JPS593096A - Device for producing belt-like silicon crystal - Google Patents

Device for producing belt-like silicon crystal

Info

Publication number
JPS593096A
JPS593096A JP10806782A JP10806782A JPS593096A JP S593096 A JPS593096 A JP S593096A JP 10806782 A JP10806782 A JP 10806782A JP 10806782 A JP10806782 A JP 10806782A JP S593096 A JPS593096 A JP S593096A
Authority
JP
Japan
Prior art keywords
melt
crucible
raw material
die
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10806782A
Other languages
Japanese (ja)
Other versions
JPS5950637B2 (en
Inventor
Toshiyuki Sawada
沢田 俊幸
Naoaki Maki
真木 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10806782A priority Critical patent/JPS5950637B2/en
Publication of JPS593096A publication Critical patent/JPS593096A/en
Publication of JPS5950637B2 publication Critical patent/JPS5950637B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable mass production of a titled crystal without degrading quality in a device which brings a seed crystal into contact with the Si melt in a crucible in a heating furnace through the slit of a die and pulling the same by providing an introducing pipe for a raw material which penetrates through a specific heating plate for melt. CONSTITUTION:A capillary die 13 contacts with the Si melt 11 in a quartz crucible 12 in a resistance heating furnace, then the melt 11 ascends the die slit by capillarity. A seed crystal is brought into contact with said melt and the seed crystal is pulled upward whereby a belt-like Si crystal 16 is obtd. Here, a graphite heating plate 18 for melt is provided in contact with the top end in one longitudinal end part of the crucible 12. The plate 18 covers the melt 11 locally, is overhung so as to cover a heater 19 in proximity thereto, and heats the melt 11 by receiving the heat of the heater 19. An introducing pipe 17 for a solid material is connected to the through-hole in the central part of the plate 18, and a small lumped raw material of polycrystalline Si is supplied continuously through the pipe 17 as much as by the amt. corresponding to the rate of growth. The temp. drop of the melt 11 and the scattering of the melt 11 to the outside of the crucible are thus prevented, and the continuous growth of the product having high quality is made possible.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、帯状シリコン結晶の製造装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an apparatus for manufacturing band-shaped silicon crystals.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

帯状シリコン結晶は薄板状であるため、チ璽りラルスキ
ー法で得られたインゴット状の一シリコン結晶とは異な
シ、その得られた形状のままで半導体太陽電池の基板と
して用いられる。従って、例えばチークラルスキー法で
得られるシリコン結晶を半導体太陽電池の基板として用
いるよシも安価になるという大、きな特徴を有する。
Since the band-shaped silicon crystal is in the form of a thin plate, it is different from the ingot-shaped single silicon crystal obtained by the chip-shaped Ralski method, and can be used as a substrate for a semiconductor solar cell in its obtained shape. Therefore, it has the great feature that, for example, silicon crystal obtained by the Zychralski method can be used as a substrate for a semiconductor solar cell at a low cost.

帯状シリコン結晶を成長させる抵抗加熱炉内の構成の断
面図を第1図によって説明する。この第1図は、シリコ
ン融液11を収容する石英ガラスルツ?12にカーメン
で作られたスリット(間隙)を有するキャピラリ・ダイ
13(以下単にダイと言う)をその長辺方向をルツボ1
2の長辺方向に平行に設置した状態を示す。
A cross-sectional view of the configuration inside a resistance heating furnace for growing band-shaped silicon crystals will be explained with reference to FIG. This figure 1 shows the quartz glass melt containing the silicon melt 11. A capillary die 13 (hereinafter simply referred to as die) having a slit (gap) made of carmen at 12 is inserted into the crucible 1 with its long side
2 is shown installed parallel to the long side direction.

このダイ13の先端部は鋭く、ナイフエ、ゾ状に加工さ
れておシ、また、これらのダイ13は熱遮蔽板14に強
く固定されている。この熱遮蔽板14は融液11の熱輻
射を上記ダイ13の先端に到達する事を弱める役割をは
たすもので、ダイISO先端部を露出させる窓があけら
れている。ルツボ12は、カーメンで形成されたルツー
ホルダー15内に挿入されている・このルツボホルダー
16の外側には、図示しない一対の板状のヒータが設け
られて−る。このヒータは上記ダイ13およびルツボホ
ルダー16の長手方向に平行に設置されている。
The tips of the dies 13 are sharp and processed into a knife shape, and these dies 13 are strongly fixed to a heat shield plate 14. This heat shield plate 14 serves to weaken the thermal radiation of the melt 11 from reaching the tip of the die 13, and has a window that exposes the die ISO tip. The crucible 12 is inserted into a crucible holder 15 made of carmen.A pair of plate-shaped heaters (not shown) are provided on the outside of the crucible holder 16. This heater is installed parallel to the longitudinal direction of the die 13 and crucible holder 16.

上記のように構成された成長装置の石英ルツボ12に多
結晶シリコンを入れ、ルツ〆の温度を約1500℃に上
昇させる。すると、多結晶シリコンはシリコン融液11
となシ、そしてこのシリコン融液11が毛細管現象によ
シ、ダイ13の先端部まで上昇する。この上昇したシリ
コン融液11に上方から種子結晶(図示せず)を接触さ
せ、次に徐々に引き上げることによシ、帯状7リコン結
晶16を成長させることができる。
Polycrystalline silicon is placed in the quartz crucible 12 of the growth apparatus configured as described above, and the temperature of the crucible is raised to about 1500°C. Then, polycrystalline silicon becomes silicon melt 11
Then, this silicon melt 11 rises to the tip of the die 13 due to capillary action. By bringing a seed crystal (not shown) into contact with the rising silicon melt 11 from above and then gradually pulling it up, it is possible to grow a band-shaped silicon crystal 16.

上述した成長装置では、ルツボ内に収納した融液量以上
の帯状結晶を得ることは不可能であった。多量の帯状結
晶を成長させるためには、ルツが容量を大きくして、原
料を初めから多量に投入しておくか、あるいはルツI容
量を小さいままにして、帯状結晶として取シ出した分の
原料を供給しつつ成長を行うかのいずれかの方法を取る
ことが考えられる。前者のルツボ容量を大きくする方法
は、技術的には、十分可能でおる。ルツ〆の大容量化に
伴い、ヒータを初め、炉全体を大きくすれば良いか、ら
である。しかしながら大きくすることによって、装置の
製造費、電力、不活性ガス消費量、冷却水等がかかシす
ぎる上に、稼動率なども考え合わせると太陽電池基板を
安価に製造するという目的に反することは十分に予測さ
れる。更に、原料を融解した状態で長い時間置くことは
、帯状結晶の品質の上から好ましくない。融液が接して
いる1、ルツ?やダイから、不純物元素が溶は出して混
入したシ、炉内材からの不純物元素が雰囲気ガスを通し
て混入したシするために、帯状結晶の品質が低下するこ
とは避けられない。一方、成長を行いながら原料を供給
する方法は、解決されなければならない技術的な問題点
を含んでいた。
With the above-mentioned growth apparatus, it was impossible to obtain band-shaped crystals in an amount greater than the amount of melt stored in the crucible. In order to grow a large amount of band-shaped crystals, either increase the Ruth I capacity and input a large amount of raw material from the beginning, or leave the Ruth I capacity small and use the amount that is extracted as band-shaped crystals. It is conceivable to adopt either method of growing while supplying raw materials. The former method of increasing the crucible capacity is technically possible. As the capacity of the furnace increases, the question arises as to whether the entire furnace, including the heater, should be made larger. However, increasing the size would not only increase the manufacturing cost of the device, electricity consumption, inert gas consumption, cooling water, etc., but also go against the purpose of manufacturing solar cell substrates at low cost when considering the operating rate. is well predicted. Furthermore, it is not preferable to leave the raw material in a molten state for a long time from the viewpoint of the quality of the band-shaped crystals. 1. Ruth in contact with the melt? It is inevitable that the quality of the band-shaped crystal will deteriorate because impurity elements are dissolved and mixed in from the furnace and the die, and impurity elements from the furnace materials are mixed in through the atmospheric gas. On the other hand, the method of supplying raw materials during growth involves technical problems that must be solved.

例えば、成長中に原料導入管を用いて固体原料をルツが
中に役人すると、その原料を融解するための熱が必要と
なるため融液の温度低下がおこる。実際に、成長量に相
当する量(1分間に約3f)の固体原料を連続的に投入
する実験を行ってみると、その原料が融解するのに数秒
間を要し、しかもダイの固体原料導入管側の温度が幾分
低下することが確かめられた。これは具体的には帯状結
晶が固体原料導入管側に太り出し、時々ダイに固着して
結晶成長が停止してしまう現象として現われた。またこ
の方法では、供給する原料の一部あるいは融液がはねて
ルツボから飛び出し、ルツボホルダーやヒータに付着す
るという現象も与られる。
For example, if a solid raw material is introduced into the melt using a raw material introduction pipe during growth, heat is required to melt the raw material, resulting in a decrease in the temperature of the melt. In fact, when we conducted an experiment in which we continuously fed in an amount of solid raw material equivalent to the amount of growth (approximately 3 f per minute), it took several seconds for the raw material to melt, and the solid raw material in the die It was confirmed that the temperature on the inlet pipe side decreased somewhat. Specifically, this phenomenon appeared as a phenomenon in which band-shaped crystals began to thicken toward the solid raw material introduction tube and sometimes stuck to the die, stopping crystal growth. Furthermore, in this method, a part of the supplied raw material or the melt may splash out of the crucible and adhere to the crucible holder or heater.

〔発明の目的〕[Purpose of the invention]

本発明は上記の知見に基き、従来の帯状シリコン結晶製
造装置の欠点を改頁したもので、帯状シリコン結晶を品
質を落とすことなく量産化できる製造装置を提供するこ
とを目的とする。
The present invention is based on the above findings, and aims to provide a manufacturing apparatus that corrects the drawbacks of conventional band-shaped silicon crystal manufacturing apparatuses and can mass-produce band-shaped silicon crystals without degrading quality.

〔発明の概要〕[Summary of the invention]

本発明は、ルツがの上に接して局部的にシリコン融液を
おおうと共にヒータに接近してヒータをおおう+’4造
を有する融液加熱板を設置醒し、かつこの加熱板を貫通
して同体原料導入管を設けたξとを特徴とする。
In the present invention, a melt heating plate having a +'4 structure is installed, which contacts the top of the melt to locally cover the silicon melt, and approaches the heater to cover the heater, and the melt heating plate is installed to cover the heater. ξ, which is equipped with an all-in-one raw material introduction pipe.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固体原料、を炉外から、ルツボ内へ直
接投入するために発生する液温の低下を押えることがで
きる。
According to the present invention, it is possible to suppress the drop in liquid temperature that occurs when solid raw materials are directly charged into the crucible from outside the furnace.

即ち、ヒータの熱をもらって融液を加熱する加熱板を貫
通して原料導入管を設けているため、投入された固体原
料を速やかに融解させることができ、融液温度の低下を
ほとんどもたらすことがない。
That is, since the raw material introduction pipe is provided through the heating plate that heats the melt by receiving heat from the heater, the solid raw material introduced can be melted quickly, and the temperature of the melt is almost never lowered. There is no.

また本発明によれば、固体原料を固体原料導入管を通し
て投入した時、融液加熱板によって原料および融液がは
ねて、ルツ?外へ飛び出すことが防止される。
Further, according to the present invention, when the solid raw material is introduced through the solid raw material introduction pipe, the raw material and the melt are splashed by the melt heating plate, and the melt is melted. Prevents it from flying out.

(7Eって・本発明により、高品質の帯状シリコン結晶
の連続成長が可能となる。
(7E) The present invention enables continuous growth of high quality band-shaped silicon crystals.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図は、本発明の帯状シリコン結晶製造装置iの長手
力・向に沿りた縦断面図、第3図は、これと直交する第
1図のA −A’位置での縦断面図であシ、第4図は要
部の平面図である。シリコン融液11は、′石英ルツボ
12に入れて6J)、融液には、ダイ13が接触してお
り、融液がダイ・スリ、トを毛細管現象で上昇して、ダ
イ上端部で固化して、帯状シリコン結晶16になる。
FIG. 2 is a longitudinal sectional view taken along the longitudinal force and direction of the belt-shaped silicon crystal manufacturing apparatus i of the present invention, and FIG. 3 is a longitudinal sectional view taken along the line A-A' in FIG. 1, which is perpendicular to this. Figure 4 is a plan view of the main parts. The silicon melt 11 is put into a quartz crucible 12 (6J), the die 13 is in contact with the melt, the melt rises through the die and slit by capillary action, and solidifies at the upper end of the die. As a result, a band-shaped silicon crystal 16 is formed.

石英ルツボ12はルツボホルダー15で支えられておシ
、ダイ13は、熱遮蔽板14に固定されている。ルツボ
12の外側には長手方向に沿って一対のヒータ19(1
9n、19b)が設けられている。これらの基本構成は
従来装置と同じである。従来装置と異なる点は、まず、
ルツボ12の長手方向一端部の上端に接してグラファイ
ト製の融液加熱板18を設置していることである。この
加熱板18は第3図および第4図から明らかなように゛
、−液11を局部的におおい、かつヒータ19をおおう
ようにルツボホルダー15の外側まで張出させており、
ヒータノ9の熱をもらって融液11を加熱するようにな
っている。そしてこの加熱板18の中央部に貫通孔があ
シ、この貫通孔に固体原料導入管17が接続されている
。この導入管12は、0.3〜2. Ottam a=
度の塊状固体原料を通す程度の細いものであって、炉の
外部をおおっているチャンバ(図示せず)の外側に原料
投入口がある。
The quartz crucible 12 is supported by a crucible holder 15, and the die 13 is fixed to a heat shield plate 14. A pair of heaters 19 (1
9n, 19b) are provided. These basic configurations are the same as the conventional devices. The difference from conventional equipment is that:
A melt heating plate 18 made of graphite is installed in contact with the upper end of one longitudinal end of the crucible 12. As is clear from FIGS. 3 and 4, this heating plate 18 locally covers the liquid 11 and extends to the outside of the crucible holder 15 so as to cover the heater 19.
The melt 11 is heated by receiving heat from the heater 9. A through hole is formed in the center of the heating plate 18, and the solid raw material introduction pipe 17 is connected to this through hole. This introduction pipe 12 has a diameter of 0.3 to 2. Ottam a=
The raw material inlet is narrow enough to pass through the bulk solid raw material, and is located outside a chamber (not shown) that covers the outside of the furnace.

晶シリコン原料を原料導入管11を介して成長量に相当
する量だけ連続的に供給しながら成長を行った結果、約
7mの帯状シリコン結晶を得ることができた。この場合
、帯状結晶の融液加熱板18側への片寄シも見られず、
また原料や融液がルツぎ外へはね出ることもなかった。
As a result of growth while continuously supplying crystalline silicon raw material in an amount corresponding to the growth amount through the raw material introduction pipe 11, a band-shaped silicon crystal of about 7 m could be obtained. In this case, no shift of the band-shaped crystals toward the melt heating plate 18 side was observed;
In addition, the raw material and melt did not splash out of the tube.

原料導入管17は細いものであるため外気を炉内に引き
入れること、もなかった。
Since the raw material introduction pipe 17 was thin, outside air was not drawn into the furnace.

本実施例の装置によれば、時間的な制約を受けない限シ
、またダイの寿命等が続く限シ、連続的な成長を行うこ
とも可能である。本実施例において結晶成長の歩留シが
良くなる理由の1つにルツ?内の融液面の変動がないこ
とがある。
According to the apparatus of this embodiment, it is also possible to perform continuous growth as long as there is no time restriction or as long as the life of the die continues. Ruth is one of the reasons why the yield of crystal growth is improved in this example. There may be no fluctuations in the melt level within.

成長中の原料供給を行なわない場合は、液面が徐々に下
がると共に、ダイ上端部の温度が徐々に上がってしまい
、幅を一定に規定しようとすると引上速度を落とすか、
系の温度を下げるかする必要があった。しかし、本実施
例装置ではその必要がなく、一定条件を維持することが
容易になりた。また、従来装置では、帯状結晶の比抵抗
は、次第に小さくなる傾向を示したが、本実施例装置で
成長した帯状結晶の比抵抗は、はとんど一定値を示した
。それは、従来装置では、融液がルツ?内に滞在する時
間、つまシ炉内に滞在する時間が1に結晶化したものと
、後で結晶化したものとは、異なシ、後になる程、不純
物元素濃度が上がってくるためと思われる。
If raw materials are not supplied during growth, the liquid level will gradually drop and the temperature at the upper end of the die will gradually rise.
It was necessary to lower the temperature of the system. However, in the device of this embodiment, this is not necessary, and it becomes easy to maintain constant conditions. Further, in the conventional apparatus, the resistivity of the band-shaped crystal showed a tendency to gradually decrease, but the resistivity of the band-shaped crystal grown in the apparatus of this embodiment almost always showed a constant value. Is it true that the melt is not produced in conventional equipment? The time spent in the tumbler furnace is different from the one that crystallized after 1, and the one that crystallized later.This is probably because the concentration of impurity elements increases as the time passes. .

以上の様に、本実施例装置は、良い品質の帯状結晶をj
t産するのに通しておシ、太陽電池基板の価格を下げる
目的に合致したものといえる。
As described above, the device of this embodiment can produce band-shaped crystals of good quality.
This can be said to meet the objective of lowering the price of solar cell substrates through production.

なお、本発明は、前述の実施例に1収足されるものでは
ない。融液加熱板は、グラファイト材以外の、耐熱性が
あシ、シリコン蒸気に対して不活性なもの、例えば炭化
珪素、窒化珪素、サイアロンなどでもよい。また、ダイ
の長手方向両側に融液加熱板を置ら、原料導入を両側で
行うことも考えられる。その他本発明の要旨を逸脱しな
い範囲で種々変形して実施することができる。
Note that the present invention is not limited to the above embodiments. The melt heating plate may be made of a material other than graphite that is heat-resistant and inert to silicon vapor, such as silicon carbide, silicon nitride, and sialon. It is also conceivable to place melt heating plates on both sides of the die in the longitudinal direction and to introduce raw materials on both sides. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の帯状/リコン結晶製造装置の長手方向に
沿った縦断面図、第2図は、本発吸の一実施例の帯状シ
÷(ン結晶製造装置の長手方向に沿った縦断面図、第3
図はこれと直交する方向に沿った第1図のA−A/点で
の縦断面図、第4図は同じく要部の平面図である。 11・・・シリコンm液、is・・・石英ルツボ、13
・・・キャピラリーダイ、17・・・固体原料導入’9
.18・・・融液加熱板、19ル、19b・・・ヒータ
・ 出願人代理人  弁理士 鈴 江 武 彦第・1図 第2図 476 第3図 第4図
FIG. 1 is a longitudinal sectional view taken along the longitudinal direction of a conventional belt-shaped/reconcrystal crystal manufacturing apparatus, and FIG. Front view, 3rd
The figure is a longitudinal sectional view taken along the line A--A in FIG. 1 along a direction perpendicular to this, and FIG. 4 is a plan view of the main parts. 11... Silicon m liquid, IS... Quartz crucible, 13
...Capillary die, 17...Solid raw material introduction '9
.. 18... Melt heating plate, 19l, 19b... Heater, Applicant's agent, patent attorney Takehiko Suzue, Figure 1, Figure 2, 476 Figure 3, Figure 4

Claims (1)

【特許請求の範囲】[Claims] 抵抗加熱炉内にシリコン融液を収納したルッ?とスリ、
トを有するキャピラリ・ダイを配し、前記スリ、トを介
して上昇した融液に種子結晶を接触させ、この種子結晶
を引上げることによシ帯状シリコン結晶を引上げる装置
において、ルツボの上端に接して局部的にシリコン融液
をおおうと共にヒータに接近してヒータをおおう構造を
有する融液加熱板を設置し、この融液加熱板を貫通する
固体原料導入管を設けたことを壽徴とする帯状シリコン
結晶の製造装置。
Luxury containing silicon melt in a resistance heating furnace and pickpocket,
In an apparatus for pulling a band-shaped silicon crystal by disposing a capillary die having a capillary die, bringing the seed crystal into contact with the melt rising through the slit and the slit, and pulling up the seed crystal, the upper end of the crucible is A melt heating plate having a structure that covers the silicon melt locally in contact with the heater and covering the heater is installed close to the heater, and a solid raw material introduction pipe is provided that penetrates this melt heating plate. A device for producing band-shaped silicon crystals.
JP10806782A 1982-06-23 1982-06-23 Manufacturing equipment for band-shaped silicon crystals Expired JPS5950637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10806782A JPS5950637B2 (en) 1982-06-23 1982-06-23 Manufacturing equipment for band-shaped silicon crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10806782A JPS5950637B2 (en) 1982-06-23 1982-06-23 Manufacturing equipment for band-shaped silicon crystals

Publications (2)

Publication Number Publication Date
JPS593096A true JPS593096A (en) 1984-01-09
JPS5950637B2 JPS5950637B2 (en) 1984-12-10

Family

ID=14475039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10806782A Expired JPS5950637B2 (en) 1982-06-23 1982-06-23 Manufacturing equipment for band-shaped silicon crystals

Country Status (1)

Country Link
JP (1) JPS5950637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347877U (en) * 1986-09-18 1988-03-31

Also Published As

Publication number Publication date
JPS5950637B2 (en) 1984-12-10

Similar Documents

Publication Publication Date Title
EP0368586B1 (en) Apparatus for manufacturing silicon single crystals
US3031275A (en) Process for growing single crystals
CA1215297A (en) Method and apparatus for controlling the atmosphere surrounding a crystal growth zone
CN101910474B (en) Single crystal producing device
US5087429A (en) Method and apparatus for manufacturing silicon single crystals
JPH0633218B2 (en) Silicon single crystal manufacturing equipment
US20130298821A1 (en) Method and apparatus for the production of crystalline silicon substrates
US5443034A (en) Method and apparatus for increasing silicon ingot growth rate
JP2007145663A (en) Method for producing high purity polycrystalline silicon
US5143704A (en) Apparatus for manufacturing silicon single crystals
US20130263772A1 (en) Method and apparatus for controlling melt temperature in a Czochralski grower
WO1995022643A1 (en) Method of growing single crystal
US4157373A (en) Apparatus for the production of ribbon shaped crystals
JPS593096A (en) Device for producing belt-like silicon crystal
KR960006262B1 (en) Apparatus for making silicon single crystal
US10060046B2 (en) Crystal puller for inhibiting melt contamination
JP2587932B2 (en) Silicon ribbon manufacturing method
JPH01317189A (en) Production of single crystal of silicon and device therefor
JPS5950636B2 (en) Band-shaped silicon crystal manufacturing equipment
JPH08259375A (en) Production of oxide single crystal and apparatus therefor
CN109628993B (en) Method for preparing arsenic dopant, method for growing monocrystalline silicon by doping arsenic oxide, monocrystalline furnace and arsenic-doped monocrystalline silicon
JP2005272265A (en) Single crystal pulling apparatus
JPH05279166A (en) Production of single crystal
JPS5950091A (en) Production device of belt-like silicon crystal
JPH0316989A (en) Production device of silicon single crystal