JPS5929141B2 - Manufacturing method for semiconductor devices - Google Patents

Manufacturing method for semiconductor devices

Info

Publication number
JPS5929141B2
JPS5929141B2 JP3224977A JP3224977A JPS5929141B2 JP S5929141 B2 JPS5929141 B2 JP S5929141B2 JP 3224977 A JP3224977 A JP 3224977A JP 3224977 A JP3224977 A JP 3224977A JP S5929141 B2 JPS5929141 B2 JP S5929141B2
Authority
JP
Japan
Prior art keywords
manufacturing
crevasse
eutectic alloy
semiconductor substrate
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3224977A
Other languages
Japanese (ja)
Other versions
JPS53117965A (en
Inventor
仁 大貫
正輝 諏訪
邦浩 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3224977A priority Critical patent/JPS5929141B2/en
Publication of JPS53117965A publication Critical patent/JPS53117965A/en
Publication of JPS5929141B2 publication Critical patent/JPS5929141B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Abstract

PURPOSE:To reduce forward voltage drop by providing crevasses on the N<+> surface layer of a Si substrate and brazing a W or Mo plate by using an Al brazing material.

Description

【発明の詳細な説明】 本発明は半導体素子の製造法に係り、特にシリコン基体
のN+型表面層にタングステン板またはモリブデン板を
アルミニウムろう材を用いてろう付する方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in a method for brazing a tungsten plate or a molybdenum plate to an N+ type surface layer of a silicon substrate using an aluminum brazing material.

シリコン基体はその機械的性質を良好にするため片面あ
るいは両面にタングステンあるいはモリブデンからなる
金属板を接触する。
A metal plate made of tungsten or molybdenum is contacted on one or both sides of the silicon substrate to improve its mechanical properties.

この金属板は一方ではまた電極の役割もはたしている。
ろう材としてはアルミニウムがその良好なる電気伝導性
、強力な接着性から広く使われている。しかしながら、
シリコン基体のN+面は、再成長層を無くすフ 目的で
、非常に高濃度にりんを拡散した結果として、一般に非
常に粗大化した、りん濃度の高い半球状の突起を持つて
いるため、N+面にアルミニウムを接合すると、シリコ
ンの全面にP型の再成長層が生じて、順方向電圧降下が
大きくなるとい5 う好ましくない結果となる。このよ
うな欠点を解決するため、従来から、アルミニウムの厚
さを薄くするとか、接合の際に接合部を急冷するとかの
方法がとられてきたが、未だ十分な効果が得られていな
い。フ 本発明の目的は、順方向電圧降下を小さくする
のに適した半導体素子の製造法を提供するにある。
On the one hand, this metal plate also serves as an electrode.
Aluminum is widely used as a brazing material because of its good electrical conductivity and strong adhesive properties. however,
The N+ surface of a silicon substrate generally has very coarse hemispherical protrusions with a high phosphorus concentration as a result of diffusing phosphorus at a very high concentration in order to eliminate the regrowth layer. When aluminum is bonded to the surface, a P-type regrowth layer is generated on the entire surface of the silicon, resulting in an undesirable result in which the forward voltage drop increases. In order to solve these drawbacks, conventional methods have been used such as reducing the thickness of the aluminum or rapidly cooling the joint portion during joining, but these methods have not yet been sufficiently effective. An object of the present invention is to provide a method for manufacturing a semiconductor device suitable for reducing forward voltage drop.

本発明は、りんを含むクレバスには再成長層が成長しに
くいことおよびろう材としてAt−Si共晶合金を用い
れば、純Alを用いる場合に比べ5て、低い温度で接着
が可能であり、ろう材中に溶け出すSiの絶対量が少な
くなり、再成長層として成長する量も少なくなることの
2つの長所を組み合わせたものである。りん濃度の高い
クレバスは以下の要領にて容易に形成可能である。まず
010%NaOHを主成分とするアルカリ液を40℃に
保持しその中にシリコンを浸し、】、5時間エッチング
することにより表面にクレバスを作る。次に不純物源を
PoCl3(あるいは赤りんでも良い)としてりん拡散
を施し、再度アルカリ液に0.5〜’51時間浸し、形
の幾分か崩れたクレバスを元通りに良い形にする。この
場合、りん濃度は1019〜1021atoms/c(
$■!)範囲であれば良い。またAl−Si共晶合金の
ろう材は、溶解、圧延により、容易に箔に製作可能であ
る。なお、半導体SiのN+型表面層とAl−Si共晶
合金箔との接着温度であるが、Al−Si共晶合金の融
点は577℃であり、Alの融点の660℃に比べてか
なり低い。したがつて接着温度をかなり低くしても接着
性は悪化しない。以下本発明の実施例について図面およ
び顕微鏡写真を用い詳細に説明する。
The present invention is characterized by the fact that a regrowth layer is difficult to grow in crevasses containing phosphorus, and by using an At-Si eutectic alloy as a brazing material, it is possible to bond at a lower temperature than when using pure Al. This is a combination of two advantages: the absolute amount of Si that dissolves into the brazing filler metal is reduced, and the amount that grows as a regrowth layer is also reduced. A crevasse with a high phosphorus concentration can be easily formed in the following manner. First, an alkaline solution containing 0.10% NaOH as a main component is kept at 40° C., silicon is immersed in it, and etched for 5 hours to form a crevasse on the surface. Next, phosphorus diffusion is performed using PoCl3 (or red phosphorus may be used) as an impurity source, and the material is again immersed in alkaline solution for 0.5 to 51 hours to restore the crevasses to their original shape. In this case, the phosphorus concentration is 1019 to 1021 atoms/c (
$■! ) range is fine. Further, the Al-Si eutectic alloy brazing material can be easily made into foil by melting and rolling. Regarding the adhesion temperature between the N+ type surface layer of semiconductor Si and the Al-Si eutectic alloy foil, the melting point of the Al-Si eutectic alloy is 577°C, which is considerably lower than the melting point of Al, which is 660°C. . Therefore, even if the bonding temperature is considerably lowered, the adhesiveness will not deteriorate. Examples of the present invention will be described in detail below using drawings and micrographs.

第1図において、1は金属板(WあるいはMO)2はA
l−Si共晶合金ろう材、3はクレバス、4はN+型S
il5はN型Siである。
In Figure 1, 1 is a metal plate (W or MO) 2 is A
l-Si eutectic alloy filler metal, 3 is crevasse, 4 is N+ type S
il5 is N-type Si.

第2図は、このようなものを加熱接合した後の断面図で
ある。
FIG. 2 is a cross-sectional view of such a product after it has been heat-bonded.

2aはAt−Si合金層、6は再成長層である。2a is an At-Si alloy layer, and 6 is a regrown layer.

図に示す如く再成長層は細かく寸断されているわけであ
るが、寸断されている所の総和の全長に対する割合をと
ぎれ率11+12+13+14 ( 1 ×100)として表わすと、L
再成長層のとぎれ率とN+型S!上に生じた再成長層(
P型反転層)によつて生ずる順方向電圧降下の増加分(
△FVDで表わす)との関係は第3図に示す如くなる。
As shown in the figure, the regrowth layer is finely fragmented, but if the ratio of the total fragmented area to the total length is expressed as a breakage rate of 11+12+13+14 (1 × 100), L
Discontinuation rate of regrowth layer and N+ type S! The regrowth layer formed on top (
The increase in forward voltage drop caused by the P-type inversion layer (
(expressed as ΔFVD) is as shown in FIG.

すなわちとぎれ率が増加するに従つて、順方向電圧降下
が少なくなり、例えばとぎれ率が10%あれば、△FV
Dは0.2Vというように非常に小さな値となり、製品
不良は少なくなることが明らかである。そこで以後はと
ぎれ率で、クレバスとAl−Si共晶合金ろう材の相乗
効果を比戦することにした。第4図は従来の表面形状を
有する半導体Si(図中のl)およびクレバスを有する
半導体S1(図中の)のN+面とMO板とをろう材にA
l一S1共晶合金箔を用いて接着したときの接着温度と
とぎれ率の関係を示している。
In other words, as the discontinuity rate increases, the forward voltage drop decreases; for example, if the discontinuity rate is 10%, △FV
It is clear that D has a very small value of 0.2V, and the number of product defects is reduced. Therefore, we decided to compare the synergistic effects of crevasse and Al-Si eutectic alloy brazing filler metal based on the breakage rate. Fig. 4 shows the N+ side of a semiconductor Si having a conventional surface shape (l in the figure) and a semiconductor S1 having a crevasse (in the figure) and an MO plate using a brazing material.
It shows the relationship between bonding temperature and breakage rate when bonding is performed using l-S1 eutectic alloy foil.

また第5図は従来品(a)およびクレバスを有するN+
型Si表面(b)の走査型電子顕微鏡写真を示す。すべ
て、加熱温度とともにとぎれ率は小さくなる傾向にある
が、従来品に比戟して、クレバスを有するN+面を用い
た場合の方が明らかに、とぎれ率が大きいこと+がわか
る。
Figure 5 shows the conventional product (a) and the N+ with crevasse.
A scanning electron micrograph of the type Si surface (b) is shown. In all cases, the breakage rate tends to decrease as the heating temperature increases, but it can be seen that the breakage rate is clearly higher when using the N+ surface with crevasses compared to the conventional product.

第6図はクレバスを有するN面とAl−Sl共晶合金の
接着後の断面写寛a)、および従来品のN+面とAl−
Si共晶合金との接着後の断面写真(b)を示す。後者
に比べ、前者の場合は再成長層が細かくとぎれているこ
とがわかる。Al−Si共晶合金箔とN+面上のクレバ
スとの相乗効果により、とぎれ率が大きくなる理由は以
下のように考えられる。すなわち、クレバスには拡散に
よりりんが高濃度になつているため、加熱時には優先的
にAl−Si合金中にSiが溶け出し、クレバスは加熱
によつても保持される。
Figure 6 shows the cross-sectional view a) of the N-face with a crevasse and the Al-Sl eutectic alloy after adhesion, and the N+ face of the conventional product and the Al-
A cross-sectional photograph (b) after adhesion with a Si eutectic alloy is shown. It can be seen that the regrowth layer is more finely broken in the former case than in the latter case. The reason why the breakage rate increases due to the synergistic effect of the Al-Si eutectic alloy foil and the crevasses on the N+ surface is thought to be as follows. That is, since the crevasse has a high concentration of phosphorus due to diffusion, Si preferentially dissolves into the Al-Si alloy during heating, and the crevasse is maintained even by heating.

一方Al−Sl共晶合金は第7図のAl−Si二次状態
図からもわかるように、Alに比べ融点が低く577℃
であるから、例えば接着温度を660℃以下にしても金
属板とS1の接着性は良好である。純Alろうを用いる
場合は、加熱温度を700℃以上にしなければ、接着性
が悪化するので前者と後者とでは、接着時にろう材中に
とけ出すSiの絶対量は図に示す記号△Sだけの差がで
きる。さて凝固する場合であるが、再成長層はクレバス
には成長しにくいので、まず突部に成長する。そして、
もしろう材中に溶け込んだSi量が多ければ、最後には
クレバスにまで成長するが、この場合は溶け込んだSi
量が少ないのでクレバスに成長することはほとんどない
のである。
On the other hand, as can be seen from the Al-Si secondary phase diagram in Figure 7, the Al-Sl eutectic alloy has a lower melting point of 577°C than Al.
Therefore, even if the bonding temperature is set to 660° C. or lower, the adhesion between the metal plate and S1 is good. When using pure Al solder, the heating temperature must be set to 700°C or higher, otherwise the adhesion will deteriorate, so between the former and the latter, the absolute amount of Si dissolved into the filler metal during bonding is only the symbol △S shown in the figure. It makes a difference. Now, in the case of solidification, the regrowth layer is difficult to grow in crevasses, so it grows first in protrusions. and,
If there is a large amount of Si dissolved in the brazing filler metal, it will eventually grow into a crevasse, but in this case, the dissolved Si
Because the amount is so small, it rarely grows into crevasses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体素子の製造法を示す説明図
である。 第2図は接着後の状態を示す正面図である。第3図はと
ぎれ率と△FVDとの関係を示すグラフである。第4図
は、クレバスとAl−Si共晶合金ろうとの相乗効果を
示すグラフである。第5図は従来品とクレバスを有する
N+面の走査型電子顕微鏡写真である。第6図は接着後
の断面組織を示す顕微鏡写真である。第7図はAl−S
i二元状態図である。1・・・・・・金属板、2・・・
・・・Al−Si共晶合金ろう材、3・・・・・・クレ
バス、4・・・・・・N+型Sil5・・・・・・N型
Sil6・・・・・・再成長層。
FIG. 1 is an explanatory diagram showing a method for manufacturing a semiconductor device according to the present invention. FIG. 2 is a front view showing the state after adhesion. FIG. 3 is a graph showing the relationship between the breakage rate and ΔFVD. FIG. 4 is a graph showing the synergistic effect between the crevasse and the Al-Si eutectic alloy solder. FIG. 5 is a scanning electron micrograph of the conventional product and the N+ surface with a crevasse. FIG. 6 is a micrograph showing the cross-sectional structure after adhesion. Figure 7 shows Al-S
i is a binary state diagram. 1...Metal plate, 2...
...Al-Si eutectic alloy brazing material, 3...Crevasse, 4...N+ type Sil5...N type Sil6...Regrowth layer.

Claims (1)

【特許請求の範囲】 1 りん拡散したN^+型の表面層を有する半導体基体
の上記表面層に、熱膨張係数が半導体基体と近似した金
属板をろう付する半導体素子の製造法において、上記半
導体基体のN^+型表面層にクレバスを設け、アルミニ
ウムとシリコンの共晶合金をろう材として半導体基体と
金属板をろう付することを特徴とする半導体素子の製造
法。 2 特許請求の範囲第1項において、半導体基体がシリ
コンであり、金属板がタングステンまたはモリブデンで
ある半導体素子の製造法。
[Scope of Claims] 1. A method for manufacturing a semiconductor element in which a metal plate having a coefficient of thermal expansion similar to that of the semiconductor substrate is brazed to the surface layer of a semiconductor substrate having an N^+ type surface layer in which phosphorus is diffused. A method for manufacturing a semiconductor element, which comprises providing a crevasse in an N^+ type surface layer of a semiconductor substrate, and brazing the semiconductor substrate and a metal plate using a eutectic alloy of aluminum and silicon as a brazing material. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is silicon and the metal plate is tungsten or molybdenum.
JP3224977A 1977-03-25 1977-03-25 Manufacturing method for semiconductor devices Expired JPS5929141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224977A JPS5929141B2 (en) 1977-03-25 1977-03-25 Manufacturing method for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224977A JPS5929141B2 (en) 1977-03-25 1977-03-25 Manufacturing method for semiconductor devices

Publications (2)

Publication Number Publication Date
JPS53117965A JPS53117965A (en) 1978-10-14
JPS5929141B2 true JPS5929141B2 (en) 1984-07-18

Family

ID=12353727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224977A Expired JPS5929141B2 (en) 1977-03-25 1977-03-25 Manufacturing method for semiconductor devices

Country Status (1)

Country Link
JP (1) JPS5929141B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846430B (en) * 2015-04-27 2017-04-12 西北工业大学 Method for preparing continuous regular lamellar microgroove based on lamellar eutectic alloy system

Also Published As

Publication number Publication date
JPS53117965A (en) 1978-10-14

Similar Documents

Publication Publication Date Title
US2922092A (en) Base contact members for semiconductor devices
US2801375A (en) Silicon semiconductor devices and processes for making them
US20130092979A1 (en) Semiconductor device with an electrode including an aluminum-silicon film
JP3559432B2 (en) Method of forming a semiconductor metallization system and its structure
US4042951A (en) Gold-germanium alloy contacts for a semiconductor device
US7339267B2 (en) Semiconductor package and method for forming the same
JPS6141135B2 (en)
JPH05175252A (en) Semiconductor electrode structural body
US2874453A (en) Applying metal coatings to molybdenum
JPS5929141B2 (en) Manufacturing method for semiconductor devices
US3942244A (en) Semiconductor element
US3555669A (en) Process for soldering silicon wafers to contacts
CA1127322A (en) Method of fabricating semiconductor device by bonding together silicon substrate and electrode or the like with aluminum
JPH08102570A (en) Ceramic circuit board
JP4427154B2 (en) Ceramic circuit board
JP2006032620A (en) Thermoelectric conversion module
US4921158A (en) Brazing material
JPS5936425B2 (en) Lead frame structure with intermediate layer
US3702787A (en) Method of forming ohmic contact for semiconducting devices
JPS6035822B2 (en) semiconductor equipment
JP2009182209A (en) Semiconductor device
JPH0864799A (en) Semiconductor chip, semiconductor device using it and manufacture thereof
JP2809799B2 (en) Semiconductor device
JPS5856255B2 (en) semiconductor element
JPH08139363A (en) Electrode structure of light emitting diode