JPS5928213A - Production of magneto-resistance effect type magnetic head - Google Patents

Production of magneto-resistance effect type magnetic head

Info

Publication number
JPS5928213A
JPS5928213A JP57137565A JP13756582A JPS5928213A JP S5928213 A JPS5928213 A JP S5928213A JP 57137565 A JP57137565 A JP 57137565A JP 13756582 A JP13756582 A JP 13756582A JP S5928213 A JPS5928213 A JP S5928213A
Authority
JP
Japan
Prior art keywords
layer
magnetoresistive
magneto
ferromagnetic film
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57137565A
Other languages
Japanese (ja)
Other versions
JPH0610852B2 (en
Inventor
Hitoshi Takagi
均 高木
Kazumasa Hosono
和真 細野
Tomio Kume
久米 富美夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57137565A priority Critical patent/JPH0610852B2/en
Publication of JPS5928213A publication Critical patent/JPS5928213A/en
Publication of JPH0610852B2 publication Critical patent/JPH0610852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve both frequency characteristics and sensitivity, by forming consecutively the 1st ferromagnetic film for production of the 1st magneto- resistance effect element, an insulated layer for an intermediate insulated layer and then the 2nd ferromagnetic film for the 2nd magneto-resitance effect element and then etching collectively all those layers to form them into a desired shape respectively. CONSTITUTION:An Al-Cu alloy layer of 500Angstrom thickness and a Ti layer of 1,000Angstrom are formed on a substrate 3 as an adhered layer. Then a lower shielding layer 5 of NiFe, an insulated layer 7 of SiO2, the 1st ferromagnetic film 100 of NiFe which serves as the 1st magneto-resistance effect element, an insulated layer 4 of SiO2, and the 2nd ferromagnetic film 200 of NiFe which serves as the 2nd magneto-resistance effect element with thickness 2mum, 0.3mum, 500Angstrom , 0.3mum and 500Angstrom respectively. Then the films 100 and 200 and the layer 4 are formed collectively into a shape shown by 300 in the figure by an ion milling process (a dry etching process in which an Ar ion, etc. are accelerated and irradiated to a matter to perform a cutting process, etc.).

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は、磁気記録装置に係り、とくに磁気テープ装置
あるいは磁気ディスク装置におりる再生専用の磁気ヘッ
ドに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a magnetic recording device, and particularly to a reproduction-only magnetic head included in a magnetic tape device or a magnetic disk device.

(b)技術の背景 磁気記録装置における高密度記録化にともなって薄膜型
の磁気ヘッドが用いられるようになりつつあるが、その
うちで磁気抵抗効果を利用した磁気ヘッドは構造が簡単
であり、また比較的大きな出力信号が得られることから
再生専用へソISとして実用化が期待されている。
(b) Background of the technology Thin-film magnetic heads are being used as magnetic recording devices become more densely recorded. Among these, magnetic heads that utilize the magnetoresistive effect have a simple structure and Since a relatively large output signal can be obtained, it is expected to be put to practical use as a reproduction-only IS.

(C)従来技術と問題点 磁気抵抗効果型磁気ヘッドは一定方向に磁化容易軸をそ
ろえて形成された強磁性体膜の磁化が、その近傍を通過
する外部磁界(例えば磁気記録媒体に記録されている磁
気信号)によって変化し、該強磁性体膜の抵抗が変化す
る現象を利用するものである。
(C) Prior Art and Problems In a magnetoresistive magnetic head, the magnetization of a ferromagnetic film formed with the axis of easy magnetization aligned in a certain direction is controlled by an external magnetic field (for example, recorded on a magnetic recording medium) that passes near the ferromagnetic film. This method utilizes the phenomenon that the resistance of the ferromagnetic film changes depending on the magnetic signal).

このような磁気抵抗効果型磁気ヘッドにおいて、第1図
に示すように例えばガラスあるいは8102等から成る
非磁性の基板3上に例えばNiFe等の強磁性体膜から
成る2つの磁気抵抗効果素子lおよび2を例えば5i0
2等から成る絶縁層4を介して設け、それぞれの磁気抵
抗効果素子1および2に同方向の電流を流し、この電流
によって2つの磁気抵抗効果素子が相互にバイアス磁界
を印加し合う形式のものがある。
In such a magnetoresistive magnetic head, as shown in FIG. 1, two magnetoresistive elements l and 3 made of a ferromagnetic film such as NiFe are mounted on a non-magnetic substrate 3 made of glass or 8102, etc. 2 for example 5i0
A type in which a current is applied in the same direction to each magnetoresistive element 1 and 2 through an insulating layer 4 consisting of two magnetoresistive elements, and the two magnetoresistive elements apply a bias magnetic field to each other by this current. There is.

なお、第1図において5および6はそれぞれ下部シール
ド層および上部シールド層で双方ともに例えばNiFe
等の強磁性体膜からなり、また、7および8はシールド
層5および6と磁気抵抗効果素子Iおよび2とを電気的
に絶縁する例えば5j02等から成る絶縁層であり、さ
らにまた、9ば磁気ディスク等の記録媒体であって矢印
の方向へ走行する。
In FIG. 1, 5 and 6 are a lower shield layer and an upper shield layer, respectively, and both are made of, for example, NiFe.
7 and 8 are insulating layers made of, for example, 5j02, which electrically insulate the shield layers 5 and 6 and the magnetoresistive elements I and 2; A recording medium such as a magnetic disk that travels in the direction of the arrow.

第1図に示す磁気抵抗効果型磁気へ71:においては、
磁気抵抗効果素子1および2が相互に印加し合うバイア
ス磁界の方向は第2図に破線矢印で示すように、180
度反軸反転いる。
In the magnetoresistive magnet 71 shown in FIG.
The direction of the bias magnetic field applied to each other by the magnetoresistive elements 1 and 2 is 180 degrees as shown by the broken line arrow in FIG.
The opposite axis is reversed.

ところで、一般に磁気抵抗効果素子においては、磁化の
方向と磁気抵抗効果素子を流れる電流の方向とのなす角
が45度の近傍において最も高い感度が得られる。した
がって、第2図において磁気抵抗効果素子1および2に
流す電流iを適当に選ぶことによって動作点、すなわち
上記のように磁気抵抗効果素子を流れる電流の方向に対
する磁化方向のなす角度を、一方の磁気抵抗効果素子に
おいは→−45度近傍に、他方の磁気抵抗効果素子にお
いては一45度近傍に設定することができる。
By the way, in general, in a magnetoresistive element, the highest sensitivity is obtained when the angle between the direction of magnetization and the direction of current flowing through the magnetoresistive element is around 45 degrees. Therefore, by appropriately selecting the current i flowing through the magnetoresistive elements 1 and 2 in FIG. The angle of the magnetoresistive element can be set at around -45 degrees, and the other magnetoresistive element can be set at around -45 degrees.

このようにして、本形式の磁気抵抗効果型磁気ヘッドに
おいては、外部からのバイアス磁界が不要となる。また
、第3図(A)に示すように外部磁気信号Sに対する第
1の磁気抵抗効果素子1の出力信号R1と第2の磁気抵
抗効果素子2の出力信号R2は逆極性となっており、こ
れを差動増幅器により差を採れば第3図(B)に示すよ
うに磁気抵抗効果素子が1つの時よりも大きな出力信号
Rが得られる。
In this way, the magnetoresistive magnetic head of this type does not require an external bias magnetic field. Further, as shown in FIG. 3(A), the output signal R1 of the first magnetoresistive element 1 and the output signal R2 of the second magnetoresistive element 2 in response to the external magnetic signal S have opposite polarities, If the difference is calculated using a differential amplifier, a larger output signal R can be obtained than when only one magnetoresistive element is used, as shown in FIG. 3(B).

なお、第3図(A’)において、曲線Cは磁気抵抗効果
素子の抵抗率(ρ)と上述した電流の方向に対する磁化
の方向のなす角(θ)との関係を示し、60mは抵抗率
変化の最大値である。
In FIG. 3 (A'), curve C shows the relationship between the resistivity (ρ) of the magnetoresistive element and the angle (θ) formed by the direction of magnetization with respect to the direction of current, and 60 m indicates the resistivity. This is the maximum value of change.

さて、上記のような形式の磁気抵抗効果型磁気ヘッドを
製造する場合、従来は基板上に前記シールド層5、前記
絶縁層7、第1の磁気抵抗効果素子1を形成するための
強磁性体膜とを順次成膜した後、フォトエツチングによ
って前記強磁性体膜をエツチングし、第4図に示すよう
なパターンを有する第1の磁気抵抗効果素子1を形成す
る。その後、この上に前記絶縁層4と、第2の磁気抵抗
効果素子2を形成するための強磁性体膜を成膜し、フォ
トエツチングにより磁気抵抗効果素子1と同形状の第2
の磁気抵抗効果素子2を形成する。
Now, when manufacturing a magnetoresistive magnetic head of the type described above, conventionally, a ferromagnetic material is used to form the shield layer 5, the insulating layer 7, and the first magnetoresistive element 1 on the substrate. After the films are sequentially formed, the ferromagnetic film is etched by photoetching to form the first magnetoresistive element 1 having a pattern as shown in FIG. Thereafter, the insulating layer 4 and a ferromagnetic film for forming the second magnetoresistive element 2 are formed thereon, and a second film having the same shape as the magnetoresistive element 1 is formed by photo-etching.
A magnetoresistive element 2 is formed.

本形式の磁気抵抗効果型磁気ヘッドにおいては、周波数
特性および感度の点から、絶縁層4の厚さはできるだけ
小さいことが望ましい。
In this type of magnetoresistive magnetic head, it is desirable that the thickness of the insulating layer 4 be as small as possible from the viewpoint of frequency characteristics and sensitivity.

しかしながら、上記従来の製造工程によれば、第1の磁
気抵抗効果素子1を形成するためのエソチング工程ある
いはこれとその後に行われる絶縁層4の成膜工程との間
における塵埃の混入あるいは付着のために、絶縁N4は
その厚さが小さくなるにともなって絶縁破壊等の不良が
多発しゃすく°なること、また、フォトエツチング工程
において使用したフォトレジストの残渣等により磁気抵
抗効果素子2の成膜時の下地に凹凸が生じ、かつ成形さ
れた磁気抵抗効果素子2のエツジプロフィールが不均一
になるために反磁界の消去が不充分になる等磁気特性の
劣化を引き起しやすくなること、さらにまた、磁気抵抗
効果素子1および2を個別に成形するために、両者間の
パターンずれを生じ、前記と同様の磁気特性の劣化を生
じやすい等の欠点があり、これらはまた、製品の歩留り
を引き下げ製造コストを引き上げる欠点ともなっていた
However, according to the above-mentioned conventional manufacturing process, the incorporation or adhesion of dust during the etching process for forming the first magnetoresistive element 1 or between this process and the subsequent film forming process of the insulating layer 4 can be avoided. Therefore, as the thickness of the insulation N4 becomes smaller, defects such as dielectric breakdown occur more frequently.Also, the film formation of the magnetoresistive element 2 is affected by the residue of the photoresist used in the photoetching process. When the substrate becomes uneven, and the edge profile of the molded magnetoresistive element 2 becomes non-uniform, deterioration of magnetic properties such as demagnetizing field becomes insufficient is likely to occur. In addition, since the magnetoresistive elements 1 and 2 are molded separately, there are drawbacks such as pattern misalignment between them, which tends to cause the same deterioration of magnetic properties as described above, which also reduces the yield of the product. This also had the disadvantage of increasing production costs.

(d)発明の目的 本発明は、上記従来の製造方法の欠点を除去し、周波数
特性、感度ならびに経済性のすぐれた磁気抵抗効果型磁
気ヘッドの製造方法を提供することを目的とする。
(d) Object of the Invention It is an object of the present invention to provide a method for manufacturing a magnetoresistive magnetic head that eliminates the drawbacks of the conventional manufacturing methods described above and has excellent frequency characteristics, sensitivity, and economical efficiency.

(e)発明の構成 本発明は、中間絶縁層を介して2つの磁気抵抗効果素子
が相接して設けられる磁気抵抗効果型磁気ヘッドの製造
方法において、第1の磁気抵抗効果素子を形成するため
の第1の強磁性体膜、中間絶縁層を形成するための絶縁
層、および第2の磁気抵抗効果素子を形成するための第
2の強磁性体膜を順次連続して成膜した後、これらを一
括してエツチングして所望の形状に成形することを特徴
とする。
(e) Structure of the Invention The present invention provides a method for manufacturing a magnetoresistive magnetic head in which two magnetoresistive elements are provided adjacent to each other with an intermediate insulating layer interposed therebetween, in which a first magnetoresistive element is formed. After sequentially forming a first ferromagnetic film for forming a first ferromagnetic film, an insulating layer for forming an intermediate insulating layer, and a second ferromagnetic film for forming a second magnetoresistive element, , are characterized in that they are etched all at once and molded into a desired shape.

(f)発明の実施例 以下本発明の実施例を図面を参照して説明する。(f) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

第5図以下は本発明の好適な一実施例を説明するための
図であり、それぞれにおいて(A)は平面図、(B)は
(A)において一点鎖線で示す部分の断面図である。こ
れらの図において、既掲の図と同じものには同一符号を
付しである。
FIG. 5 and subsequent figures are diagrams for explaining a preferred embodiment of the present invention, in which (A) is a plan view and (B) is a cross-sectional view of the portion indicated by a dashed line in (A). In these figures, the same parts as in the previously published figures are given the same reference numerals.

第5図において、基板3上に密着層(後続して成膜され
る下部シール13層5と基板3との付着強度を上げるた
めの層)として500人の厚さの八1・Cu合金層およ
び1000人の厚さのTi層(いずれも図示省略)を形
成した後、NiFeから成る下部シールド層5を厚さ2
μm 、 5i02から成る絶縁層7を厚さ0.3μm
 、 N1ceから成りかつ第1の磁気抵抗効果素子と
なる第1の強磁性体膜100を厚さ500人、5i02
から成る絶縁層4を厚ざ 0−3μm −、NiFeが
ら成りかつ第2の磁気抵抗効果素子となる第2の強磁性
体膜200を厚さ500人に形成する。
In FIG. 5, an 81-Cu alloy layer with a thickness of 500 mm is formed on the substrate 3 as an adhesion layer (a layer for increasing the adhesion strength between the substrate 3 and the lower seal 13 layer 5 to be formed subsequently). After forming a Ti layer with a thickness of 1,000 mm and 1,000 mm (both are not shown), a lower shield layer 5 made of NiFe is formed with a thickness of 2 mm.
The insulating layer 7 made of 5i02 has a thickness of 0.3 μm.
The first ferromagnetic film 100, which is made of N1ce and becomes the first magnetoresistive element, has a thickness of 500 mm and a thickness of 5i02.
A second ferromagnetic film 200 made of NiFe and serving as a second magnetoresistive element is formed to have a thickness of 500 μm.

ここまでの工程において、5i02から成る絶縁層4お
よび7は一般にスパッタリングにより、その他の密着層
、−上部シールド層5、強磁性体II!1i100およ
び200ばスパッタリングもしくは蒸着によって形成さ
れ、各層の生成ごとに大気中に取り出すことなく成膜す
ることも可能である。
In the steps up to this point, the insulating layers 4 and 7 made of 5i02 are generally sputtered to form the other adhesion layers - the upper shield layer 5, the ferromagnetic material II! The layers 1i100 and 200 are formed by sputtering or vapor deposition, and can be formed without being taken out into the atmosphere each time each layer is formed.

第5図において、強磁性体膜200はフォトエツチング
により、同図(A)にハツチを付して示した形状に成形
した状態を示しであるが、これば後述する磁気抵抗効果
素子1の端子取出窓を避けるようにあらかじめ強磁性体
膜200を除去しておくためであって、高度のパターン
精度は必要としない。
In FIG. 5, the ferromagnetic film 200 is shown formed by photoetching into the shape indicated by hatching in FIG. This is because the ferromagnetic film 200 is removed in advance to avoid the extraction window, and high pattern accuracy is not required.

つぎに、イオンミリング(Arイオン等を加速して物体
に照射して切削等の加工を行う乾式のエツチング方法)
により強磁性体膜100および200と絶縁層4を第6
図に300で示した形状に一括して成形する。
Next, ion milling (a dry etching method in which accelerated Ar ions, etc. are irradiated onto the object to perform processing such as cutting)
The ferromagnetic films 100 and 200 and the insulating layer 4 are
It is molded all at once into the shape shown at 300 in the figure.

ここまでの工程によって、強磁性体膜100および20
0はそれぞれ磁気抵抗効果素子1および2としてのほぼ
最終形状に成形されている。
Through the steps up to this point, the ferromagnetic films 100 and 20
0 are formed into almost the final shape of the magnetoresistive elements 1 and 2, respectively.

ざて上記に引続き、第7図に示すように下部シールド層
5および絶縁層7の余分な部分をイオンミリングにより
除去する。この上に、第8図に示すように、5i02か
ら成る絶縁層8を0.3μmの厚さに全面にわたって成
膜した後、その一部表面にNiFeから成る上部シール
ド層6を2μmの厚さに帯状に成膜する。
Subsequently, as shown in FIG. 7, excess portions of the lower shield layer 5 and the insulating layer 7 are removed by ion milling. As shown in FIG. 8, an insulating layer 8 made of 5i02 is formed over the entire surface to a thickness of 0.3 μm, and then an upper shield layer 6 made of NiFe is formed on a part of the surface to a thickness of 2 μm. A film is formed in a band shape.

ざらに第9図に示すように、5i02から成る保護層1
0を1μmの厚さに全面にわたって成膜した後、端子取
出窓11および12の部分の絶縁層をフォトエツチング
により除去し、磁気抵抗効果素子1および2の端子部分
を露出させる。
As roughly shown in FIG. 9, a protective layer 1 made of 5i02
After forming a film of 0 to a thickness of 1 μm over the entire surface, the insulating layer in the terminal extraction windows 11 and 12 is removed by photoetching, and the terminal portions of the magnetoresistive elements 1 and 2 are exposed.

上記のようにして設けられた端子取出窓11および12
を通じて磁気抵抗効果素子1および2の端子部分と導通
ずるようにして、A1等から成る端子層13.14およ
び15を第10図に示すように設ける。なお端子層15
は磁気抵抗効果素子1および2それぞれの一方の端子部
分に共通して接続される共通端子である。
Terminal extraction windows 11 and 12 provided as described above
Terminal layers 13, 14 and 15 made of A1 or the like are provided as shown in FIG. 10 so as to be electrically connected to the terminal portions of magnetoresistive elements 1 and 2 through the terminal layers. Note that the terminal layer 15
is a common terminal commonly connected to one terminal portion of each of the magnetoresistive elements 1 and 2.

最後に、第10図におりるX−X線に沿って切断し、そ
の切断面を研摩加工することによって磁気抵抗効果素子
1および2は第4図に示した最終形状に成形され、磁気
抵抗効果型磁気ヘッドが完成される。
Finally, the magnetoresistive elements 1 and 2 are formed into the final shape shown in FIG. 4 by cutting along the line X-X in FIG. 10 and polishing the cut surfaces. An effective magnetic head is completed.

なお、上記において非磁性の基板3の代りにフェライト
等の磁性基板を用いれば下部シールド層5の形成を省略
でき、工程を簡略化可能であることは言うまでもない。
It goes without saying that if a magnetic substrate such as ferrite is used in place of the non-magnetic substrate 3 in the above, the formation of the lower shield layer 5 can be omitted and the process can be simplified.

(g)発明の効果 本発明によれば、2つの磁気抵抗効果素子の間の絶縁層
の厚さを従来の製造方法による場合における厚さ、およ
そ0.5μmよりも小さくすることが可能であり、また
これらの磁気抵抗効果素子のエツジプロフィールを均一
にでき、かつこれら相互の重なりのずれを無くすことが
可能であり、これによって再生出力が大きく周波数特性
がすぐれた磁気抵抗効果型磁気ヘッドを提供できる効果
がある。
(g) Effects of the Invention According to the present invention, the thickness of the insulating layer between two magnetoresistive elements can be made smaller than the thickness of approximately 0.5 μm when using conventional manufacturing methods. In addition, it is possible to make the edge profiles of these magnetoresistive elements uniform and eliminate any deviation in their mutual overlap, thereby providing a magnetoresistive magnetic head with large reproduction output and excellent frequency characteristics. There is an effect that can be done.

また、従来の方法に比して製品の歩留りの向上0 および工程数の低減が可能となり、これにより低コスト
の磁気ヘッドを提供できる効果がある。
Furthermore, compared to conventional methods, it is possible to improve product yield by zero and reduce the number of steps, which has the effect of providing a low-cost magnetic head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2つの磁気抵抗効果素子を設けた磁気抵抗効果
型磁気ヘッドの基本構成を示す模式図、第2図および第
3図は第1図に示す構成の磁気抵抗効果型磁気ヘッドの
動作の概要を説明するための図、第4図は第1図に示す
磁気抵抗効果型磁気ヘラ[における磁気抵抗効果素子の
形状の例を示す模式図、第5図から第10図は本発明に
係る磁気抵抗効果型磁気ヘッドの製造工程を説明するた
めの模式図である。 図において、1および2は磁気抵抗効果素子、3は基板
、4.7および8は絶縁層、5は下部シールド層、6は
上部シールド層、9は記録媒体、lOは保護絶縁層、1
1および12は端子取出窓、13.14および15は端
子層、100および200は強磁性体膜、300は一括
成型された磁気抵抗効果素子の形状である。 1
Fig. 1 is a schematic diagram showing the basic configuration of a magnetoresistive magnetic head provided with two magnetoresistive elements, and Figs. 2 and 3 show the operation of the magnetoresistive magnetic head having the configuration shown in Fig. 1. FIG. 4 is a schematic diagram showing an example of the shape of the magnetoresistive element in the magnetoresistive magnetic spatula shown in FIG. 1, and FIGS. FIG. 3 is a schematic diagram for explaining the manufacturing process of such a magnetoresistive magnetic head. In the figure, 1 and 2 are magnetoresistive elements, 3 is a substrate, 4, 7 and 8 are insulating layers, 5 is a lower shield layer, 6 is an upper shield layer, 9 is a recording medium, 1O is a protective insulating layer, 1
1 and 12 are terminal extraction windows, 13, 14 and 15 are terminal layers, 100 and 200 are ferromagnetic films, and 300 is the shape of a magnetoresistive effect element which is molded all at once. 1

Claims (1)

【特許請求の範囲】[Claims] 中間絶縁層を介して2つの磁気抵抗効果素子が相接して
設けられる磁気抵抗効果型磁気ヘッドの製造方法におい
て、第1の磁気抵抗効果素子を形成するための第1の強
磁性体膜、中間絶縁層を形成するための絶縁層、および
第2の磁気抵抗効果素子を形成するための第2の強磁性
体膜を順次連続して成膜した後、これらを一括してエツ
チングして所望の形状に成形することを特徴とする磁気
抵抗効果型磁気ヘッドの製造方法
In a method of manufacturing a magnetoresistive magnetic head in which two magnetoresistive elements are provided adjacent to each other via an intermediate insulating layer, a first ferromagnetic film for forming a first magnetoresistive element; After successively forming an insulating layer for forming an intermediate insulating layer and a second ferromagnetic film for forming a second magnetoresistive element, they are etched all at once to form a desired pattern. A method for manufacturing a magnetoresistive magnetic head characterized by molding it into the shape of
JP57137565A 1982-08-07 1982-08-07 Method of manufacturing magnetoresistive effect magnetic head Expired - Lifetime JPH0610852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57137565A JPH0610852B2 (en) 1982-08-07 1982-08-07 Method of manufacturing magnetoresistive effect magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137565A JPH0610852B2 (en) 1982-08-07 1982-08-07 Method of manufacturing magnetoresistive effect magnetic head

Publications (2)

Publication Number Publication Date
JPS5928213A true JPS5928213A (en) 1984-02-14
JPH0610852B2 JPH0610852B2 (en) 1994-02-09

Family

ID=15201686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137565A Expired - Lifetime JPH0610852B2 (en) 1982-08-07 1982-08-07 Method of manufacturing magnetoresistive effect magnetic head

Country Status (1)

Country Link
JP (1) JPH0610852B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258515A (en) * 1975-11-08 1977-05-14 Nec Corp Magnetic resistance effect head
JPS5786124A (en) * 1980-11-17 1982-05-29 Matsushita Electric Ind Co Ltd Magnetic resistance effect type magnetic head and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258515A (en) * 1975-11-08 1977-05-14 Nec Corp Magnetic resistance effect head
JPS5786124A (en) * 1980-11-17 1982-05-29 Matsushita Electric Ind Co Ltd Magnetic resistance effect type magnetic head and its manufacture

Also Published As

Publication number Publication date
JPH0610852B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US4195323A (en) Thin film magnetic recording heads
US4321641A (en) Thin film magnetic recording heads
JPS638527B2 (en)
US4489484A (en) Method of making thin film magnetic recording heads
JP2613906B2 (en) Thin film magnetic head and method of manufacturing the same
JP3394266B2 (en) Method of manufacturing magnetic write / read head
JPS60175208A (en) Thin film magnetic head
JPS5928213A (en) Production of magneto-resistance effect type magnetic head
JPS61178710A (en) Thin film magnetic head and manufacture thereof
JP2740698B2 (en) Thin film magnetic head
JPS6337811A (en) Yoke type magnetoresistance effect type thin film magnetic head
JPS61267914A (en) Production of magneto-resistance effect head
JPS62204419A (en) Production of thin-film magnetic head
JP2528860B2 (en) Manufacturing method of thin film magnetic head
JPH05151533A (en) Magneto-resistance effect type thin-film magnetic head
JP2618860B2 (en) Magnetic head and method of manufacturing the same
JPS63117308A (en) Magneto-resistance effect type magnetic head and its manufacture
JPS5821328B2 (en) Tasoshijiki head
JPS58139319A (en) Manufacture for multi-element magnetic head
JPS5857614A (en) Production of thin film magnetic head
JPS5857613A (en) Production of thin film magnetic head
JPH0765326A (en) Production of magnetoresistance effect type thin-film magnetic head
JPH0320807B2 (en)
JPH04341910A (en) Recording/reproduction separate type thin film head
JPS63108512A (en) Manufacture of thin film magnetic head