US3031275A - Process for growing single crystals - Google Patents

Process for growing single crystals Download PDF

Info

Publication number
US3031275A
US3031275A US794608A US79460859A US3031275A US 3031275 A US3031275 A US 3031275A US 794608 A US794608 A US 794608A US 79460859 A US79460859 A US 79460859A US 3031275 A US3031275 A US 3031275A
Authority
US
United States
Prior art keywords
molten
region
crystalline
crystalline material
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US794608A
Inventor
Shockley William
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US794608A priority Critical patent/US3031275A/en
Application granted granted Critical
Publication of US3031275A publication Critical patent/US3031275A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/06Non-vertical pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/912Replenishing liquid precursor, other than a moving zone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/914Crystallization on a continuous moving substrate or cooling surface, e.g. wheel, cylinder, belt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/074Horizontal melt solidification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/152Single crystal on amorphous substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/17Vapor-liquid-solid

Definitions

  • This invention relates generally to a process for the growing of single crystals and more particul-arly to a process for growing single crystal plates, ribbons, sheets or the like by supporting the same on molten material.
  • FIGURE l is a sectional elevation View showing a furnace suitable for carrying out the process of the invention.
  • FIGURE 2 is a sectional view taken along the line 2 2 of FIGURE l;
  • FIGUREl 3 shows a portion of the furnace of the type shown in FIGURE 1 in which powdered crystalline material is fed into the melting zone;
  • FIGURE 4 shows another configuration of a furnace suitable for carrying out the invention
  • FIGURE 5 is a sectional view taken along the line 5-5 of FIGURE 4;
  • FIGURE ⁇ 6 shows an isothermal plot of the temperalture distribution in the furnace.
  • FIGURE 7 shows an enlarged portion of a modification of the furnace of vFIGURE 4 in which impurities tend to be removed from the surface of the molten material by convective forces in the molten material.
  • the furnace includes a refractory tube 11 which may, for example, be circular or rectangular in cross-section.
  • the tube is supported -by refractory mounts 12 carried on a support surface 13.
  • Means (not shown) are provided for levelling the furnace by moving the support surface.
  • the refractory tube and materials within the same may be electrically heated by resistance or induction heaters. schematically illustrated are inductive heating coils 14 surrounding the refractory material.
  • the center portion of the refractory tube may be shielded y16.
  • Suitable temperature controls and spacing of the heating coils is employed to form a higher temperature in the center portion than in the remainder of the furnace whereby material such as silicon which is being ⁇ formed into thin plates, sheets, ribbons, or the like in 'accordance with the present invention, becomes molten.
  • a graphite crucible or boat 17 filled with a molten material which is immiscible with the crystals being grown is disposed in the refractory tube.
  • the molten material may, for example, be lead.
  • the molten material extends above the surface of the crucible as indicated at 18. This can be achieved by adjusting the volume of lead and the volume of the crucible whereby when the molten material is heated, it expands and extends above the surface but is contained within the crucible as a convex meniscus -by surface tension forces.
  • the crucible 17 is placed within a larger graphite boat 19 which will catch any molten material which spills over the sides of crucible 17. This is purely a protective measure for the refractory tube and in certain instances may not be necessary.
  • the ends of the refractory tubes may be connected to suitable means for causing the flow of gases through the tubes to provide different atmospheres within the refractory tube.
  • suitable means for causing the flow of gases through the tubes For example, nitrogen, helium, argon or other inert gases may be caused to flow through the tube, or, if desired, oxidizing gases may be caused to flow therethrough.
  • an imperfect single crystal or a polycrystalline rod or bar 21 of crystalline material is fed onto the molten material 18. It may be fed by passing over a plurality of idler rollers 2v2 and spaced feed rollers 3 ⁇ which serve to drive the material inwardly onto the surface of the molten material 18.
  • a thin single crystal ribbon 24 Illustrated at the opposite end of the furnace is a thin single crystal ribbon 24 which is drawn from the furnace by means of the spaced rollers 26.
  • the portion of the ribbon within the furnace is floated or supported on the molten material as it is withdrawn from the furnace region.
  • the crystal is continuously formed in the high temperature region and withdrawn by the rollers.
  • the process not only provides means for growing relatively thin sheets of material, but also tends to purify the silicon since, in essence, zone refining is being carried out as the crystal is grown from the molten crystalline material supported by the molten material.
  • a seed is inserted on a pulling means and the seed is moved inwardly to the high temperature region.
  • the seed then serves to cause nucleation of crystalline material.
  • the rod is withdrawn outwardly and the material continues to grow in the form of a relatively thin single crystal plate.
  • the thickness of the plate is determined by the temperature of the molten zone, and the rate at which the crystal is withdrawn. As crystalline material is supplied, it melts and recrystallizes into the growing crystal.
  • the temperature gradient within the furnace is such that at the ends of the furnace the temperature is near the melting point of the supporting material, for example, if lead is employed, 327 C. with increasing temperature as one proceeds from the ends of the furnace towards the center.
  • close control of temperature by Well known means is maintained at the center of the crucible.
  • the temperature is maintained slightly above the melting point of the material from which the crystal is being grown, as for example, l420i2 C. for the growth of silicon plates, ribbons and the like.
  • the molten material has a higher specific gravity than either the solid crystalline material or the molten crystalline material so that both the liquid and solid phases of the crystalline material from which the single crystal to be withdrawn is floated. 'This allows thin crystals to form on the surface and the amount of mechanical stress to which the crystals are subjected is minimal.
  • a relatively thin layer of supporting molten material In order to reduce convection currents, it is desirable 'to employ a relatively thin layer of supporting molten material.
  • a relatively thin supporting material 18a is illustrated.
  • Convection occurring within the molten material might introduce dislocations in the crystal growing from the high temperature region.
  • Convective gas currents should be minimized by making the space between the lead surface and the furnace walls as small as possible as illustrated by the space 32 in FIGURE 4. Another advantage which is gained is the reduction of the power required to maintain the temperature.
  • FIG- URE 4 In the particular case of a lead-silicon system, certain additional refinements may be warranted in the furnace construction. These refinements are illustrated in FIG- URE 4. Vertical as well as horizontal temperature gradients may be produced by the distribution of heat in the heater coils. The isothermal lines 33 are of the general form shown in FIGURE 6. The small dimensions of the furnace and the temperature gradient serve to control the flow of lead vapor. At the melting point of silicon, lead has a vapor pressure in the order of 100 mm. of mercury. As a result of this high vapor pressure, it is possible for lead to vaporize from the hotter region of the furnace, condense on the surface of the colder region, and form drops which may fall on the silicon film and fracture it or interfere with growing crystal.
  • This may be prevented in .part by producing an opposing gas iiow which lio-ws inwardly from the ends to the high temperature regions so as to prevent the high vapor ressure at the high temperature regions of the furnace from reaching temperature regions where condensation might occur.
  • This effect may be enhanced by employing gas liow inwardly from the two ends.
  • the lead vapor must then iiow against the current for an appreciable distance to find asurface on which to condense.
  • an outlet is shown at the center of the furnace for gases.
  • Means are provided for replenishing the lead as it is vaporized.
  • an opening 37 may be formed in the furnace wall and lead in the form of a wire 3S, pellets or the like may be dropped into the molten pool to maintain the volume.
  • the condensed vapors 39 may be directed back into the furnace to replenish the lead which has been vaporized. In such instance, the additional amount of lead 38 required will be minimized.
  • This flow tends to carry oxides or other impurity materials which may form on the surface of the lead toward the sides so that silicon, as it solidiies, is solidifying on a clean lead surface. It is evident that this means may also be utilized to provide means for cleaning the lead surface and a side arm might be produced on the furnace extending some distance laterally so that any surface matter can be carried to the side and be eliminated.
  • a conformal transformation defines a twodimensional temperature distribution where the temperature T is given by requiring that the length of the edge 0f the crystallographic unit cell at temperature T at a given point is proportional to the quantity p defined in the reference on page 264.
  • thin sheets provide easy escape for vacancies or interstitial atoms which may be present at high temperatures. If these cannot escape, they may produce vacancy platelets or dislocation loops as discussed, for example by I. C. Fisher in Dislocations and Mechanical Propetries of Crystals, John Wiley and Sons, 1957, page 513. Thus, more perfect crystals may vbe grown in thin plates than in large cylinders.
  • Impurities such as lead in silicon, are often less soluble as the temperature is lowered. For the system described above, these impurities have an easy opportunity to escape into the molten support.
  • the method can be extended to cases in which the supported material tends to spread to undcsirably thin layers due to surface tension effects by controlling the rate of feed and the temperature distribution so that solidiiication occurs when the layer has spread to the desired thickness.
  • the method of growing single crystal plates is not restricted to the silicon lead system.
  • Some other possible systems characterized by having phase diagrams with two substantially immiscible liquid phases are nickel plates on silver, aluminum plates on cadmium, aluminum plates on indium, aluminum plates on potassium, aluminum plates on lead, aluminum plates on thallium, cobalt on lead, gallium on mercury, etc.
  • Molten salts may also be used as supports and crystals of quite different types may be grown in such systems.
  • a process for growing thin plates of a crystalline semiconductor material which comprises the steps of forming a support of molten second material, said second material being immiscible with the crystalline material and having a specilic gravity higher than said crystalline material at both the liquid and solid phases of the crystalline material, forming a region of predetermined extent in said second material which is at a temperature higher than the melting point of the crystalline material, supplying crystalline material to said region whereby it melts and is supported on the surface of the second material, growing a crystal from said crystalline material in the higher temperature region, and supporting the grown crystal on the second molten material.
  • a process for treating crystalline semiconductor material which comprises the steps of forming a support of molten material, said molten material being immiscible with the crystalline material being treated and having a speciic gravity higher than said crystalline at both the liquid and solid phases of the crystalline material, forming a region of predetermined extent in said molten material which is at a temperature higher than the melting point of said crystalline material, supplying crystalline material to said region whereby it melts and is supported on the surface of the molten material, growing a crystal from said molten crystalline material, supporting said grown crystal on the supporting molten material, and withdrawing the grown crystal along the surface of the molten material.
  • a process for treating crystalline semiconductor material which comprises the steps of forming a support of molten material, said molten material being immiscible with the crystalline material and having a specific gravity higher than said crystalline material at both the liquid and solid phases of the crystalline material, forming a region of predetermined extent in said liquid which region is at a temperature higher than the melting point of said crystalline material, supporting elongated crystalline material on said molten material and feeding the same along the molten material to said region whereby the crystalline material is progressively melted at said region, growing -a crystal from said molten crystalline material, withdrawing said crystal on said molten material whereby the grown crystal is supported on the surface of the molten material as it is drawn from the region.
  • a process for growing single crystal silicon ribbons or sheets which comprises the steps of forming a pool of molten lead, forming a region of predetermined extent on said molten pool which is at a temperature higher than the melting point of silicon, supplying silicon material to said region whereby it melts and is supported on the surface of the molten lead, growing a crystal from said molten silicon in said region, and withdrawing and supporting said grown crystal on the molten lead.
  • a process for growing thin plates of a crystalline semiconductor material comprising the steps of placing a molten support of a second material in a crucible, forming a convex meniscus, said second material being immiscible with the crystalline material and having a surface tension sufficient to support said crystalline material in both the liquid and solid state of said crystalline material, forming a region of predetermined extent in said second material which is at a temperature higher than the melting point of the crystalline material, supplying the crystalline material to said region whereby it melts and is supported on the surface of the second material, growing a crystal from said crystalline material in the high temperature region, and supporting the grown crystal on the second material.
  • a process for growing single crystal plates of a crystalline semiconductor material comprising the steps of forming a pool of a molten second material, forming a rst region of predetermined extent on said pool which is at a temperature higher than the melting point of said crystalline material, supplying said crystalline material to said rst region whereby it melts, forming a second region on said pool which is at a temperature lower than the melting point of said crystalline material, forming conduction currents in said molten material at said iirst region, growing a crystal of said crystalline material in said iirst region, and withdrawing said crystal to said second region whereby it solidiles.

Description

- April 24, 1962 w. sHocKLEY 3,031,275
PROCESS FOR GROWING SINGLE CRYSTALS A TTORNEYS April 24, 1962 w. sHocKl-EY 3,031,275
PROCESS FOR GROWING SINGLE CRYSTALS Filed Feb. 20, 1959 2 Sheets-Sheet 2 FIG. 4
P /5 /fy /NCREASING TEM Uf C EAS/VG TEMP f f 4 i? 1/ f/ f/ FIG. 5
WILLIAM SHOCKLEY HEAT INVENTOR.
ATTORNEYS nited States Patent ti-Office 3,631,275 Patented Apr. 24, 1962 3,031,275 PROCESS FOR GROWING SINGLE CRYSTALS William Shockley, 23466 Corta Via, Los Altos, Calif. Filed Feb. 20, 1959, Ser. No. 794,608 17 Claims. (Cl. 23--301) This invention relates generally to a process for the growing of single crystals and more particul-arly to a process for growing single crystal plates, ribbons, sheets or the like by supporting the same on molten material.
With the increasing development of solid state devices such as transistors, rectiers, diodes, solar batteries, thermistors, transducers, ferrites and others in electronics and related elds, there is an ever increasing need for precise, -thin crystals in the form of plates, discs, flakes or even films. Presently, such shapes are prepared by slicing a single crystal rod followed by tedious, time consuming grinding and lapping operations to obtain the precise dimensions required. These operations usually result in a large percentage of the original crystal being wasted. In certain instances, machine operations cause undesirable impurities to penetrate the crystal plates and render them worthless for their intended use.
It is a general object of the present invention to provide a process for reproducibly and reliably growing thin single crystal plates, ribbons and the like.
It is another object of the present invention to provide a process of growing thin single crystals by supporting the growing crystal on a molten material.
It is another object of the present invention to provide a process for growing thin single crystals (a geometrical configuration with one dimension small in relation to the other two) employing a molten material immiscible over a wide range of temperatures with the crystalline material to be grown, the molten material having a higher specific gravity than the crystalline material so that throughout the process, the liquid as well as the solid phase of the crystalline material will float on the molten material.
It is another object of the present invention to provide a process for growing single crystals -by supporting the same on a molten material whereby the crystals are formed with minimum mechanical stresses.
It is a further object of the present invention to provide a process for producing thin crystals from imperfect `single or polycrystalline sheets, ribbons, bars, rods or from powdered crystalline material.
It is a Ifurther object of the present invention to provide a process for purifying relatively small sheets, bars, etc., of crystalline material.
These and other objects of the invention will become more clearly apparent from the following description when read in conjunction with the accompanying drawmg.
Referring to the drawing:
FIGURE l is a sectional elevation View showing a furnace suitable for carrying out the process of the invention;
FIGURE 2 is a sectional view taken along the line 2 2 of FIGURE l;
FIGUREl 3 shows a portion of the furnace of the type shown in FIGURE 1 in which powdered crystalline material is fed into the melting zone;
I FIGURE 4 shows another configuration of a furnace suitable for carrying out the invention;
FIGURE 5 is a sectional view taken along the line 5-5 of FIGURE 4;
FIGURE `6 shows an isothermal plot of the temperalture distribution in the furnace; and
FIGURE 7 shows an enlarged portion of a modification of the furnace of vFIGURE 4 in which impurities tend to be removed from the surface of the molten material by convective forces in the molten material.
Referring to FIGURES l and 2, the furnace includes a refractory tube 11 which may, for example, be circular or rectangular in cross-section. The tube is supported -by refractory mounts 12 carried on a support surface 13. Means (not shown) are provided for levelling the furnace by moving the support surface. The refractory tube and materials within the same may be electrically heated by resistance or induction heaters. schematically illustrated are inductive heating coils 14 surrounding the refractory material. The center portion of the refractory tube may be shielded y16. Suitable temperature controls and spacing of the heating coils is employed to form a higher temperature in the center portion than in the remainder of the furnace whereby material such as silicon which is being `formed into thin plates, sheets, ribbons, or the like in 'accordance with the present invention, becomes molten.
A graphite crucible or boat 17 filled with a molten material which is immiscible with the crystals being grown is disposed in the refractory tube. For example, in the growing of silicon crystals, the molten material may, for example, be lead. The molten material extends above the surface of the crucible as indicated at 18. This can be achieved by adjusting the volume of lead and the volume of the crucible whereby when the molten material is heated, it expands and extends above the surface but is contained within the crucible as a convex meniscus -by surface tension forces.
Preferably, the crucible 17 is placed within a larger graphite boat 19 which will catch any molten material which spills over the sides of crucible 17. This is purely a protective measure for the refractory tube and in certain instances may not be necessary.
The ends of the refractory tubes may be connected to suitable means for causing the flow of gases through the tubes to provide different atmospheres within the refractory tube. For example, nitrogen, helium, argon or other inert gases may be caused to flow through the tube, or, if desired, oxidizing gases may be caused to flow therethrough.
In accordance with the embodiment of the invention, an imperfect single crystal or a polycrystalline rod or bar 21 of crystalline material is fed onto the molten material 18. It may be fed by passing over a plurality of idler rollers 2v2 and spaced feed rollers 3` which serve to drive the material inwardly onto the surface of the molten material 18.
Illustrated at the opposite end of the furnace is a thin single crystal ribbon 24 which is drawn from the furnace by means of the spaced rollers 26. The portion of the ribbon within the furnace is floated or supported on the molten material as it is withdrawn from the furnace region. The crystal is continuously formed in the high temperature region and withdrawn by the rollers. VIn essence, raw material is fed from one end of the furnace along the molten material into a region of the furnace maintained at a temperature higher than its melting point where the material melts and is floated as a molten film on the surface of the molten material with which it is irnmiscible. As the sheet is drawn from the other end, a relatively pure single crystal isv continuously formed on the end extending into the high temperature region.
It is observed that the process not only provides means for growing relatively thin sheets of material, but also tends to purify the silicon since, in essence, zone refining is being carried out as the crystal is grown from the molten crystalline material supported by the molten material.
To start a process of this character, a seed is inserted on a pulling means and the seed is moved inwardly to the high temperature region. The seed then serves to cause nucleation of crystalline material. The rod is withdrawn outwardly and the material continues to grow in the form of a relatively thin single crystal plate. The thickness of the plate is determined by the temperature of the molten zone, and the rate at which the crystal is withdrawn. As crystalline material is supplied, it melts and recrystallizes into the growing crystal.
The temperature gradient within the furnace is such that at the ends of the furnace the temperature is near the melting point of the supporting material, for example, if lead is employed, 327 C. with increasing temperature as one proceeds from the ends of the furnace towards the center. As described, close control of temperature by Well known means is maintained at the center of the crucible. The temperature is maintained slightly above the melting point of the material from which the crystal is being grown, as for example, l420i2 C. for the growth of silicon plates, ribbons and the like.
It is observed that the molten material has a higher specific gravity than either the solid crystalline material or the molten crystalline material so that both the liquid and solid phases of the crystalline material from which the single crystal to be withdrawn is floated. 'This allows thin crystals to form on the surface and the amount of mechanical stress to which the crystals are subjected is minimal.
In certain instances, it rnay be desirable to gro-w a single crystal from powdered crystalline material. In such event, rather than feeding a rod Z1 onto the molten vmaterial into the melting zone, it is possible to feed the crystalline material through a suitable tube 31 (FIGURE 3) into the high temperature (melting) zone wherein the crystalline material melts and recrystallizes on the growing crystal as it is withdrawn from the melting zone.
In order to reduce convection currents, it is desirable 'to employ a relatively thin layer of supporting molten material. Referring to FIGURE 4, a relatively thin supporting material 18a is illustrated. As a result of the thinness, small thermal pressures are built up and relatively small convection currents are set up within the material. Convection occurring within the molten material might introduce dislocations in the crystal growing from the high temperature region. Convective gas currents should be minimized by making the space between the lead surface and the furnace walls as small as possible as illustrated by the space 32 in FIGURE 4. Another advantage which is gained is the reduction of the power required to maintain the temperature.
In the particular case of a lead-silicon system, certain additional refinements may be warranted in the furnace construction. These refinements are illustrated in FIG- URE 4. Vertical as well as horizontal temperature gradients may be produced by the distribution of heat in the heater coils. The isothermal lines 33 are of the general form shown in FIGURE 6. The small dimensions of the furnace and the temperature gradient serve to control the flow of lead vapor. At the melting point of silicon, lead has a vapor pressure in the order of 100 mm. of mercury. As a result of this high vapor pressure, it is possible for lead to vaporize from the hotter region of the furnace, condense on the surface of the colder region, and form drops which may fall on the silicon film and fracture it or interfere with growing crystal.
This may be prevented in .part by producing an opposing gas iiow which lio-ws inwardly from the ends to the high temperature regions so as to prevent the high vapor ressure at the high temperature regions of the furnace from reaching temperature regions where condensation might occur.
This effect may be enhanced by employing gas liow inwardly from the two ends. The lead vapor must then iiow against the current for an appreciable distance to find asurface on which to condense. In FIGURE 4, an outlet is shown at the center of the furnace for gases.
Thus, gas from the ends will iiow upward in the tube 34 and the lead vapor will condense in the portion 36.
Means are provided for replenishing the lead as it is vaporized. For example, an opening 37 may be formed in the furnace wall and lead in the form of a wire 3S, pellets or the like may be dropped into the molten pool to maintain the volume. Alternatively, the condensed vapors 39 may be directed back into the furnace to replenish the lead which has been vaporized. In such instance, the additional amount of lead 38 required will be minimized.
It may be necessary to provide for keeping the lead surface as clean as possile in the crystal molten region. This is particularly true in the neighborhood in which the crystal solidities. By applying heat to a localized area where the crystal solidiiies as indicated in FIGURE 7, convective currents in the lead can be set up as indicated by the lines 41. Here, a depression is formed in the Crucible to allow for the development of higher hydrostatic pressure in the lead. The localized heating is provided at the center of the depression so that an upward iiow of molten lead is produced which rises to the surface in the region where the silicon is molten and spreads out in both directions as indicated by the arrows 41. This flow tends to carry oxides or other impurity materials which may form on the surface of the lead toward the sides so that silicon, as it solidiies, is solidifying on a clean lead surface. It is evident that this means may also be utilized to provide means for cleaning the lead surface and a side arm might be produced on the furnace extending some distance laterally so that any surface matter can be carried to the side and be eliminated.
It should be noted that thin plates can be grown in high temperature gradients without thermal stresses because it is possible to provide a temperature distribution which leads to a conformal transformation in two dimensions. (See, for example, Electricity and Magnetism, by I. H. Jeans, Cambridge University Press, 1927, page 265.) A conformal transformation defines a twodimensional temperature distribution where the temperature T is given by requiring that the length of the edge 0f the crystallographic unit cell at temperature T at a given point is proportional to the quantity p defined in the reference on page 264.
It should also be noted that thin sheets provide easy escape for vacancies or interstitial atoms which may be present at high temperatures. If these cannot escape, they may produce vacancy platelets or dislocation loops as discussed, for example by I. C. Fisher in Dislocations and Mechanical Propetries of Crystals, John Wiley and Sons, 1957, page 513. Thus, more perfect crystals may vbe grown in thin plates than in large cylinders.
Impurities, such as lead in silicon, are often less soluble as the temperature is lowered. For the system described above, these impurities have an easy opportunity to escape into the molten support.
It is evident that the princples of this invention can Ibe extended to the case in which the molten support is moved with the silicon as in the case of Zone refining in a crucible.
It is also evident that the method can be extended to cases in which the supported material tends to spread to undcsirably thin layers due to surface tension effects by controlling the rate of feed and the temperature distribution so that solidiiication occurs when the layer has spread to the desired thickness.
The method of growing single crystal plates is not restricted to the silicon lead system. Some other possible systems characterized by having phase diagrams with two substantially immiscible liquid phases are nickel plates on silver, aluminum plates on cadmium, aluminum plates on indium, aluminum plates on potassium, aluminum plates on lead, aluminum plates on thallium, cobalt on lead, gallium on mercury, etc.
Although information on ternary phase diagrams is available only to a limited degree, it is evident that possible systems exist in this case. Thus, the three-iive coinpound semi-conductors, such as are listed in the article by Jenny in the .Tune 1958 issue of the Proc. I.R.E., have melting points high compared to lead and frequently higher than the constituent elements. This suggests that the molten three-live compound will have limited solubility in molten lead.
Molten salts may also be used as supports and crystals of quite different types may be grown in such systems.
I claim:
1. A process for growing thin plates of a crystalline semiconductor material which comprises the steps of forming a support of molten second material, said second material being immiscible with the crystalline material and having a specilic gravity higher than said crystalline material at both the liquid and solid phases of the crystalline material, forming a region of predetermined extent in said second material which is at a temperature higher than the melting point of the crystalline material, supplying crystalline material to said region whereby it melts and is supported on the surface of the second material, growing a crystal from said crystalline material in the higher temperature region, and supporting the grown crystal on the second molten material.
2. A process as in claim 1 in which the crystalline material is moved on the surface of the second material past the region of higher temperature.
3. A process as in claim 1 wherein the region of higher temperature is progressively moved along the second material.
4. A process for treating crystalline semiconductor material which comprises the steps of forming a support of molten material, said molten material being immiscible with the crystalline material being treated and having a speciic gravity higher than said crystalline at both the liquid and solid phases of the crystalline material, forming a region of predetermined extent in said molten material which is at a temperature higher than the melting point of said crystalline material, supplying crystalline material to said region whereby it melts and is supported on the surface of the molten material, growing a crystal from said molten crystalline material, supporting said grown crystal on the supporting molten material, and withdrawing the grown crystal along the surface of the molten material.
5. A process as in claim 4 wherein the crystalline material supplied to said region is powdered crystalline material.
6. A process as in claim 4 wherein the crystalline material ysupplied to said region is solid crystalline material.
7. A process for treating crystalline semiconductor material which comprises the steps of forming a support of molten material, said molten material being immiscible with the crystalline material and having a specific gravity higher than said crystalline material at both the liquid and solid phases of the crystalline material, forming a region of predetermined extent in said liquid which region is at a temperature higher than the melting point of said crystalline material, supporting elongated crystalline material on said molten material and feeding the same along the molten material to said region whereby the crystalline material is progressively melted at said region, growing -a crystal from said molten crystalline material, withdrawing said crystal on said molten material whereby the grown crystal is supported on the surface of the molten material as it is drawn from the region.
8. A process as in claim 7 wherein said crystalline material being supplied is stressed polycrystalline material and wherein the material withdrawn is stress free polycrystalline material.
9. A process as in claim 7 wherein the material supplied is stressed polycrystalline material and wherein the material withdrawn is single crystal material in the form of a ribbon or sheet.
10. A process as in claim 7 wherein the material supplied is impure polycrystalline material and wherein the material withdrawn is single crystal relatively pure material.
1l. A process for growing single crystal silicon ribbons or sheets which comprises the steps of forming a pool of molten lead, forming a region of predetermined extent on said molten pool which is at a temperature higher than the melting point of silicon, supplying silicon material to said region whereby it melts and is supported on the surface of the molten lead, growing a crystal from said molten silicon in said region, and withdrawing and supporting said grown crystal on the molten lead.
l2. A process as in claim ll wherein the silicon supplied is powdered crystalline silicon.
13. A process as in claim 1l wherein the silicon supplied is solid silicon.
14. A process for growing thin plates of a crystalline semiconductor material comprising the steps of placing a molten support of a second material in a crucible, forming a convex meniscus, said second material being immiscible with the crystalline material and having a surface tension sufficient to support said crystalline material in both the liquid and solid state of said crystalline material, forming a region of predetermined extent in said second material which is at a temperature higher than the melting point of the crystalline material, supplying the crystalline material to said region whereby it melts and is supported on the surface of the second material, growing a crystal from said crystalline material in the high temperature region, and supporting the grown crystal on the second material.
15. A process for growing single crystal plates of a crystalline semiconductor material comprising the steps of forming a pool of a molten second material, forming a rst region of predetermined extent on said pool which is at a temperature higher than the melting point of said crystalline material, supplying said crystalline material to said rst region whereby it melts, forming a second region on said pool which is at a temperature lower than the melting point of said crystalline material, forming conduction currents in said molten material at said iirst region, growing a crystal of said crystalline material in said iirst region, and withdrawing said crystal to said second region whereby it solidiles. v
16. A process as defined in claim 15 wherein said iirst material is a powdered crystalline material.
17. A process as defined in claim 15 wherein said iirst material is a solid crystalline material.
References Cited in the le of this patent UNITED STATES PATENTS 789,911 Hitchcock May 16, 1905 2,739,088 Pfann Mar. 20, 1956 2,872,299 Celmer Feb. 3, 1959 FOREIGN PATENTS 567,339 Belgium 1957 769,692 Great Britain Mar. 13, 1957 OTHER REFERENCES Pfann: Zone Melting, 1958, pp. 93-95.

Claims (1)

1. A PROCESS FOR GROWING THIN PLATES OF A CRYSTALLINE SEMICONDUCTOR MATERIAL WHICH COMPRISES THE STEPS OF FORMING A SUPPORT OF MOLTEN SECOND MATERIAL, SAID SECOND MATERIAL BEING IMMISCIBLE WITH CRYSTALLIEN MATERIAL AND HAVING A SPECIFIC GRAVITY HIGHER THAN SAID CRYSTALLINE MATERIAL AT BOTH THE LIQUID AND SOLID PHASES OF THE CRYSTALLINE MATERIAL, FORMING A REGION OF PREDETERMINED EXTENT IN SAID SECOND MATERIAL WHICH IS AT A TEMPERATURE HIGHER THAN THE MELTING POINT OF THE CRYSTALLINE MATERIAL, SUPPLYING CRYSTALLINE MATERIAL TO SAID REGION WHEREBY IT MELTS AND IS SUPPORTED ON THE SURFACE OF THE SECOND MATERIAL, GROWING A CRYSTAL FROM SAID CRYSTALLINE MATERIAL IN THE HIGHER TEMPERATURE REGION, AND SUPPORTING THE GROWN CRYSTAL ON THE SECOND MOLTEN MATERIAL.
US794608A 1959-02-20 1959-02-20 Process for growing single crystals Expired - Lifetime US3031275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US794608A US3031275A (en) 1959-02-20 1959-02-20 Process for growing single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US794608A US3031275A (en) 1959-02-20 1959-02-20 Process for growing single crystals

Publications (1)

Publication Number Publication Date
US3031275A true US3031275A (en) 1962-04-24

Family

ID=25163136

Family Applications (1)

Application Number Title Priority Date Filing Date
US794608A Expired - Lifetime US3031275A (en) 1959-02-20 1959-02-20 Process for growing single crystals

Country Status (1)

Country Link
US (1) US3031275A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231351A (en) * 1960-06-28 1966-01-25 Glaverbel Brussels Belgium Method of and apparatus for the thermal conditioning of molten glass before its shaping
US3382114A (en) * 1964-01-07 1968-05-07 Philips Corp Method of manufacturing semiconductor plate using molten zone on powder support
US3414372A (en) * 1962-03-29 1968-12-03 Centre Nat Rech Scient Manufacture of ferrite monocrystals
DE1804665A1 (en) * 1968-10-15 1970-05-21 Zd Avtosteklo Process for the production of glass-crystalline sheet material from glass ribbon and tub for its implementation
US3607115A (en) * 1969-10-29 1971-09-21 Gen Motors Corp Crystal pulling from molten melts including solute introduction means below the seed-melt interface
US3795488A (en) * 1971-02-01 1974-03-05 Gen Electric Method for producing crystal boules with extensive flat, parallel facets
US3841856A (en) * 1972-11-14 1974-10-15 K Bondarev Method of production of white divitrified glass material
US3846082A (en) * 1971-11-08 1974-11-05 Tyco Laboratories Inc Production of crystalline bodies of complex geometries
US3853489A (en) * 1971-11-08 1974-12-10 Tyco Laboratories Inc A non-wetting aid for growing crystalline bodies
US3899304A (en) * 1972-07-17 1975-08-12 Allied Chem Process of growing crystals
US3954551A (en) * 1974-07-17 1976-05-04 Texas Instruments Incorporated Method of pulling silicon ribbon through shaping guide
US4058418A (en) * 1974-04-01 1977-11-15 Solarex Corporation Fabrication of thin film solar cells utilizing epitaxial deposition onto a liquid surface to obtain lateral growth
US4125425A (en) * 1974-03-01 1978-11-14 U.S. Philips Corporation Method of manufacturing flat tapes of crystalline silicon from a silicon melt by drawing a seed crystal of silicon from the melt flowing down the faces of a knife shaped heated element
US4196041A (en) * 1976-02-09 1980-04-01 Motorola, Inc. Self-seeding conversion of polycrystalline silicon sheets to macrocrystalline by zone melting
EP0013985A2 (en) * 1979-01-26 1980-08-06 HELIOTRONIC Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH Process for producing macrocrystalline silicon sheets with directional grains
US4225367A (en) * 1977-11-04 1980-09-30 Rhone-Poulenc Industries Production of thin layers of polycrystalline silicon on a liquid layer containing a reducing agent
US4547259A (en) * 1981-03-10 1985-10-15 Silicon Electro-Physics, Inc. Manufacture of sheets of controlled thickness from meltable material
US4727047A (en) * 1980-04-10 1988-02-23 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
US5217564A (en) * 1980-04-10 1993-06-08 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5273616A (en) * 1980-04-10 1993-12-28 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5328549A (en) * 1980-04-10 1994-07-12 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5362682A (en) * 1980-04-10 1994-11-08 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5588994A (en) * 1980-04-10 1996-12-31 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5993540A (en) * 1995-06-16 1999-11-30 Optoscint, Inc. Continuous crystal plate growth process and apparatus
US6402840B1 (en) 1999-08-10 2002-06-11 Optoscint, Inc. Crystal growth employing embedded purification chamber
US6800137B2 (en) 1995-06-16 2004-10-05 Phoenix Scientific Corporation Binary and ternary crystal purification and growth method and apparatus
US20080086791A1 (en) * 2006-10-12 2008-04-17 Kathleen Kirkwood Samuel Undergarment with puff shield perspiration blocking system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE567339A (en) * 1957-05-03 1900-01-01
US789911A (en) * 1902-07-30 1905-05-16 Halbert K Hitchcock Apparatus for manufacturing glass sheets or plates.
US2739088A (en) * 1951-11-16 1956-03-20 Bell Telephone Labor Inc Process for controlling solute segregation by zone-melting
GB769692A (en) * 1953-12-10 1957-03-13 Pilkington Brothers Ltd Improvements in or relating to the manufacture of flat glass
US2872299A (en) * 1954-11-30 1959-02-03 Rca Corp Preparation of reactive materials in a molten non-reactive lined crucible

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US789911A (en) * 1902-07-30 1905-05-16 Halbert K Hitchcock Apparatus for manufacturing glass sheets or plates.
US2739088A (en) * 1951-11-16 1956-03-20 Bell Telephone Labor Inc Process for controlling solute segregation by zone-melting
GB769692A (en) * 1953-12-10 1957-03-13 Pilkington Brothers Ltd Improvements in or relating to the manufacture of flat glass
US2872299A (en) * 1954-11-30 1959-02-03 Rca Corp Preparation of reactive materials in a molten non-reactive lined crucible
BE567339A (en) * 1957-05-03 1900-01-01

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231351A (en) * 1960-06-28 1966-01-25 Glaverbel Brussels Belgium Method of and apparatus for the thermal conditioning of molten glass before its shaping
US3414372A (en) * 1962-03-29 1968-12-03 Centre Nat Rech Scient Manufacture of ferrite monocrystals
US3382114A (en) * 1964-01-07 1968-05-07 Philips Corp Method of manufacturing semiconductor plate using molten zone on powder support
DE1804665A1 (en) * 1968-10-15 1970-05-21 Zd Avtosteklo Process for the production of glass-crystalline sheet material from glass ribbon and tub for its implementation
US3607115A (en) * 1969-10-29 1971-09-21 Gen Motors Corp Crystal pulling from molten melts including solute introduction means below the seed-melt interface
US3795488A (en) * 1971-02-01 1974-03-05 Gen Electric Method for producing crystal boules with extensive flat, parallel facets
US3853489A (en) * 1971-11-08 1974-12-10 Tyco Laboratories Inc A non-wetting aid for growing crystalline bodies
US3846082A (en) * 1971-11-08 1974-11-05 Tyco Laboratories Inc Production of crystalline bodies of complex geometries
US3899304A (en) * 1972-07-17 1975-08-12 Allied Chem Process of growing crystals
US3841856A (en) * 1972-11-14 1974-10-15 K Bondarev Method of production of white divitrified glass material
US4125425A (en) * 1974-03-01 1978-11-14 U.S. Philips Corporation Method of manufacturing flat tapes of crystalline silicon from a silicon melt by drawing a seed crystal of silicon from the melt flowing down the faces of a knife shaped heated element
US4058418A (en) * 1974-04-01 1977-11-15 Solarex Corporation Fabrication of thin film solar cells utilizing epitaxial deposition onto a liquid surface to obtain lateral growth
US3954551A (en) * 1974-07-17 1976-05-04 Texas Instruments Incorporated Method of pulling silicon ribbon through shaping guide
US4196041A (en) * 1976-02-09 1980-04-01 Motorola, Inc. Self-seeding conversion of polycrystalline silicon sheets to macrocrystalline by zone melting
US4225367A (en) * 1977-11-04 1980-09-30 Rhone-Poulenc Industries Production of thin layers of polycrystalline silicon on a liquid layer containing a reducing agent
EP0013985A3 (en) * 1979-01-26 1980-08-20 Heliotronic Forschungs- Und Entwicklungsgesellschaft Fur Solarzellen-Grundstoffe Mbh Process for producing macrocrystalline silicon sheets with directional grains
EP0013985A2 (en) * 1979-01-26 1980-08-06 HELIOTRONIC Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH Process for producing macrocrystalline silicon sheets with directional grains
US5328549A (en) * 1980-04-10 1994-07-12 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5362682A (en) * 1980-04-10 1994-11-08 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US4816420A (en) * 1980-04-10 1989-03-28 Massachusetts Institute Of Technology Method of producing tandem solar cell devices from sheets of crystalline material
US4837182A (en) * 1980-04-10 1989-06-06 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
US5217564A (en) * 1980-04-10 1993-06-08 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5273616A (en) * 1980-04-10 1993-12-28 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5676752A (en) * 1980-04-10 1997-10-14 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US4727047A (en) * 1980-04-10 1988-02-23 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
US5549747A (en) * 1980-04-10 1996-08-27 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5588994A (en) * 1980-04-10 1996-12-31 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US4547259A (en) * 1981-03-10 1985-10-15 Silicon Electro-Physics, Inc. Manufacture of sheets of controlled thickness from meltable material
US5993540A (en) * 1995-06-16 1999-11-30 Optoscint, Inc. Continuous crystal plate growth process and apparatus
US6153011A (en) * 1995-06-16 2000-11-28 Optoscint, Inc. Continuous crystal plate growth process and apparatus
US6800137B2 (en) 1995-06-16 2004-10-05 Phoenix Scientific Corporation Binary and ternary crystal purification and growth method and apparatus
US6402840B1 (en) 1999-08-10 2002-06-11 Optoscint, Inc. Crystal growth employing embedded purification chamber
US20080086791A1 (en) * 2006-10-12 2008-04-17 Kathleen Kirkwood Samuel Undergarment with puff shield perspiration blocking system

Similar Documents

Publication Publication Date Title
US3031275A (en) Process for growing single crystals
Ravi The growth of EFG silicon ribbons
US4661200A (en) String stabilized ribbon growth
Swartz et al. The EFG process applied to the growth of silicon ribbons
US3798007A (en) Method and apparatus for producing large diameter monocrystals
US2904512A (en) Growth of uniform composition semiconductor crystals
US3129061A (en) Process for producing an elongated unitary body of semiconductor material crystallizing in the diamond cubic lattice structure and the product so produced
US2962363A (en) Crystal pulling apparatus and method
US2961305A (en) Method of growing semiconductor crystals
US3173765A (en) Method of making crystalline silicon semiconductor material
Morizane et al. Impurity distributions in single crystals: I. Impurity striations in nonrotated crystals
US2852420A (en) Method of manufacturing semiconductor crystals
Bleil A new method for growing crystal ribbons
Novak et al. The production of EFG sapphire ribbon for heteroepitaxial silicon substrates
US5047113A (en) Method for directional solidification of single crystals
US3370927A (en) Method of angularly pulling continuous dendritic crystals
US4303465A (en) Method of growing monocrystals of corundum from a melt
WO1995022643A1 (en) Method of growing single crystal
US4469552A (en) Process and apparatus for growing a crystal ribbon
Capper Bulk crystal growth: methods and materials
US3899304A (en) Process of growing crystals
US3261722A (en) Process for preparing semiconductor ingots within a depression
US3413098A (en) Process for varying the width of sheets of web material
US3293001A (en) Process and apparatus for producing elongated, particularly tape-shaped semiconductor bodies from a semiconductor melt
US3649210A (en) Apparatus for crucible-free zone-melting of crystalline materials