JPH0610852B2 - Method of manufacturing magnetoresistive effect magnetic head - Google Patents

Method of manufacturing magnetoresistive effect magnetic head

Info

Publication number
JPH0610852B2
JPH0610852B2 JP57137565A JP13756582A JPH0610852B2 JP H0610852 B2 JPH0610852 B2 JP H0610852B2 JP 57137565 A JP57137565 A JP 57137565A JP 13756582 A JP13756582 A JP 13756582A JP H0610852 B2 JPH0610852 B2 JP H0610852B2
Authority
JP
Japan
Prior art keywords
magnetoresistive effect
effect element
insulating layer
layer
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57137565A
Other languages
Japanese (ja)
Other versions
JPS5928213A (en
Inventor
均 高木
和真 細野
富美夫 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57137565A priority Critical patent/JPH0610852B2/en
Publication of JPS5928213A publication Critical patent/JPS5928213A/en
Publication of JPH0610852B2 publication Critical patent/JPH0610852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は、磁気記録装置に係り、とくに磁気テープ装置
あるいは磁気ディスク装置における再生専用の磁気ヘッ
ドに関する。
Description: (a) Technical Field of the Invention The present invention relates to a magnetic recording device, and more particularly to a read-only magnetic head in a magnetic tape device or a magnetic disk device.

(b)技術の背景 磁気記録装置における高密度記録化にともなって薄膜型
の磁気ヘッドが用いられるようになりつつあるが,その
うちで磁気抵抗効果を利用した磁気ヘッドは構造が簡単
であり、また比較的大きな出力信号が得られることから
再生専用ヘッドとして実用化が期待されている。
(B) Background of technology Thin film type magnetic heads are being used along with high-density recording in magnetic recording devices. Among them, magnetic heads utilizing the magnetoresistive effect have a simple structure, and Since a relatively large output signal can be obtained, it is expected to be put to practical use as a read-only head.

(c)従来技術と問題点 磁気抵抗効果型磁気ヘッドは一定方向に磁化容易軸をそ
ろえて形成された強磁性体膜の磁化が、その近傍を通過
する外部磁界(例えば磁気記録媒体に記録されている磁
気信号)によって変化し、該強磁性体膜の抵抗が変化す
る現象を利用するものである。
(C) Prior Art and Problems In a magnetoresistive effect type magnetic head, the magnetization of a ferromagnetic film formed by aligning the easy axis of magnetization in a certain direction causes an external magnetic field (for example, recorded on a magnetic recording medium) passing near it. This phenomenon utilizes a phenomenon in which the resistance of the ferromagnetic film changes depending on the magnetic signal).

このような磁気抵抗効果型磁気ヘッドにおいて、第1図
に示すように例えばガラスあるいはSiO2等から成る非磁
性の基板3上に例えばNiFe等の強磁性体膜から成る2つ
の磁気抵抗効果素子1および2を例えばSiO2等から成る
絶縁層4を介して設け、それぞれの磁気抵抗効果素子1
および2に同方向の電流を流し、この電流によって2つ
の磁気抵抗効果素子が相互にバイアス磁界を印加し合う
形式のものがある。
In such a magnetoresistive effect magnetic head, as shown in FIG. 1, two magnetoresistive effect elements 1 made of a ferromagnetic film such as NiFe are provided on a non-magnetic substrate 3 made of glass or SiO2, for example. 2 is provided via an insulating layer 4 made of, for example, SiO2, and each magnetoresistive effect element 1 is provided.
There is a type in which a current in the same direction is made to flow in and 2, and the two magnetic resistance effect elements mutually apply a bias magnetic field by this current.

なお、第1図において5および6はそれぞれ下部シール
ド層および上部シール層で双方ともに例えばNiFe等の強
磁性体膜からなり、また、7および8はシールド層5お
よび6と磁気抵抗効果素子2および1とを電気的に絶縁
する例えばSiO2等から成る絶縁層であり、さらにまた、
9は磁気ディスク等の記録媒体であって矢印の方向へ走
行する。
In FIG. 1, 5 and 6 are lower shield layers and upper seal layers, both of which are made of a ferromagnetic film such as NiFe, and 7 and 8 are shield layers 5 and 6 and the magnetoresistive effect element 2 and 1 is an insulating layer made of, for example, SiO2 that electrically insulates
A recording medium 9 such as a magnetic disk runs in the direction of the arrow.

第1図に示す磁気抵抗効果型磁気ヘッドにおいては、磁
気抵抗効果素子1および2が相互に印加し合うバイアス
磁界の方向は第2図に破線矢印で示すように、180度反
転している。
In the magnetoresistive effect type magnetic head shown in FIG. 1, the directions of the bias magnetic fields applied to each other by the magnetoresistive effect elements 1 and 2 are reversed by 180 degrees as indicated by the broken line arrow in FIG.

ところで、一般に磁気抵抗効果素子においては、磁化の
方向と磁気抵抗効果素子を流流れる電流の方向とのなす
角が45度の近傍において最も高い感度が得られる。した
がって、第2図において磁気抵抗効果素子1および2に
流す電流iを適当に選ぶことによって動作点、すなわち
上記のように磁気抵抗効果素子を流れる電流の方向に対
する磁化方向のなす角度を、一方の磁気抵抗効果素子に
おいは+45度近傍に、他方の磁気抵抗効果素子において
は−45度近傍に設定することができる。
By the way, generally, in a magnetoresistive effect element, the highest sensitivity is obtained in the vicinity of an angle of 45 degrees between the direction of magnetization and the direction of current flowing in the magnetoresistive effect element. Therefore, in FIG. 2, the operating point, that is, the angle formed by the magnetization direction with respect to the direction of the current flowing through the magnetoresistive effect element as described above is appropriately selected by appropriately selecting the current i flowing through the magnetoresistive effect elements 1 and 2. The magnetoresistive effect element can be set to around +45 degrees and the other magnetoresistive effect element can be set to around -45 degrees.

このようにして、本形式の磁気抵抗効果型磁気ヘッドに
おいては、外部からのバイアス磁界が不要となる。ま
た、第3図(A)に示すように外部磁気信号Sに対する
第1の磁気抵抗効果素子2の出力信号R1と第2の磁気抵
抗効果素子1の出力信号R2は逆極性となっており、これ
を差動増幅器により差を採れば第3図(B)に示すよう
に磁気抵抗効果素子が1つの時よりも大きな出力信号R
が得られる。
In this way, in this type of magnetoresistive head, a bias magnetic field from the outside is unnecessary. Further, as shown in FIG. 3 (A), the output signal R1 of the first magnetoresistive effect element 2 and the output signal R2 of the second magnetoresistive effect element 1 with respect to the external magnetic signal S have opposite polarities, If a difference is taken by a differential amplifier, as shown in FIG. 3 (B), an output signal R larger than that when there is one magnetoresistive effect element is provided.
Is obtained.

なお、第3図(A)において、曲線C磁気抵抗効果素子
の抵抗率(ρ)と上述した電流の方向に対する磁化の方
向のなす角(θ)との関係を示し、Δρmは抵抗率変化
の最大値である。
Note that, in FIG. 3 (A), the relationship between the resistivity (ρ) of the curve C magnetoresistive effect element and the angle (θ) formed by the direction of the magnetization with respect to the direction of the current is shown, and Δρm is the change in resistivity. It is the maximum value.

さて、上記のような形式の磁気抵抗効果型磁気ヘッドを
製造する場合、従来は基板上に前記シールド層5、前記
絶縁層7、第1の磁気抵抗効果素子2を形成するための
強磁性体膜とを順次成膜した後、フォトエッチングによ
って前記強磁性体膜をエッチングし、第4図に示すよう
なパターンを有する第1の磁気抵抗効果素子2を形成す
る。その後、この上に前記絶縁層4と、第2の磁気抵抗
効果素子1を形成するための強磁性体膜を成膜し、フォ
トエッチングにより磁気抵抗効果素子2と同形状の第2
の磁気抵抗効果素子1を形成する。
In the case of manufacturing the magnetoresistive effect type magnetic head as described above, conventionally, a ferromagnetic material for forming the shield layer 5, the insulating layer 7, and the first magnetoresistive effect element 2 on the substrate is used. After sequentially forming a film and the film, the ferromagnetic film is etched by photoetching to form a first magnetoresistive element 2 having a pattern as shown in FIG. After that, the insulating layer 4 and a ferromagnetic film for forming the second magnetoresistive effect element 1 are formed thereon, and a second film having the same shape as the magnetoresistive effect element 2 is formed by photoetching.
The magnetoresistive effect element 1 is formed.

本形式の磁気抵抗効果型磁気ヘッドにおいては、周波数
特性および感度の点から、絶縁層4の厚さはできるだけ
小さいことが望ましい。
In this type of magnetoresistive effect magnetic head, it is desirable that the thickness of the insulating layer 4 is as small as possible in terms of frequency characteristics and sensitivity.

しかしながら、上記従来の製造工程によれば、第1の磁
気抵抗効果素子2を形成するためのエッチング工程ある
いはこれとその後に行われる絶縁層4の成膜工程との間
における塵埃の混入あるいは付着のために、絶縁層4は
その厚さが小さくなるにともなって絶縁破壊等の不良が
多発しやすくなること、また、フォトエッチング工程に
おいて使用したフォトレジストの残渣等により磁気抵抗
効果素子2の成膜時の下地に凹凸が生じ、かつ成形され
た磁気抵抗効果素子2のエッジプロフィールが不均一に
なるために反磁界の消去が不充分になる等磁気特性の劣
化を引き起しやすくなること、さらにまた、磁気抵抗効
果素子2および1を個別に成形するために、両者間のパ
ターンずれを生じ、前記と同様の磁気特性の劣化を生じ
やすい等の欠点があり、これらはまた、製品の歩留りを
引き下げ製造コストを引き上げる欠点ともなっていた。
However, according to the above-described conventional manufacturing process, dust is not mixed in or adhered between the etching process for forming the first magnetoresistive effect element 2 and the subsequent film forming process of the insulating layer 4. Therefore, as the thickness of the insulating layer 4 becomes smaller, defects such as dielectric breakdown are more likely to occur, and film formation of the magnetoresistive effect element 2 is caused by residues of the photoresist used in the photoetching process. At this time, unevenness is generated on the base and the edge profile of the molded magnetoresistive effect element 2 becomes non-uniform, so that the erasing of the demagnetizing field becomes insufficient and the deterioration of the magnetic characteristics is apt to occur. Further, since the magnetoresistive effect elements 2 and 1 are individually molded, there is a drawback that a pattern shift occurs between the two and the magnetic properties are likely to deteriorate similarly to the above. Ri, these also, had also become a disadvantage to raise the lowered production cost and the yield of the product.

(d)発明の目的 本発明は、上記従来の製造方法の欠点を除去し、周波数
特性、感度ならびに経済性のすぐれた磁気抵抗効果型磁
気ヘッドの製造方法を提供することを目的とする。
(D) Object of the Invention It is an object of the present invention to eliminate the drawbacks of the conventional manufacturing method and to provide a method of manufacturing a magnetoresistive head having excellent frequency characteristics, sensitivity and economy.

(e)発明の構成 上記目的は本発明により、基板上に第1絶縁層、第1の
磁気抵抗効果素子層、第2絶縁層、第2の磁気抵抗効果
素子層を順次連続して成膜する工程、第2磁気抵抗効果
素子層において、第1磁気抵抗効果素子層への端子取出
窓位置に対応する部分をエッチングする工程、第1磁気
抵抗効果素子層、第2絶縁層及び第2磁気抵抗効果素子
層を最終の磁気ヘッド形状にエッチングする工程、第3
絶縁層を被着し、この絶縁層及び第2絶縁層をエッチン
グして、第1及び第2磁気抵抗効果素子膜へ端子取出窓
としてのスルーホールを形成する工程を含むことを特徴
とする磁気抵抗効果型磁気ヘッドの製造方法によって達
成される。
(E) Configuration of the Invention According to the present invention, the above-mentioned object is to successively form a first insulating layer, a first magnetoresistive effect element layer, a second insulating layer, and a second magnetoresistive effect element layer on a substrate. And a step of etching a portion of the second magnetoresistive effect element layer corresponding to a terminal lead-out window position to the first magnetoresistive effect element layer, the first magnetoresistive effect element layer, the second insulating layer and the second magnetic layer. A step of etching the resistance effect element layer into a final magnetic head shape;
A magnetic layer including a step of depositing an insulating layer and etching the insulating layer and the second insulating layer to form a through hole as a terminal lead-out window in the first and second magnetoresistive effect element films. This is achieved by a method of manufacturing a resistance effect type magnetic head.

(f)発明の実施例 以下本発明の実施例を図面を参照して説明する。(F) Embodiments of the Invention Embodiments of the present invention will be described below with reference to the drawings.

第5図以下は本発明の好適な一実施例を説明するための
図であり、それぞれにおいて(A)は平面図、(B)は
(A)において一点鎖線で示す部分の断面図である。こ
れらの図において、既掲の図と同じものには同一符号を
付してある。
FIG. 5 and subsequent drawings are views for explaining a preferred embodiment of the present invention, in which (A) is a plan view and (B) is a cross-sectional view of a portion indicated by a chain line in (A). In these figures, the same parts as those shown above are designated by the same reference numerals.

第5図において、基板3上に密着層(後続して成膜され
る下部シールド層5と基板3との付着強度を上げるため
の層)として500Åの厚さのAl・Cu合金層および1000
Åの厚さのTi層(いずれも図示省略)を形成した後、Ni
Feから成る下部シールド層5を厚さ2μm、SiO2から成
る第1絶縁層7を厚さ0.3μm、NiFeから成りかつ第1
の磁気抵抗効果素子となる第1の強磁性体膜100を厚さ5
00Å、SiO2から成る第2絶縁層4を厚さ0.3μm、NiFe
から成りかつ第2の磁気抵抗効果素子となる第2の強磁
性体膜200を厚さ500Åに形成する。
In FIG. 5, as an adhesion layer (a layer for increasing the adhesion strength between the lower shield layer 5 and the substrate 3 which is subsequently formed) on the substrate 3, an Al / Cu alloy layer having a thickness of 500Å and 1000
After forming a Å-thick Ti layer (all not shown),
The lower shield layer 5 made of Fe has a thickness of 2 μm and the first insulating layer 7 made of SiO 2 has a thickness of 0.3 μm.
Of the first ferromagnetic film 100, which will be the magnetoresistive element of
00Å, the second insulating layer 4 made of SiO2 has a thickness of 0.3 μm, NiFe
And the second ferromagnetic film 200 which is to be the second magnetoresistive effect element and has a thickness of 500Å.

ここまでの工程において、SiO2から成る絶縁層4および
7は一般にスパッタリングにより、その他の密着層、下
部シールド層5、強磁性体膜100および200はスパッタリ
ングもしくは蒸着によって形成され、各層の生成ごとに
大気中に取り出すことなく成膜することも可能である。
In the steps up to this point, the insulating layers 4 and 7 made of SiO2 are generally formed by sputtering, and the other adhesion layers, the lower shield layer 5, and the ferromagnetic films 100 and 200 are formed by sputtering or vapor deposition. It is also possible to form a film without taking it out.

第5図において、強磁性体膜200はフォトエッチングに
より、同図(A)にハッチを付して示した形状に成形し
た状態を示してあるが、これは後述する磁気抵抗効果素
子1の端子取出窓を避けるようにあらかじめ強磁性体膜
200を除去しておくためであって、高度のパターン精度
は必要としない。
In FIG. 5, the ferromagnetic film 200 is shown by photoetching into the shape shown by hatching in FIG. 5A. This is the terminal of the magnetoresistive effect element 1 described later. Ferromagnetic film in advance so as to avoid the exit window
This is because 200 is removed, and a high degree of pattern accuracy is not required.

つぎに、イオンミリング(Arイオン等を加速して物体に
照射して切削等の加工を行う乾式のエッチング方法)に
より強磁性体膜100および200と絶縁層4を第6図に300
で示した形状に一括して成形する。
Next, the ferromagnetic films 100 and 200 and the insulating layer 4 are formed by ion milling (a dry etching method of accelerating Ar ions or the like to irradiate an object and perform processing such as cutting) 300 as shown in FIG.
Molded in the shape shown in.

ここまでの工程によって、強磁性体膜100および200はそ
れぞれ磁気抵抗効果素子1および2としてのほぼ最終形
状に成形されている。
Through the steps up to this point, the ferromagnetic films 100 and 200 are formed into almost final shapes as the magnetoresistive effect elements 1 and 2, respectively.

さて上記に引続き、第7図に示すように下部シールド層
5および絶縁層7の余分な部分をイオンミリングにより
除去する。この上に、第8図に示すように、SiO2から成
る第3絶縁層8を0.3μmの厚さに全面にわたって成膜
した後、その一部表面にNiFeから成る上部シールド層6
を2μmの厚さに帯状に成膜する。
Continuing from the above, excess portions of the lower shield layer 5 and the insulating layer 7 are removed by ion milling as shown in FIG. As shown in FIG. 8, a third insulating layer 8 made of SiO 2 is formed on the entire surface to a thickness of 0.3 μm, and a part of the surface is covered with an upper shield layer 6 made of NiFe.
Is formed into a strip shape with a thickness of 2 μm.

さらに第9図に示すように、SiO2から成る保護層10を1
μmの厚さに全面にわたって成膜した後、端子取出窓11
および12の部分の絶縁層をフォトエッチングにより除去
し、磁気抵抗効果素子1および2の端子部分を露出させ
る。
Further, as shown in FIG. 9, a protective layer 10 made of SiO2
After forming a film over the entire surface to a thickness of μm, the terminal extraction window 11
The insulating layers of the portions 12 and 12 are removed by photoetching to expose the terminal portions of the magnetoresistive effect elements 1 and 2.

上記のようにして設けられた端子取出窓11および12を通
じて磁気抵抗効果素子1および2の端子部分と導通する
ようにして、Al等から成る端子層13、14および15を第10
図に示すように設ける。なお端子層15は磁気抵抗効果素
子1および2それぞれの一方の端子部分に共通して接続
される共通端子である。
The terminal layers 13, 14 and 15 made of Al or the like are provided so as to be electrically connected to the terminal portions of the magnetoresistive effect elements 1 and 2 through the terminal lead-out windows 11 and 12 provided as described above.
Provide as shown. The terminal layer 15 is a common terminal commonly connected to one terminal portion of each of the magnetoresistive effect elements 1 and 2.

最後に、第10図におけるX−X線に沿って切断し、その
切断面を研磨加工することによって磁気抵抗効果素子1
および2は第4図に示した最終形状に成形され、磁気抵
抗効果型磁気ヘッドが完成される。
Finally, the magnetoresistive effect element 1 is cut by cutting along the line XX in FIG. 10 and polishing the cut surface.
And 2 are molded into the final shape shown in FIG. 4, and the magnetoresistive effect magnetic head is completed.

なお、上記において非磁性の基板3の代りにフェライト
等の磁性基板を用いれば下部シールド層5の形成を省略
でき、工程を簡略化可能であることは言うまでもない。
Needless to say, if a magnetic substrate such as ferrite is used instead of the non-magnetic substrate 3 in the above, the formation of the lower shield layer 5 can be omitted and the process can be simplified.

(g)発明の効果 本発明によれば、2つの磁気抵抗効果素子の間の絶縁層
の厚さを従来の製造方法による場合における厚さ、およ
そ0.5μmよりも小さくすることが可能であり、またこ
れらの磁気抵抗効果素子のエッジプロフィールを均一に
でき、かつこれら相互の重なりのずれを無くすことが可
能であり、これによって再生出力が大きく周波数特性が
すぐれた磁気抵抗効果型磁気ヘッドを提供できる効果が
ある。
(G) Effect of the Invention According to the present invention, the thickness of the insulating layer between the two magnetoresistive effect elements can be made smaller than the thickness in the case of the conventional manufacturing method, which is about 0.5 μm. Further, it is possible to make the edge profile of these magnetoresistive elements uniform and to eliminate the misalignment between these elements, which makes it possible to provide a magnetoresistive magnetic head having a large reproduction output and excellent frequency characteristics. effective.

また、従来の方法に比して製品の歩留りの向上および工
程数の低減が可能となり、これにより低コストの磁気ヘ
ッドを提供できる効果がある。
In addition, the yield of products can be improved and the number of steps can be reduced as compared with the conventional method, which has the effect of providing a low-cost magnetic head.

【図面の簡単な説明】[Brief description of drawings]

第1図は2つの磁気抵抗効果素子を設けた磁気抵抗効果
型磁気ヘッドの基本構成を示す模式図、第2図および第
3図は第1図に示す構成の磁気抵抗効果型磁気ヘッドの
動作の概要を説明するための図、第4図は第1図に示す
磁気抵抗効果型磁気ヘッドにおける磁気抵抗効果素子の
形状の例を示す模式図、第5図から第10図は本発明に係
る磁気抵抗効果型磁気ヘッドの製造工程を説明するため
の模式図である。 図において、1および2は磁気抵抗効果素子、3は基
板、4、7および8は絶縁層、5は下部シールド層、6
は上部シールド層、9は記録媒体、10は保護絶縁層、11
および12は端子取出窓、13、14および15は端子層、100
および200は強磁性体膜、300は一括成型された磁気抵抗
効果素子の形状である。
FIG. 1 is a schematic diagram showing the basic structure of a magnetoresistive effect magnetic head provided with two magnetoresistive effect elements, and FIGS. 2 and 3 are operations of the magnetoresistive effect magnetic head having the structure shown in FIG. 4 is a schematic diagram showing an example of the shape of a magnetoresistive effect element in the magnetoresistive effect type magnetic head shown in FIG. 1, and FIGS. 5 to 10 relate to the present invention. FIG. 7 is a schematic diagram for explaining a manufacturing process of a magnetoresistive effect magnetic head. In the figure, 1 and 2 are magnetoresistive elements, 3 is a substrate, 4, 7 and 8 are insulating layers, 5 is a lower shield layer, and 6
Is an upper shield layer, 9 is a recording medium, 10 is a protective insulating layer, 11
And 12 are terminal exit windows, 13, 14 and 15 are terminal layers, 100
Reference numerals 200 and 200 are ferromagnetic films, and 300 is a shape of the magnetoresistive effect element molded together.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久米 富美夫 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭52−58515(JP,A) 特開 昭57−86124(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Fumio Kume 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited (56) References JP-A-52-58515 (JP, A) JP-A-57-86124 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に第1絶縁層、第1の磁気抵抗効果
素子層、第2絶縁層、第2の磁気抵抗効果素子層を順次
連続して成膜する工程、第2磁気抵抗効果素子層におい
て、第1磁気抵抗効果素子層への端子取出窓位置に対応
する部分をエッチングする工程、第1磁気抵抗効果素子
層、第2絶縁層及び第2磁気抵抗効果素子層を最終の磁
気ヘッド形状にエッチングする工程、第3絶縁層を被着
し、この絶縁層及び第2絶縁層をエッチングして、第1
及び第2磁気抵抗効果素子膜へ端子取出窓としてのスル
ーホールを形成する工程を含むことを特徴とする磁気抵
抗効果型磁気ヘッドの製造方法。
1. A step of sequentially forming a first insulating layer, a first magnetoresistive effect element layer, a second insulating layer, and a second magnetoresistive effect element layer on a substrate, and a second magnetoresistive effect. In the element layer, a step of etching a portion corresponding to the terminal lead-out window position to the first magnetoresistive effect element layer, the first magnetoresistive effect element layer, the second insulating layer, and the second magnetoresistive effect element layer as final magnetic The step of etching into a head shape, the third insulating layer is deposited, and the insulating layer and the second insulating layer are etched to form the first insulating layer.
And a step of forming a through hole as a terminal lead-out window in the second magnetoresistive effect element film.
JP57137565A 1982-08-07 1982-08-07 Method of manufacturing magnetoresistive effect magnetic head Expired - Lifetime JPH0610852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57137565A JPH0610852B2 (en) 1982-08-07 1982-08-07 Method of manufacturing magnetoresistive effect magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137565A JPH0610852B2 (en) 1982-08-07 1982-08-07 Method of manufacturing magnetoresistive effect magnetic head

Publications (2)

Publication Number Publication Date
JPS5928213A JPS5928213A (en) 1984-02-14
JPH0610852B2 true JPH0610852B2 (en) 1994-02-09

Family

ID=15201686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137565A Expired - Lifetime JPH0610852B2 (en) 1982-08-07 1982-08-07 Method of manufacturing magnetoresistive effect magnetic head

Country Status (1)

Country Link
JP (1) JPH0610852B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258515A (en) * 1975-11-08 1977-05-14 Nec Corp Magnetic resistance effect head
JPS5786124A (en) * 1980-11-17 1982-05-29 Matsushita Electric Ind Co Ltd Magnetic resistance effect type magnetic head and its manufacture

Also Published As

Publication number Publication date
JPS5928213A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
US4195323A (en) Thin film magnetic recording heads
US4321641A (en) Thin film magnetic recording heads
US5363265A (en) Planarized magnetoresistive sensor
US4489484A (en) Method of making thin film magnetic recording heads
US4219855A (en) Thin film magnetic head
JPH06259730A (en) Reluctance sensor having improved microtrack-profile for obtaining improved servo positioning accuracy and manufacture of magnetic sensor-assembly
JP2613906B2 (en) Thin film magnetic head and method of manufacturing the same
JP3394266B2 (en) Method of manufacturing magnetic write / read head
JPH0610852B2 (en) Method of manufacturing magnetoresistive effect magnetic head
JPH05151533A (en) Magneto-resistance effect type thin-film magnetic head
JP2572213B2 (en) Thin film magnetic head
JPH0447890B2 (en)
JP2618380B2 (en) Magnetoresistive head and method of manufacturing the same
JP2707758B2 (en) Method for manufacturing thin-film magnetic head
JPS6337811A (en) Yoke type magnetoresistance effect type thin film magnetic head
JP3089886B2 (en) Method of manufacturing magnetoresistive head
JPS61267914A (en) Production of magneto-resistance effect head
JPS61248214A (en) Thin film magnetic head
JPS6222220A (en) Thin film magnetic head
JPS5857614A (en) Production of thin film magnetic head
JPS63108512A (en) Manufacture of thin film magnetic head
JPH0118497B2 (en)
JPH0524563B2 (en)
JPS5857618A (en) Thin film magnetic head
JPS60150222A (en) Thin film magnetic head