2.5%以上の存在は短時間の軟窒化処理時の硬化深
さを浅くする。
Furthermore, if the effective Ti content is less than 0.01%, the surface hardness and hardening depth after soft nitriding treatment will be insufficient. Therefore,
The Ti content varies from 4×C(L+0.01% to 4×C(f
l) should be in the range +1.0%. Si and Mn
is necessary for adjusting the cleanliness ratio of molten steel during steel melting and the strength of the steel relative to the base material, Si is 1.0% and Mn is 1.0%.
Addition of more than 5% is unfavorable for workability, machinability, etc. Cr is necessary to ensure surface hardness during nitriding, but the presence of 2.5% or more reduces the hardening depth during short-time soft nitriding.

Alは脱酸効果と共に、粒度調整およびTiの歩留りの
向上と安定化のために必要である。
Al is necessary for particle size adjustment and for improving and stabilizing the Ti yield as well as having a deoxidizing effect.

製鋼過程では、Tiの添加に先行してAl添加により脱
酸を行なうが、Tiを安定して目標値にとめるには0.
08(!l)以下のAlで十分であり、それを越えるA
lは鋼中のAl2O3を増して好ましくない。また過剰
のMは軟窒化処理の際、表層部でAINを形成してNの
内部への浸透を阻害し、硬化深さを減少させる。これら
の成分以外に、それぞれ2%までのNi,MO或いは0
.35%までのPb,O.3%までのSを含有させても
よい。
In the steelmaking process, deoxidation is performed by adding Al prior to the addition of Ti, but in order to stably keep Ti at the target value, 0.
Al below 08(!l) is sufficient, and A exceeding it is sufficient.
l is not preferable because it increases Al2O3 in the steel. In addition, excessive M forms AIN in the surface layer during soft-nitriding treatment, inhibits the penetration of N into the interior, and reduces the hardening depth. In addition to these components, up to 2% of Ni, MO or 0
.. Up to 35% Pb,O. It may contain up to 3% S.

これらの成分の上限値は、添加目的以外の悪影響を生じ
るおそれのない値である。次に、溶体化および軟窒化処
理の条件について、溶体化は、その後の軟窒化で析出し
て芯部硬化に作用させるためのTiCを固溶させるもの
で、後述する第5図かられかるように加熱温度が900
゜Cより低いとその固溶がほとんどなく、また、130
0℃をこえると製品の靭性を極端に劣化させ、好ましく
ない。
The upper limit values of these components are values that do not cause any adverse effects other than the purpose of addition. Next, regarding the conditions for solution treatment and soft nitriding treatment, solution treatment is to dissolve TiC, which is precipitated in the subsequent soft nitriding and acts on core hardening, as shown in Fig. 5, which will be described later. The heating temperature is 900℃
If the temperature is lower than 130 °C, there is almost no solid solution.
If the temperature exceeds 0°C, the toughness of the product will be extremely deteriorated, which is not preferable.

軟窒化は、浸窒による表面硬化で、所要の軟窒化性を現
出させると共に、TiCを析出させて芯部を硬化する目
的から、この両特性を満足させる温度で処理することが
必要である。
Soft nitriding is surface hardening by nitriding, and it is necessary to perform the treatment at a temperature that satisfies both of these properties in order to achieve the required soft nitriding properties and to harden the core by precipitating TiC. .

この温度は450℃より低いと十分な硬さの表面硬化層
は形成されない。一方、700℃をこえる温度で処理す
ると、後記第4図から分るように、芯部の硬さが低下す
る。芯部の硬さを特に上げ必要がある場合には、第4図
に示されるように、500〜650℃の範囲を選べばよ
い。次に実施例によつて本発明を具体的に言曽明する。
If this temperature is lower than 450°C, a hardened surface layer with sufficient hardness will not be formed. On the other hand, when treated at a temperature exceeding 700° C., the hardness of the core decreases, as can be seen from FIG. 4 below. If it is necessary to particularly increase the hardness of the core, a temperature range of 500 to 650° C. may be selected as shown in FIG. Next, the present invention will be specifically explained with reference to Examples.

第1表に示す8種類の鋼を溶製し、1100℃および1
250℃に加熱後、それぞれ1000および1100℃
で鍛造仕上げし、直ちに水冷、油冷、強制風冷した場合
、また、鍛造後再加熱して1100℃および1250℃
に加熱後直ちに水冷、油冷、強制風冷した場合の45f
材から、40f×10tの円盤状の試験片を作り、アン
モニアガス+RXガス中において570℃×4hのガス
軟窒化を行なつた。1100℃×1h油冷材の軟窒化後
の硬さ分布を第1図〜第2図に、また、屋1、黒2、黒
6鋼の溶体化後の硬さを第3図に示す。
Eight types of steel shown in Table 1 were melted and heated to 1100℃ and 1
After heating to 250℃, 1000 and 1100℃ respectively
When finished by forging and immediately cooled with water, oil, or forced air, or reheated after forging to 1100℃ and 1250℃
45f when water cooled, oil cooled, or forced air cooled immediately after heating.
A disk-shaped test piece of 40 f x 10 t was made from the material and subjected to gas nitrocarburizing at 570°C x 4 h in ammonia gas + RX gas. The hardness distribution of the oil-cooled material after nitrocarburizing at 1100°C for 1 hour is shown in Figures 1 and 2, and the hardness of Ya 1, Black 2, and Black 6 steels after solution treatment is shown in Figure 3.

(焼準後の硬さは第1表に記す。)第1表中屋1〜黒6
は本発明の対象となる鋼で、屋1、黒2は基本組成の鋼
、黒3はこれにSを増量して被削性改善を狙つた鋼、屋
4ぱ更にPbを含有させた鋼、黒5は大型部材を対象と
して強度向上のためにMOを加えた鋼、黒6はC量を下
げてTi量の節減をはかつた鋼である。
(The hardness after normalizing is shown in Table 1.) Table 1 Nakaya 1 to Kuro 6
are the steels that are the subject of the present invention; Ya 1 and Black 2 are steels with the basic composition; Black 3 is a steel with an increased amount of S to improve machinability; Ya 4 is a steel that further contains Pb. , Black 5 is a steel in which MO is added to improve strength for large members, and Black 6 is a steel in which the amount of C is lowered to reduce the amount of Ti.

また、比較鋼として掲げた黒7はTiを含有せず主にA
l,Crによつて窒化性の向上をはかつたもの、應8は
、Al,CrとともにTiを含有するが、有効Tiがな
いものである。第1図および第2図は鍛造後1100℃
で1時間再加熱し、直ちに油冷して芯部かたさを高めた
本発明の対象鋼をアンモニアガス+RXガス中で570
′CX4時間のガス軟窒化を施し、芯部硬さを高めてい
ない場合、および比較鋼を同条件でガス軟窒化した場合
と比較したものである。
In addition, Black 7, which was listed as a comparative steel, does not contain Ti and is mainly composed of A.
The nitriding property improved by l and Cr, 0.8, contains Ti as well as Al and Cr, but has no effective Ti. Figures 1 and 2 are at 1100℃ after forging.
The target steel of the present invention, which was reheated for 1 hour and immediately cooled in oil to increase the core hardness, was heated to
A comparison is made between a case in which the core hardness was not increased by performing gas nitrocarburizing for 4 hours, and a case in which comparative steel was subjected to gas nitrocarburizing under the same conditions.

本発明対象鋼の芯部硬さは、溶体化(鍛造焼入れ)によ
つて高くなり、その後の軟窒化によつて更に高くなる。
The core hardness of the steel subject to the present invention is increased by solution treatment (forging and quenching), and further increased by subsequent nitrocarburizing.

軟窒化と同時にTiCを析出させて硬さの上昇を図るこ
とが可能であることがわかる。芯部かたさが溶体化後ま
たは鍛造後の水冷、油冷または強制風冷によつて焼準材
のかたさより更に高くなることは、第1図の試料Jf6
.lおよび黒2の芯部かたさと、第3図の試料f).1
および黒2の1100℃×1h油冷のかたさとの比較、
および第4図に示した溶体化処理後の時効温度とかたさ
との関係からもわかる。一方、軟窒化処理後の芯部かた
さは溶体化後のかたさ十軟窒化によるTiCの析出硬化
となる。
It can be seen that it is possible to increase the hardness by precipitating TiC simultaneously with nitrocarburizing. The hardness of the core becomes higher than that of the normalized material by water cooling, oil cooling, or forced air cooling after solution treatment or forging, as shown in sample Jf6 in Figure 1.
.. 1 and black 2 core hardness, sample f) in Figure 3. 1
and comparison with the hardness of Black 2 at 1100℃ x 1h oil cooling,
This can also be seen from the relationship between the aging temperature and hardness after solution treatment shown in FIG. On the other hand, the core hardness after soft nitriding is equal to the hardness after solution treatment and precipitation hardening of TiC due to soft nitriding.

第5図に溶体化温度とかたさとの関係を示すが、溶体化
後のかたさはその温度に依存する。本発明対象鋼の軟窒
化性は、表面から内部に入るにつれてかたさは低下して
いくが、低下の勾配はゆるやかである。
FIG. 5 shows the relationship between solution temperature and hardness, and the hardness after solution treatment depends on the temperature. Regarding the soft-nitriding property of the steel subject to the present invention, the hardness decreases from the surface toward the inside, but the gradient of the decrease is gradual.

その傾向は第1図に見られるように溶体化によるかたさ
上昇を図つていないものと同様であるが第2図に見られ
るように比較鋼とは著しく異なる傾向を示す。このよう
に、表面かたさの高いことと共に、硬化深さの深いこと
および芯部かたさの高いことが、特に高負荷で使用され
るものの耐摩耗性、耐ピツチング性の向上に大きく寄与
する。以上説明したとおり、本発明によれば表面硬さ、
硬化深さが十分で、しかも高い芯部強度を有し、耐摩耗
性、耐ピツチング性をはじめとする諸性質の著しく改善
された機械部品が効率よく製造できることになり、特に
自動車用部品の如き量産品の製造に当つて、従来の浸炭
焼入法、窒化法には期侍できないすぐれた効果を発揮す
る。
As seen in FIG. 1, this tendency is similar to that of the steel in which hardness is not increased by solution treatment, but as shown in FIG. 2, the tendency is markedly different from that of the comparative steel. Thus, in addition to high surface hardness, deep hardening depth and high core hardness greatly contribute to improving the wear resistance and pitting resistance, especially in products used under high loads. As explained above, according to the present invention, surface hardness,
Machine parts with sufficient hardening depth, high core strength, and significantly improved wear resistance, pitting resistance, and other properties can now be manufactured efficiently, especially for automotive parts. When manufacturing mass-produced products, it exhibits excellent effects that cannot be matched by conventional carburizing and quenching methods and nitriding methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、1100℃×1h油冷の溶体化処理材した場
合の軟窒化性と、焼準した場合の軟窒化性、第2図は、
1100℃×1h油冷の溶体化処理した場合の軟窒化性
、第3図は、溶体化処理または鍛造後急冷することによ
つて得られるTiC固溶時のかたさ、第4図は、析出硬
化状況、第5図は、溶体化処理後のかたさと溶体化温度
との関係、即ち溶体化処理可能温度、を示すグラフであ
る。
Figure 1 shows the soft nitriding properties of the solution treated material at 1100°C x 1 hour oil cooling, and the soft nitriding properties of the normalized material.
Fig. 3 shows hardness when solid solution of TiC obtained by solution treatment or rapid cooling after forging, Fig. 4 shows precipitation hardening. FIG. 5 is a graph showing the relationship between the hardness after solution treatment and the solution treatment temperature, that is, the temperature at which solution treatment is possible.

Claims (1)

【特許請求の範囲】 1 C0.03〜0.25%とTi4×C%+0.01
%〜4×C%+1.0%を含有する鋼を、900〜13
00℃で加熱し、この温度域から急冷した後、450〜
700℃の温度域で軟窒化処理を行うことを特徴とする
表面窒化処理鋼の製造方法。 2 素材鋼として、下記の組成をもつ鋼を使用すること
を特徴とする特許請求の範囲第1項記載の表面窒化処理
鋼の製造方法。 C0.03〜0.25% Si0.01〜1.0% Mn0.1〜1.5% Cr0.1〜2.5% Ti4×C%+0.01〜4×C%+ 1.0% Al0.08%以下 Fe残部
[Claims] 1 C0.03-0.25% and Ti4×C%+0.01
%~4×C%+1.0% steel containing 900~13
After heating at 00℃ and quenching from this temperature range, 450~
A method for producing surface nitrided steel, characterized by performing soft nitriding in a temperature range of 700°C. 2. A method for producing surface nitrided steel according to claim 1, characterized in that steel having the following composition is used as the material steel. C0.03~0.25% Si0.01~1.0% Mn0.1~1.5% Cr0.1~2.5% Ti4×C%+0.01~4×C%+1.0% Al0 .08% or less Fe balance
JP3733478A 1978-03-29 1978-03-29 Manufacturing method of surface nitrided steel Expired JPS5934788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3733478A JPS5934788B2 (en) 1978-03-29 1978-03-29 Manufacturing method of surface nitrided steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3733478A JPS5934788B2 (en) 1978-03-29 1978-03-29 Manufacturing method of surface nitrided steel

Publications (2)

Publication Number Publication Date
JPS54128448A JPS54128448A (en) 1979-10-05
JPS5934788B2 true JPS5934788B2 (en) 1984-08-24

Family

ID=12494718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3733478A Expired JPS5934788B2 (en) 1978-03-29 1978-03-29 Manufacturing method of surface nitrided steel

Country Status (1)

Country Link
JP (1) JPS5934788B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930010411B1 (en) * 1988-07-11 1993-10-23 니혼 세이코오 가부시끼가이샤 Rolling bearing

Also Published As

Publication number Publication date
JPS54128448A (en) 1979-10-05

Similar Documents

Publication Publication Date Title
JPS6311423B2 (en)
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
JP2006348321A (en) Steel for nitriding treatment
US4853049A (en) Nitriding grade alloy steel article
JPS6127460B2 (en)
JPS5916949A (en) Soft-nitriding steel
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPS5934788B2 (en) Manufacturing method of surface nitrided steel
JPS5916948A (en) Soft-nitriding steel
JPH10226818A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPH01201459A (en) Parts combining high toughness with wear resistance
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JPH0227408B2 (en)
JPH0447023B2 (en)
US2585372A (en) Method of making low-alloy steel
JP7196707B2 (en) Forged member for nitriding and its manufacturing method, and surface hardened forged member and its manufacturing method
JP2008523250A (en) Method and process for thermochemical treatment of high strength and toughness alloys
JPS627243B2 (en)
JPS626614B2 (en)
JPS6131184B2 (en)
JP2004300472A (en) Nitriding steel component capable of obtaining high surface hardness and deep hardening depth by nitriding treatment in short time, and production method therefor
JPH0881734A (en) Steel for nitriding treatment and production therof
JP2000345292A (en) Manufacture of nitrocarburizing steel and nitrocarburized parts
JP2655848B2 (en) Tool steel for forming light alloys
JPS62990B2 (en)