JPH05279166A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH05279166A
JPH05279166A JP7996792A JP7996792A JPH05279166A JP H05279166 A JPH05279166 A JP H05279166A JP 7996792 A JP7996792 A JP 7996792A JP 7996792 A JP7996792 A JP 7996792A JP H05279166 A JPH05279166 A JP H05279166A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
melt
pulling
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7996792A
Other languages
Japanese (ja)
Inventor
Yukihiro Nakamura
幸弘 中村
Katsushi Kaneko
克志 金子
Keiji Tsunenari
敬二 恒成
Yoshinori Takahashi
義則 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7996792A priority Critical patent/JPH05279166A/en
Publication of JPH05279166A publication Critical patent/JPH05279166A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To reduce impurities while saving electric power by allowing a polycrystalline material fused in a low-temperature crucible to intermittently or continuously flow out through an outlet into an up-draw crucible and drawing up a single crystal from the up-draw crucible. CONSTITUTION:A granular raw material 8 is fed from a granular raw material feeder 7 to a low-temperature crucible 6 equipped with an induction heating unit and the temperature higher than that capable of fusing the polycrystalline material as the raw material of a single crystal is secured. The granular raw material 8 is fused in the crucible 6 by supplying a prescribed electric current so as to secure an electromagnetic force enough to maintain a prescribed amount of the fused material in the crucible 6. The resultant fused material 4 is allowed to intermittently or continuously flow out through an outlet 10 of the lower part of the low-temperature crucible 6 into an up-draw crucible 1 and a single crystal 5 is drawn up from the up-draw crucible 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、引上げ法によるSiや
GaAsなどの半導体あるいは無機化学物質などの単結
晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal of a semiconductor such as Si or GaAs or an inorganic chemical substance by a pulling method.

【0002】[0002]

【従来の技術】引上げ法は、チョクラルスキー法とも言
われ、大径の単結晶インゴットが得やすいなどの利点が
あるためにSiやGaAsなどの単結晶の製造に実用さ
れている。この引上げ法には原料の供給の点からバッチ
法と連続法がある。バッチ法は、単結晶引上げ中は原料
を供給せず、引上げが終了した後に原料を残液に加えて
引上げ用溶融物を形成する方法である。この方法の典型
例はリチャージ法で、多結晶柱を残液に徐々に侵漬し溶
解して行くものである。バッチ法では、単結晶を引上げ
るに従って残液中のドーパントが濃縮されるから、引上
げ単結晶はあとの方になるに従ってドーパント濃度が高
くなるという不利がある。
2. Description of the Related Art The pulling method is also called the Czochralski method, and it is practically used for the production of single crystals of Si, GaAs, etc. because it has the advantage of easily obtaining a large diameter single crystal ingot. This pulling method includes a batch method and a continuous method from the viewpoint of supplying raw materials. The batch method is a method in which the raw material is not supplied during pulling of the single crystal, and after the pulling is completed, the raw material is added to the residual liquid to form a pulling melt. A typical example of this method is the recharge method, in which the polycrystalline columns are gradually immersed in the residual liquid and dissolved. In the batch method, since the dopant in the residual liquid is concentrated as the single crystal is pulled up, there is a disadvantage that the dopant concentration of the pulled up single crystal becomes higher in later steps.

【0003】連続法としては、例えば特開平3−297
51号公報に記載されているように単結晶引上げるつぼ
に直接固体多結晶材料を供給する方法や、引上げるつぼ
とは別に融解用るつぼを設けこれらを連通管で連結した
もの等が知られている。連続法では、ドーパントの濃縮
を防止できる。
As a continuous method, for example, Japanese Patent Application Laid-Open No. 3-297 is known.
There is known a method of directly supplying a solid polycrystalline material to a crucible for pulling a single crystal as described in Japanese Patent No. 51, or a method of providing a melting crucible separately from the crucible for pulling and connecting these with a communicating pipe. .. In the continuous method, the concentration of the dopant can be prevented.

【0004】しかし、上記いずれの方法においても固体
多結晶材料を融解するためのるつぼに高エネルギーを供
給する必要があるため、るつぼ内の温度が高くなりるつ
ぼ壁を構成する石英等の溶損をもたらして不経済であ
り、一方前記石英等が溶解して製品単結晶内に酸素等の
不純物が入り込んで来て製品の品質を低下させることに
なる。
However, in any of the above methods, since it is necessary to supply high energy to the crucible for melting the solid polycrystalline material, the temperature inside the crucible becomes high, and the melting loss of quartz or the like constituting the crucible wall is caused. This is uneconomical, and on the other hand, the quartz or the like is melted and impurities such as oxygen are introduced into the product single crystal to deteriorate the quality of the product.

【0005】一方、近年、高純度を要求される溶融材料
を得るための融解方法として低温るつぼ(コールドクル
ーシブル)を用いた誘導融解によって、材料をるつぼ壁
と非接触で融解させる技術が広く報告されている。この
低温るつぼ技術は、特に金属等の材料を高周波および中
間周波数領域の誘導融解の場合に最適とされている。
On the other hand, in recent years, a technique for melting a material in a non-contact manner with a crucible wall by induction melting using a low temperature crucible (cold crucible) has been widely reported as a melting method for obtaining a molten material requiring high purity. ing. This low temperature crucible technique is particularly suitable for induction melting of materials such as metals in the high and intermediate frequency regions.

【0006】この低温るつぼにおいては、るつぼ壁が複
数のセグメントが環状に連結されて構成されており、各
セグメントは内部に冷却水を通す中空部を有する銅製の
ものである。このるつぼ内に融解すべき材料を入れ、る
つぼの外周に配設した誘導コイルに高周波ないし中間周
波数の電流を流すことによって、るつぼ内の材料に渦電
流を発生させ、その渦電流損によって、この材料を融解
することができる。また、同時にるつぼ表面に発生する
渦電流と融解材料表面に発生する渦電流とによる電磁気
力によって、るつぼ内の溶融物とるつぼ壁との非接触化
を図ると共に、るつぼ下方の壁を絞ることによって内部
の介在物を浮上させ、これによって高純度の素材を得る
ことができる。このるつぼはカーボンヒータ等の大規模
な加熱設備を必要としない。
In this low temperature crucible, the crucible wall is formed by connecting a plurality of segments in an annular shape, and each segment is made of copper having a hollow portion through which cooling water is passed. The material to be melted is put in this crucible, and an eddy current is generated in the material in the crucible by passing a high-frequency or intermediate-frequency current through the induction coil arranged on the outer circumference of the crucible, and the eddy current loss causes The material can be melted. At the same time, the electromagnetic force generated by the eddy current generated on the crucible surface and the eddy current generated on the molten material surface makes the melt in the crucible non-contact with the crucible wall and reduces the wall below the crucible. The inclusions inside are floated up, and a high-purity material can be obtained. This crucible does not require large-scale heating equipment such as a carbon heater.

【0007】この低温るつぼ技術を用いた溶融・晶出方
法が、特開昭60−2876号公報において開示されて
おり、この低温るつぼ技術を用いたシリコンの連続鋳造
方法が特開昭64−53732号公報に開示されてい
る。しかしこの低温るつぼ法は小規模な単結晶引上には
適しているが大規模な単結晶引上げには適しない。大量
の溶融物をるつぼ壁から浮上させるために過大な電力を
要するからである。
A melting and crystallization method using this low temperature crucible technology is disclosed in Japanese Patent Laid-Open No. 60-2876, and a continuous casting method of silicon using this low temperature crucible technology is Japanese Patent Laid-Open No. 64-53732. It is disclosed in the publication. However, this low temperature crucible method is suitable for pulling a single crystal on a small scale, but is not suitable for pulling a single crystal on a large scale. This is because an excessive amount of electric power is required to levitate a large amount of melt from the crucible wall.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は小規模
で安価な融解るつぼを用いて低電力で、不純物が極めて
少ない単結晶をも作りうる単結晶の製造方法を提供する
ことである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a single crystal which uses a small-scale and inexpensive melting crucible and which can produce a single crystal with low power and very few impurities.

【0009】[0009]

【課題を解決するための手段】本発明は、誘導加熱装置
を備え、下部に流出口を有する低温るつぼの前記誘導加
熱装置に、単結晶の原料となる多結晶材料を融解できる
温度以上を確保し、所定量の溶融物をるつぼ内に保持す
るための電磁力を確保するほぼ一定の電流を供給して、
該るつぼ内で前記多結晶材料を融解すると共に、この溶
融物を保持しつつ、該るつぼ内に前記多結晶の固体材料
を連続的に又は間欠的に供給し、これを融解すると共
に、該固体多結晶の供給量に相当する量の溶融物を、流
出口から連続的に又は間欠的に引上げるつぼに流出さ
せ、該引上るつぼから単結晶を引上げる、単結晶の製造
方法である。
According to the present invention, the induction heating device of a low temperature crucible having an induction heating device and having an outlet at the bottom ensures a temperature equal to or higher than a temperature at which a polycrystalline material as a raw material of a single crystal can be melted. Then, by supplying an almost constant current that secures an electromagnetic force for holding a predetermined amount of melt in the crucible,
While melting the polycrystalline material in the crucible and holding the melt, the polycrystalline solid material is continuously or intermittently supplied into the crucible to melt the polycrystalline material. This is a method for producing a single crystal, in which an amount of melt corresponding to the supply amount of the polycrystal is made to flow from an outlet to a crucible for pulling up continuously or intermittently, and the single crystal is pulled up from the pulling crucible.

【0010】従来、低温るつぼの底部に設けられる流出
口の口径dは、通常の低温るつぼの場合、電磁力がない
状態でも底部に設けた流出口から、溶融した材料が流出
しないように、表面張力によって材料の静圧を支えなけ
ればならない。したがって、下記(1)式の条件を満た
す流出口の口径dに設計されている。 2σ/d>ρgh+ρgd/2 (1) (材料の表面張力) (材料の静圧) 但し、σ;材料の表面張力 [dyn /cm] ρ;材料の密度 [g/cm3 ] h;るつぼの中の材料のヘッド高さ [cm] g;重力加速度 g=980cm/s2
Conventionally, in the case of an ordinary low temperature crucible, the diameter d of the outlet provided at the bottom of the low temperature crucible is such that the molten material does not flow out from the outlet provided at the bottom even when there is no electromagnetic force. The tension must support the static pressure of the material. Therefore, it is designed to have an outlet diameter d that satisfies the condition of the following formula (1). 2σ / d> ρgh + ρgd / 2 (1) (surface tension of material) (static pressure of material) where σ; surface tension of material [dyn / cm] ρ; density of material [g / cm 3 ] h; of crucible Head height [cm] g of material inside; Gravity acceleration g = 980 cm / s 2

【0011】しかし、本発明で用いる低温るつぼの場
合、溶融状態の材料を流出させることを目的とするた
め、下記(2)式の条件を満たす口径dに設計する。す
なわち、流出口径dは従来の場合に比し、大きい口径に
設計する。 2σ/d<ρgh+ρgd/2 (2) 低温るつぼにおいては溶融状態の材料を支える力とし
て、表面張力とコイルから発生する電磁力があるが、本
発明では、所定量の材料を溶融し保持できるコイル構造
にし、供給電流を設定することにより、るつぼ内の溶融
状態の材料を保持しながら、材料を供給し、供給材料に
相当する溶融材料を溶解し流出する。
However, in the case of the low temperature crucible used in the present invention, since the purpose is to let the molten material flow out, the crucible is designed to have a diameter d that satisfies the following expression (2). That is, the outlet diameter d is designed to be larger than that in the conventional case. 2σ / d <ρgh + ρgd / 2 (2) In a low temperature crucible, surface tension and electromagnetic force generated from a coil are used to support a molten material, but in the present invention, a coil capable of melting and holding a predetermined amount of material. By making the structure and setting the supply current, the material is supplied while the molten material in the crucible is held, and the molten material corresponding to the supply material is melted and flows out.

【0012】本発明方法によれば、前記特開平3−29
751号公報に記載された、引上げるつぼとは別に融解
用るつぼを設けこれらを連通管で連結したもの、あるい
は引上げるつぼに直接固体多結晶材料を供給する方法に
較べて融解用るつぼが極めて小さな規模ですむ。又、融
解用電力を、既に溶融した大量の溶融物の加熱に分散さ
せることなく、融解にのみ集中することができて電力を
節約できる。
According to the method of the present invention, the above-mentioned Japanese Patent Laid-Open No. 3-29 is used.
No. 751 discloses a crucible for melting provided separately from the pulling crucible and connecting them with a communication tube, or a method of supplying a solid polycrystalline material directly to the pulling crucible, the melting crucible has an extremely small scale. OK. Further, the electric power for melting can be concentrated only on the melting without distributing the electric power for melting to the heating of a large amount of the already melted material, thereby saving the electric power.

【0013】例えば、シリコンは約600℃迄加熱する
と以後比較的低電力で高周波加熱により温度を高めて融
解状態にもち込みうる。一旦融解すると高純度のシリコ
ンであっても比抵抗が小さく、電流(誘導電流)がよく
流れて温度が高くなり、これと接触する固体シリコンを
容易に融解する。そこで初期には、比較的ドーパント濃
度が高く、誘導電流をよく流すシリコン板小片を高純度
シリコンと共に低温るつぼに入れ、前記小片を先ず融解
させ、次いで周囲の高純度シリコンを融解させて、冷却
るつぼ内に浮上保持しうる量の溶融シリコン塊を形成す
る。そして更に固体シリコンを供給すれば、同量の溶融
シリコンが低温るつぼの流出口から引上げるつぼに供給
される。このようにして単結晶の引上げに充分な量の溶
融物が引上るつぼに溜まったら単結晶の引上げを開始す
る。
For example, when silicon is heated to about 600 ° C., it can be brought into a molten state by raising the temperature by high frequency heating with relatively low power. Once melted, even high-purity silicon has a low specific resistance, a current (induced current) flows well and the temperature rises, and solid silicon that comes into contact with the silicon is easily melted. Therefore, in the initial stage, a small piece of silicon plate with a relatively high dopant concentration and a good flow of induced current is put in a low-temperature crucible together with high-purity silicon, and the small piece is first melted, and then the surrounding high-purity silicon is melted, and then the cooling crucible. An amount of molten silicon mass that can be floated and held therein is formed. When solid silicon is further supplied, the same amount of molten silicon is supplied from the outlet of the low temperature crucible to the crucible to be pulled up. In this way, when a sufficient amount of melt for pulling the single crystal is accumulated in the pulling crucible, pulling of the single crystal is started.

【0014】連続法で単結晶を引上げるときは、低温る
つぼから必要量の溶融物を引上げるつぼに連続的に供給
すればよい。バッチ法で単結晶を引上げるときは、引上
げの間低温るつぼからの供給を止め、1つの引上げが終
わった後低温るつぼから必要量の溶融物を供給し、再び
引上げればよい。
When pulling a single crystal by the continuous method, a necessary amount of the melt may be continuously supplied from the low temperature crucible to the pulling crucible. When pulling a single crystal by the batch method, the supply from the low temperature crucible is stopped during the pulling, and after one pulling is completed, the required amount of melt is supplied from the low temperature crucible and the pulling is performed again.

【0015】シリコンのような半導体の単結晶を作る場
合は初期の火種を作るときの板状小片にのみドーパント
を含有せしめればよく、溶融のために追加する固体多結
晶半導体は高純度のものでよいから、高純度の半導体を
作ることができる。一方、ドーパントの添加は自由であ
るから任意のドーパント濃度の半導体を作りうる。
When producing a single crystal of a semiconductor such as silicon, it is sufficient to add the dopant only to the plate-like small pieces used for producing the initial spark, and the solid polycrystalline semiconductor added for melting is of high purity. Therefore, a high-purity semiconductor can be manufactured. On the other hand, since the addition of the dopant is free, a semiconductor having an arbitrary dopant concentration can be manufactured.

【0016】本発明においては固体原料を融解するるつ
ぼは低温るつぼであり、これから融解物を引上るつぼに
落下させればよく、溶融物が実質的にるつぼ壁等に接触
しないから、従来法のような融解るつぼが大容量大電力
のものと異なりるつぼ壁又は融解るつぼから引上るつぼ
への連通管(前述)からの不純物の混入がない。従って
不純物含量の極めて少ない単結晶を得ることができる。
In the present invention, the crucible for melting the solid raw material is a low temperature crucible, and it is sufficient to drop the melt into the pulling crucible, and since the melt does not substantially contact the crucible wall or the like, the conventional method is used. There is no contamination of impurities from the crucible wall or the communicating pipe (described above) from the melting crucible to the pulling crucible, unlike the melting crucible of high capacity and high power. Therefore, a single crystal having an extremely low impurity content can be obtained.

【0017】[0017]

【実施例】図1に本発明に用いる装置及びこれを用いた
単結晶の引上げの様子の一例の断面図を示す。この図に
おいて、1は石英るつぼ、2は黒鉛るつぼ、3はヒータ
ー、4は溶融液、5は引上げ単結晶、6は低温るつぼ、
7は粒状原料フィーダー、8は粒状原料、9は低温るつ
ぼ内融解液塊、10は低温るつぼからの流出液である。
EXAMPLE FIG. 1 is a sectional view showing an example of the apparatus used in the present invention and the state of pulling a single crystal using the apparatus. In this figure, 1 is a quartz crucible, 2 is a graphite crucible, 3 is a heater, 4 is a melt, 5 is a pulled single crystal, 6 is a low temperature crucible,
7 is a granular raw material feeder, 8 is a granular raw material, 9 is a molten liquid mass in a low temperature crucible, and 10 is an effluent from the low temperature crucible.

【0018】図2に前記低温るつぼ6の一例の拡大断面
図を示す。この図において、6,8,9,10は前記と
同じ意味を表わす。11は銅製の6つのセグメントから
なるるつぼ、12は石英るつぼ、13は融解液流出口、
14はコイル、15はコイル14への給電線、16は冷
却水流路である。るつぼ11,12は冷却水により冷却
されている。るつぼ12の中に所定量の溶融材料9がコ
イル14によって発生する誘導電流によって溶融状態に
維持され、同時に発生する電磁力によって保持されてい
る。るつぼ12の開口部上方から固体材料を供給すると
このるつぼ12内の溶融材料中から、この供給された固
体材料相当量が、前記電磁力による保持力に勝って、る
つぼ12の底部に設けられた流出口13から流出するよ
うになっている。
FIG. 2 shows an enlarged sectional view of an example of the low temperature crucible 6. In this figure, 6, 8, 9, and 10 have the same meanings as described above. 11 is a crucible made of 6 segments made of copper, 12 is a quartz crucible, 13 is a melt outlet,
Reference numeral 14 is a coil, 15 is a power supply line to the coil 14, and 16 is a cooling water flow path. The crucibles 11 and 12 are cooled by cooling water. A predetermined amount of the molten material 9 is maintained in a molten state in the crucible 12 by an induction current generated by the coil 14, and is held by an electromagnetic force generated at the same time. When the solid material is supplied from above the opening of the crucible 12, the amount of the supplied solid material out of the molten material in the crucible 12 exceeds the holding force by the electromagnetic force and is provided at the bottom of the crucible 12. It is designed to flow out from the outlet 13.

【0019】実施例1 上記の装置を用いて、引上げるつぼ内に初期ドーパント
(B)濃度1×1018atom/cm3 のシリコン溶融液を準
備し、直径6インチの単結晶を1mm/分の速度で10時
間引上げた。このとき同時に引上げ量と同量の融解シリ
コン(純度:イレブン9)を低温るつぼから供給した。
このとき低温るつぼで消費された電力は25kW×10時
間であった。
Example 1 Using the apparatus described above, a silicon melt having an initial dopant (B) concentration of 1 × 10 18 atom / cm 3 was prepared in a crucible to be pulled up, and a single crystal having a diameter of 6 inches was fed at 1 mm / min. Raised at speed for 10 hours. At the same time, the same amount of molten silicon (purity: Eleven 9) as the pulling amount was supplied from the low temperature crucible.
The electric power consumed in the low temperature crucible at this time was 25 kW × 10 hours.

【0020】比較例1 比較のため、図3に示す装置を用いて単結晶の引上げを
行なった。この図において5は引上単結晶、21は引上
るつぼ、21aは融解るつぼ、22は多結晶Si原料、
23は引上るつぼ内溶融液、23aは融解るつぼ内溶融
液、24は溶融液輸送管、25はヒーターである。引上
るつぼ21及びこれに用いるヒーターは上記実施例1と
同様のものとした。融解るつぼ21aは引上げるつぼと
同サイズのものとした。引上げるつぼ21内に上記実施
例と同じドーパント濃度のSi溶融液23を準備し、直
径6インチの単結晶を1mm/分で10時間引上げた。一
方融解用るつぼに純度イレブン9のSi溶融液23aを
準備し、純度イレブン9の多結晶Si22を融解させつ
つ、融液輸送管24を通して溶融Siをるつぼ21aか
らるつぼ21に供給した。
Comparative Example 1 For comparison, a single crystal was pulled using the apparatus shown in FIG. In this figure, 5 is a pulling single crystal, 21 is a pulling crucible, 21a is a melting crucible, 22 is a polycrystalline Si raw material,
23 is a melt in the pulling crucible, 23a is a melt in the melting crucible, 24 is a melt transport pipe, and 25 is a heater. The pull-up crucible 21 and the heater used therefor were the same as those in the first embodiment. The melting crucible 21a had the same size as the pulling crucible. A Si melt 23 having the same dopant concentration as that in the above-described embodiment was prepared in the pulling crucible 21, and a single crystal having a diameter of 6 inches was pulled at 1 mm / min for 10 hours. On the other hand, a Si melt 23a of purity eleven 9 was prepared in a melting crucible, and while melting the polycrystalline Si 22 of purity eleven 9, molten Si was supplied from the crucible 21a to the crucible 21 through the melt transport pipe 24.

【0021】上記実施例1と比較例1で得られたSi単
結晶について、ドーパント濃度、換言すれば抵抗値のば
らつきに両者の差はなかった。しかし、比較例1の場
合、融解電力として90kW×6時間、保温電力として9
0kW×10時間、融液輸送管保温電力として10kW×1
0時間を要した。比較例1の融解るつぼに代えて実施例
の融解るつぼを使用すれば使用電力を著しく節約できる
ことが明らかである。
Regarding the Si single crystals obtained in Example 1 and Comparative Example 1, there was no difference in the dopant concentration, in other words, the variation in resistance value. However, in the case of Comparative Example 1, the melting power is 90 kW × 6 hours, and the insulation power is 9
0kW × 10 hours, 10kW × 1 as insulation power for melt transport pipe
It took 0 hours. It is clear that using the melting crucible of the Example instead of the melting crucible of Comparative Example 1 can significantly reduce the power consumption.

【0022】実施例2 実施例1と同じ引上げるつぼを用いて融解シリコンを供
給せずに同様の溶融液から直径6インチの単結晶を1mm
/分の速度で10時間引上げた。その後引上げた単結晶
と同重量の高純度(イレブン9)Si多結晶粒を低温ル
ツボを経由させ融解して、引上げるつぼに補充した。こ
の時に要した電力は40kW×4時間であった。
Example 2 Using the same pulling crucible as in Example 1, 1 mm of a 6-inch diameter single crystal was obtained from the same melt without supplying molten silicon.
It was pulled up for 10 hours at a speed of / minute. After that, high-purity (Eleven 9) Si polycrystalline grains having the same weight as the pulled single crystal were melted via a low temperature crucible and replenished in the pulled crucible. The power required at this time was 40 kW x 4 hours.

【0023】比較例2 実施例2と同様にして単結晶を引上げた後、引上げた単
結晶と同重量の高純度(イレブン9)Si多結晶棒を引
上げるつぼに徐々に侵漬し融解し補充した。このときに
要した電力は100kW×8時間であった。
Comparative Example 2 After pulling a single crystal in the same manner as in Example 2, a high-purity (Eleven 9) Si polycrystalline rod having the same weight as the pulled single crystal was gradually immersed in the crucible to be melted and replenished. did. The power required at this time was 100 kW x 8 hours.

【0024】上記実施例2と比較例2とを比較すれば、
比較例2のリチャージ法に較べて実施例2の方法の方が
はるかに使用電力を節約できることが明らかである。
Comparing Example 2 with Comparative Example 2,
It is apparent that the method of Example 2 can save much power consumption compared to the recharging method of Comparative Example 2.

【0025】尚、実施例1で引上げた単結晶の比抵抗範
囲は1〜30Ω・cmであった。これに対して実施例2で
引上げた単結晶の比抵抗範囲は0.01〜1000Ω・
cmであった。実施例2のバッチ式に較べて実施例1の連
続式の方がはるかに比抵抗値の変化が小さいことが明ら
かである。
The specific resistance range of the single crystal pulled in Example 1 was 1 to 30 Ω · cm. On the other hand, the specific resistance range of the single crystal pulled in Example 2 is 0.01 to 1000 Ω.
It was cm. It is clear that the continuous method of Example 1 has a much smaller change in the specific resistance value than the batch method of Example 2.

【0026】[0026]

【発明の効果】本発明方法によれば小規模で安価な融解
るつぼを用いて低電力で、不純物が極めて少ない単結晶
をも製造することができる。
According to the method of the present invention, it is possible to produce a single crystal with a low power consumption and an extremely small amount of impurities using a small-scale, inexpensive melting crucible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる装置及びこれを用いた単結晶の
引上げの様子の一例の断面図。
FIG. 1 is a cross-sectional view of an example of an apparatus used in the present invention and a state of pulling a single crystal using the apparatus.

【図2】図1に示した低温るつぼ6の一例の拡大断面
図。
FIG. 2 is an enlarged sectional view of an example of the low temperature crucible 6 shown in FIG.

【図3】比較例1で用いた単結晶引上げ用装置の断面
図。
FIG. 3 is a cross-sectional view of a single crystal pulling apparatus used in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…石英るつぼ 2…黒鉛るつぼ 3,25…ヒーター 4,23,23a…溶融液 5…引上げ単結晶 6…低温るつぼ 7…粒状原料フィーダー 8…粒状原料 9…低温るつぼ内融解液塊 10…低温るつぼからの流出液 11…銅製るつぼ 12…石英るつぼ 13…融解液流出口 14…コイル 16…冷却水流路 21…引上げるつぼ 21a…融解るつぼ 22…多結晶Si原料 24…溶融液輸送管 1 ... Quartz crucible 2 ... Graphite crucible 3, 25 ... Heater 4, 23, 23a ... Melt liquid 5 ... Pulled single crystal 6 ... Low temperature crucible 7 ... Granular raw material feeder 8 ... Granular raw material 9 ... Low temperature melting crucible in crucible 10 ... Low temperature Outflow liquid from crucible 11 ... Copper crucible 12 ... Quartz crucible 13 ... Melt liquid outlet 14 ... Coil 16 ... Cooling water flow passage 21 ... Pulling crucible 21a ... Melting crucible 22 ... Polycrystalline Si raw material 24 ... Melt liquid transport pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 義則 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinori Takahashi 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘導加熱装置を備え、下部に流出口を有
する低温るつぼの前記誘導加熱装置に、単結晶の原料と
なる多結晶材料を融解できる温度以上を確保し、所定量
の溶融物をるつぼ内に保持するための電磁力を確保する
ほぼ一定の電流を供給して、該るつぼ内で前記多結晶材
料を融解すると共に、この溶融物を保持しつつ、該るつ
ぼ内に前記多結晶の固体材料を連続的に又は間欠的に供
給し、これを融解すると共に、該固体多結晶の供給量に
相当する量の溶融物を、流出口から連続的に又は間欠的
に引上げるつぼに流出させ、該引上るつぼから単結晶を
引上げる、単結晶の製造方法。
1. A predetermined amount of melt is secured in the low-temperature crucible having an induction heating device and having an outlet in the lower portion, at a temperature higher than a temperature at which a polycrystalline material as a raw material of a single crystal can be melted. An approximately constant current is supplied to secure an electromagnetic force to hold the polycrystal material in the crucible to melt the polycrystalline material in the crucible and hold the melt while holding the melt in the crucible. A solid material is continuously or intermittently supplied and melted, and at the same time, an amount of a melt corresponding to the supply amount of the solid polycrystal is discharged from an outlet into a crucible that is continuously or intermittently drawn. A method for producing a single crystal, which comprises pulling a single crystal from the pulling crucible.
JP7996792A 1992-04-01 1992-04-01 Production of single crystal Withdrawn JPH05279166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7996792A JPH05279166A (en) 1992-04-01 1992-04-01 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7996792A JPH05279166A (en) 1992-04-01 1992-04-01 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH05279166A true JPH05279166A (en) 1993-10-26

Family

ID=13705092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7996792A Withdrawn JPH05279166A (en) 1992-04-01 1992-04-01 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH05279166A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046432A1 (en) * 1998-03-12 1999-09-16 Super Silicon Crystal Research Institute Corp. Method and apparatus for supplying single crystal raw material
US7344594B2 (en) 2004-06-18 2008-03-18 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
US7465351B2 (en) 2004-06-18 2008-12-16 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
US7691199B2 (en) 2004-06-18 2010-04-06 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046432A1 (en) * 1998-03-12 1999-09-16 Super Silicon Crystal Research Institute Corp. Method and apparatus for supplying single crystal raw material
US7344594B2 (en) 2004-06-18 2008-03-18 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
US7465351B2 (en) 2004-06-18 2008-12-16 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
US7691199B2 (en) 2004-06-18 2010-04-06 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material

Similar Documents

Publication Publication Date Title
US20190136407A1 (en) Single crystal ingots with reduced dislocation defects and methods for producing such ingots
US7682472B2 (en) Method for casting polycrystalline silicon
US5510095A (en) Production of high-purity silicon ingot
EP0349904B1 (en) Apparatus for casting silicon
JP3053958B2 (en) Crystal production equipment by the floating zone melting method
KR100825997B1 (en) Method and Apparatus for Growing Single Crystal
US5223077A (en) Method of manufacturing single-crystal silicon
WO2013111314A1 (en) Silicon purification method
US20160348271A1 (en) Integrated System of Silicon Casting and Float Zone Crystallization
JPH06345584A (en) Method and apparatus for pulling monocrystal
WO1999046433A1 (en) Auxiliary apparatus for melting single crystal raw material and method of melting single crystal raw material
US5268063A (en) Method of manufacturing single-crystal silicon
JPH05279166A (en) Production of single crystal
JP3005633B2 (en) Method for producing polycrystalline silicon ingot for solar cell
CN113668046A (en) Preparation device of monocrystalline silicon and use method thereof
JP2947666B2 (en) Silicon fire method
JP2883910B2 (en) Manufacturing method of single crystal silicon
JPS61232295A (en) Production of silicon crystal semiconductor
JP2000159596A (en) Production of silicon single crystal and pulling machine
JP2896432B2 (en) Silicon casting equipment
JPH05279168A (en) Formation of molten silicon seed
JPH05279171A (en) Initial melting method of silicon
JPH04285095A (en) Method for continuously casting silicon by electromagnetic induction
JPH11130581A (en) Rapid melting of silicon and apparatus therefor
JPH09227280A (en) Method for growing single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608