JP3089886B2 - Method of manufacturing magnetoresistive head - Google Patents

Method of manufacturing magnetoresistive head

Info

Publication number
JP3089886B2
JP3089886B2 JP05085973A JP8597393A JP3089886B2 JP 3089886 B2 JP3089886 B2 JP 3089886B2 JP 05085973 A JP05085973 A JP 05085973A JP 8597393 A JP8597393 A JP 8597393A JP 3089886 B2 JP3089886 B2 JP 3089886B2
Authority
JP
Japan
Prior art keywords
magnetoresistive element
insulating layer
magnetoresistive
recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05085973A
Other languages
Japanese (ja)
Other versions
JPH06301931A (en
Inventor
祥児 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05085973A priority Critical patent/JP3089886B2/en
Publication of JPH06301931A publication Critical patent/JPH06301931A/en
Application granted granted Critical
Publication of JP3089886B2 publication Critical patent/JP3089886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気記録再生装置に用い
られる磁気抵抗効果型磁気ヘッドの製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetoresistive head used in a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】近年、コンピュータの外部記録装置は、
小型大容量化が益々望まれるようになってきた。この磁
気記録を用いた外部記録装置の小型高容量化を実現する
ために、線記録密度の向上以外に、トラック密度の向上
も必要になっている。現在では媒体速度に出力が依存せ
ず高出力が得られ、さらに高トラック密度が得られる磁
気抵抗素子を用いた磁気抵抗効果型磁気ヘッドが利用さ
れるようになってきた。以下に従来の磁気抵抗素子を用
いた磁気抵抗効果型磁気ヘッドおよびその製造方法につ
いて説明する。
2. Description of the Related Art In recent years, an external recording device of a computer has
There is an increasing demand for smaller and larger capacities. In order to reduce the size and capacity of the external recording device using magnetic recording, it is necessary to improve the track density in addition to the linear recording density. At present, a magnetoresistive effect type magnetic head using a magnetoresistive element capable of obtaining a high output without depending on the medium speed and obtaining a high track density has been used. Hereinafter, a conventional magnetoresistive head using a magnetoresistive element and a method of manufacturing the same will be described.

【0003】図7,図8はそれぞれ磁気記録媒体側から
みた磁気抵抗効果型磁気ヘッドの構成図及び斜視図であ
る。図において、1は下部シールドで少なくとも磁気抵
抗素子の磁束検知幅以上の幅を持ちパーマロイ、センダ
スト等の軟磁性材料を真空成膜法あるいはメッキ法によ
り成膜したものか、フェライト等の軟磁性材料が用いら
れる。下部シールド1上の下部絶縁層2は磁気抵抗素子
部3と下部シールド1を磁気的に分離する役目を持ち、
SiO2 やAl2 3 などの酸化物を蒸着あるいはスパ
ッタ等の真空成膜法により成膜される。これらの下部絶
縁層2の上に磁気抵抗素子部3を蒸着あるいはスパッタ
等の真空成膜法により成膜する。磁気抵抗素子部3は外
部磁界に対し抵抗変化を示す素子でありFe−Niの合
金やCo−Niの合金が使用され、これらの膜は外部磁
界に対し感度を高めるために数十nm以下の特に薄い膜
が用いられる。これらの薄膜は真空蒸着法、スパッタ
法、イオンビームスパッタ法などの真空成膜法によって
成膜される。
FIGS. 7 and 8 are a configuration diagram and a perspective view, respectively, of a magneto-resistance effect type magnetic head viewed from the magnetic recording medium side. In the figure, reference numeral 1 denotes a lower shield having a width at least equal to the magnetic flux detection width of the magnetoresistive element and formed of a soft magnetic material such as permalloy or sendust by a vacuum film forming method or a plating method, or a soft magnetic material such as ferrite. Is used. The lower insulating layer 2 on the lower shield 1 has a role of magnetically separating the magnetoresistive element 3 and the lower shield 1 from each other.
An oxide such as SiO 2 or Al 2 O 3 is formed by a vacuum film forming method such as evaporation or sputtering. The magnetoresistive element 3 is formed on the lower insulating layer 2 by a vacuum film forming method such as evaporation or sputtering. The magnetoresistive element section 3 is an element showing a change in resistance to an external magnetic field, and is made of an alloy of Fe-Ni or an alloy of Co-Ni. These films have a thickness of several tens nm or less in order to increase the sensitivity to the external magnetic field. In particular, a thin film is used. These thin films are formed by a vacuum deposition method such as a vacuum deposition method, a sputtering method, and an ion beam sputtering method.

【0004】この磁気抵抗素子部3にはこれに電流を供
給しその電圧変化を検知するための導体層5が磁束検知
幅外の部分で接触している。導体層5には抵抗値の低い
良導体としてAu,Al,Cu,Wあるいはそれらの積
層膜などが用いられ、真空蒸着法、スパッタ法、イオン
ビームスパッタ法、CVD法などの真空成膜法によって
成膜される。
[0004] A conductor layer 5 for supplying a current thereto and detecting a change in the voltage is in contact with the magnetoresistive element portion 3 at a portion outside the magnetic flux detection width. As the conductor layer 5, Au, Al, Cu, W or a laminated film thereof is used as a good conductor having a low resistance value, and is formed by a vacuum film forming method such as a vacuum evaporation method, a sputtering method, an ion beam sputtering method, and a CVD method. Filmed.

【0005】これら磁気抵抗素子保護絶縁層4および導
体層5の上に上部絶縁層6としてSiO2 やAl2 3
などの酸化物を蒸着あるいはスパッタ等の真空成膜法に
より成膜する。その後、これら上部絶縁層6の上に上部
シールド7として少なくとも磁気抵抗素子部3の磁束検
知幅以上の幅を持ちパーマロイ、センダスト等の軟磁性
材料を蒸着あるいはスパッタ等の真空蒸着法あるいはメ
ッキ法により成膜する。またこれらの上部シールド7の
上面に記録ギャップ8をSiO2 やAl2 3などの酸
化物を蒸着あるいはスパッタ等の真空蒸着法により成膜
する。この記録ギャップ8の上に記録コア9をパーマロ
イ、センダスト等の軟磁性材料を蒸着あるいはスパッタ
等の真空蒸着法あるいはメッキ法により成膜し、所定の
形状に物理的あるいは化学的方法によって食刻される。
On the magnetoresistive element protective insulating layer 4 and the conductor layer 5, an upper insulating layer 6 is formed of SiO 2 or Al 2 O 3.
Is formed by vacuum deposition such as evaporation or sputtering. Thereafter, a soft magnetic material such as permalloy or sendust having a width at least as large as the magnetic flux detection width of the magnetoresistive element portion 3 as the upper shield 7 is deposited on the upper insulating layer 6 by a vacuum deposition method such as evaporation or sputtering or a plating method. Form a film. On the upper surface of the upper shield 7, a recording gap 8 is formed by vacuum deposition such as evaporation or sputtering of an oxide such as SiO 2 or Al 2 O 3 . On the recording gap 8, a recording core 9 is formed by depositing a soft magnetic material such as permalloy or sendust by a vacuum deposition method such as evaporation or sputtering or a plating method, and is etched into a predetermined shape by a physical or chemical method. You.

【0006】再生を行う磁気抵抗素子部3の磁束検知幅
はAで示される幅であり、記録を行う記録コア幅はBで
記録はこの記録コア幅BのCで示される磁束検知領域で
行われる。この構造では磁気抵抗素子部3および導体層
5の厚みによって発生する段差によっておよび磁気抵抗
素子部3の磁束検知幅Aにおいて周波数特性を左右する
磁気シールド間距離がDの場合とEの場合が混在する事
になる。さらに記録は記録コア幅BのCの磁束検知領域
で行うが、図中に示されるように記録ギャップ8は一直
線にはなっていない。
The magnetic flux detection width of the magnetoresistive element portion 3 for reproducing is the width indicated by A, the recording core width for recording is B, and recording is performed in the magnetic flux detection area indicated by C of the recording core width B. Will be In this structure, the case where the distance between the magnetic shields which affects the frequency characteristics depending on the step caused by the thickness of the magnetoresistive element section 3 and the thickness of the conductor layer 5 and the magnetic flux detection width A of the magnetoresistive element section 3 is both D and E. Will do. Further, recording is performed in the magnetic flux detection area of the recording core width B and C, but the recording gap 8 is not straight as shown in the figure.

【0007】これらの素子部の製造方法は図9,図10
に示す通りである。図9(a)に示される様に下部シー
ルド1の上に下部絶縁層2を設けその上に磁気抵抗素子
部3を形成し、(b)(c)(d)に示される様に磁気
抵抗素子保護絶縁層4を設け、導体層5を成膜し、その
後上部絶縁層6を設け、次に図10(a)に示すように
上部シールド7を成膜する。次に図10(b)(c)に
示すようにその上に記録ギャップ8を成膜し、記録コア
9をその上に形成する。
FIGS. 9 and 10 show a method of manufacturing these element portions.
As shown in FIG. As shown in FIG. 9A, a lower insulating layer 2 is provided on a lower shield 1, and a magnetoresistive element portion 3 is formed thereon, and a magnetoresistive element is formed as shown in FIGS. An element protection insulating layer 4 is provided, a conductor layer 5 is formed, then an upper insulating layer 6 is provided, and then an upper shield 7 is formed as shown in FIG. Next, as shown in FIGS. 10B and 10C, a recording gap 8 is formed thereon, and a recording core 9 is formed thereon.

【0008】この磁気抵抗型磁気ヘッドにより記録再生
を行い出力の線記録密度依存性を測定した結果を図6の
aに示す。磁気記録媒体には保磁力1600エルステッ
ドの3.5インチのハードディスク媒体を用い、周速1
2m/s,浮上量0.2μmで測定した結果を示す。こ
の際のシールド間距離はD=0.8μm,E=0.9μ
mである。
FIG. 6A shows the result of recording and reproduction using the magnetoresistive magnetic head and measuring the linear recording density dependence of the output. As the magnetic recording medium, a 3.5-inch hard disk medium having a coercive force of 1600 Oe is used.
The results measured at 2 m / s and a flying height of 0.2 μm are shown. In this case, the distance between the shields is D = 0.8 μm and E = 0.9 μ.
m.

【0009】[0009]

【発明が解決しようとする課題】しかしながら前記従来
の構成では、磁束検知領域において導体層5の段差によ
り、図7にDおよびEで示される2種類の磁気シールド
間距離が存在し、この構造において再生される波形は2
種類の再生波形の重畳により得られるため、高記録密度
において波形干渉のため出力が著しく減少する。また磁
気抵抗素子部3の段差により発生する段差F(図7)は
記録コア9が幅広くなり段差部にかかると磁束検知領域
C上の段差と共に記録ギャップの直線性を阻害し、やは
り高記録密度において波形干渉のため出力が著しく減少
するという問題点を有していた。
However, in the above-mentioned conventional configuration, there are two types of distances between the magnetic shields indicated by D and E in FIG. 7 due to the step of the conductor layer 5 in the magnetic flux detecting region. The reproduced waveform is 2
Since it is obtained by superimposing different types of reproduced waveforms, the output is significantly reduced due to waveform interference at a high recording density. Further, the step F (FIG. 7) generated by the step of the magnetoresistive element portion 3 has a wide recording core 9 and, when the step is applied to the step, impairs the linearity of the recording gap together with the step on the magnetic flux detection area C, and also has a high recording density. Has a problem that the output is significantly reduced due to waveform interference.

【0010】本発明は前記従来の課題を解決するもの
で、高記録密度においても高分解能を得ることができる
磁気抵抗効果型磁気ヘッドの製造方法を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems, and can obtain high resolution even at a high recording density.
It is an object of the present invention to provide a method for manufacturing a magnetoresistive head .

【0011】[0011]

【課題を解決するための手段】このために本発明の磁気
抵抗効果型磁気ヘッドの製造方法は、下部シールド上に
下部絶縁層を設け、前記下部絶縁層上に磁気抵抗素子部
を形成して、中間絶縁層を前記磁気抵抗素子部の周縁に
前記磁気抵抗素子と同じ高さに成膜し、前記磁気抵抗素
子上に磁気抵抗素子保護絶縁層を成膜し、前記磁気抵抗
素子上で前記磁気抵抗素子保護絶縁層の周縁に前記磁気
抵抗素子保護絶縁層と同等の厚みを有する導体層を形成
し、前記磁気抵抗素子保護絶縁層と前記導体層との上に
上部絶縁層と上部シールドを成膜するようにしたもので
ある。
SUMMARY OF THE INVENTION For this purpose, the magnetic material of the present invention is used.
The manufacturing method of the resistance effect type magnetic head
A lower insulating layer provided on the lower insulating layer;
To form an intermediate insulating layer on the periphery of the magnetoresistive element section.
Forming a film at the same height as the magnetoresistive element,
A protective insulating layer of a magnetoresistive element is formed on the
On the element, the magnetic resistance
Form conductor layer with thickness equivalent to resistance element protection insulation layer
And, on the magnetoresistive element protection insulating layer and the conductor layer
The upper insulating layer and the upper shield are formed .

【0012】[0012]

【作用】本発明は上記構成により、磁気抵抗素子部の磁
束検知領域における磁気シールド間距離を一定に保つこ
とが出来、しかもその上部に形成する記録ギャップを直
線的に形成でき、これにより高記録密度において高い分
解能を得ることができる。
According to the present invention, the distance between the magnetic shields in the magnetic flux detecting region of the magnetoresistive element can be kept constant, and the recording gap formed above the magnetic shield can be formed linearly. High resolution in density can be obtained.

【0013】[0013]

【実施例】次に、本発明の実施例を図面を参照しながら
説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0014】図1,図2はそれぞれ磁気記録媒体側から
みた磁気抵抗効果型磁気ヘッドの構成図及び斜視図であ
る。1は下部シールドで少なくとも磁気抵抗素子部3の
磁束検知幅以上の幅を持ちパーマロイ、センダスト等の
軟磁性材料を真空成膜法あるいはメッキ法により成膜し
たものか、フェライト等の軟磁性材料が用いられる。こ
れらの下部シールド1上の下部絶縁層2は磁気抵抗素子
部3と下部シールド1を磁気的に分離する役目を持ち、
SiO2 やAl2 3 などの酸化物を蒸着あるいはスパ
ッタ等の真空蒸着法により成膜される。これらの下部絶
縁層2の上に磁気抵抗素子部3を蒸着あるいはスパッタ
等の真空成膜法により成膜する。
1 and 2 are a configuration diagram and a perspective view, respectively, of a magnetoresistive head as viewed from the magnetic recording medium side. Reference numeral 1 denotes a lower shield having a width at least equal to the magnetic flux detection width of the magnetoresistive element portion 3 and formed of a soft magnetic material such as permalloy or sendust by a vacuum film forming method or a plating method, or a soft magnetic material such as ferrite. Used. The lower insulating layer 2 on the lower shield 1 has a role of magnetically separating the magnetoresistive element portion 3 and the lower shield 1 from each other.
An oxide such as SiO 2 or Al 2 O 3 is formed by vacuum evaporation such as evaporation or sputtering. The magnetoresistive element 3 is formed on the lower insulating layer 2 by a vacuum film forming method such as evaporation or sputtering.

【0015】磁気抵抗素子部3は外部磁界に対し抵抗変
化を示す素子でありFe−Niの合金やCo−Niの合
金が使用され、これらの膜は外部磁界に対し感度を高め
るために数十nm以下の特に薄い膜が用いられる。これ
らの薄膜は真空蒸着法、スパッタ法、イオンビームスパ
ッタ法などの真空成膜法によって成膜される。その後磁
気抵抗素子部3と同等の厚みの中間絶縁層11のSiO
2 やAl2 3 などの酸化物を磁気抵抗素子部3と同じ
高さまで蒸着あるいはスパッタ等の真空成膜法により成
膜する。
The magnetoresistive element section 3 is an element exhibiting a change in resistance to an external magnetic field, and is made of an alloy of Fe-Ni or an alloy of Co-Ni. A particularly thin film of nm or less is used. These thin films are formed by a vacuum deposition method such as a vacuum deposition method, a sputtering method, and an ion beam sputtering method. After that, the SiO 2 of the intermediate insulating layer 11 having the same thickness as the magnetoresistive element portion 3
An oxide such as 2 or Al 2 O 3 is formed to the same height as the magnetoresistive element section 3 by a vacuum film forming method such as evaporation or sputtering.

【0016】磁気抵抗素子部3にはこれに電流を供給し
その電圧変化を検知するための導体層5が磁束検知幅外
の部分で接触している。導体層5には抵抗値の低い良導
体としてAu,Al,Cu,Wあるいはそれらの積層膜
などが用いられ、真空蒸着法、スパッタ法、イオンビー
ムスパッタ法、CVD法などの真空成膜法によって成膜
される。この導体層5は磁気抵抗素子保護絶縁層4と同
じ高さに成膜される。
A conductor layer 5 for supplying a current thereto and detecting a change in the voltage is in contact with the magnetoresistive element portion 3 at a portion outside the magnetic flux detection width. As the conductor layer 5, Au, Al, Cu, W or a laminated film thereof is used as a good conductor having a low resistance value, and is formed by a vacuum film forming method such as a vacuum evaporation method, a sputtering method, an ion beam sputtering method, and a CVD method. Filmed. This conductor layer 5 is formed at the same height as the magnetoresistive element protection insulating layer 4.

【0017】これら磁気抵抗素子保護絶縁層4および導
体層5の上に上部絶縁層6としてSiO2 やAl2 3
などの酸化物を蒸着あるいはスパッタ等の真空成膜法に
より成膜する。その後、これら上部絶縁層6の上に上部
シールド7として少なくとも磁気抵抗素子の磁束検知幅
以上の幅を持ちパーマロイ、センダスト等の軟磁性材料
を蒸着あるいはスパッタ等の真空蒸着法あるいはメッキ
法により成膜する。またこれらの上部シールド7の上面
に記録ギャップ8をSiO2 やAl2 3 などの酸化物
を蒸着あるいはスパッタ等の真空蒸着法により成膜す
る。この記録ギャップ8の上に記録コア9をパーマロ
イ、センダスト等の軟磁性材料を蒸着あるいはスパッタ
等の真空蒸着法あるいはメッキ法により成膜し、所定の
形状に物理的あるいは化学的方法によって食刻される。
On the magnetoresistive element protective insulating layer 4 and the conductor layer 5, SiO 2 or Al 2 O 3
Is formed by vacuum deposition such as evaporation or sputtering. Thereafter, a soft magnetic material such as permalloy, sendust or the like having a width at least as large as the magnetic flux detection width of the magnetoresistive element is formed as an upper shield 7 on the upper insulating layer 6 by a vacuum deposition method such as evaporation or sputtering or a plating method. I do. On the upper surface of the upper shield 7, a recording gap 8 is formed by vacuum deposition such as evaporation or sputtering of an oxide such as SiO 2 or Al 2 O 3 . On the recording gap 8, a recording core 9 is formed by depositing a soft magnetic material such as permalloy or sendust by a vacuum deposition method such as evaporation or sputtering or a plating method, and is etched into a predetermined shape by a physical or chemical method. You.

【0018】この図1において、再生を行う磁気抵抗素
子部3の磁束検知幅はAで示される幅であり、記録を行
う記録コア幅はBで記録はこの記録コア幅Bと上部シー
ルド7間のCで示される磁束検知領域で行われる。この
構造では磁気抵抗素子部3および導体層5の厚みによっ
て発生する段差および磁束検知幅Aにおいて周波数特性
を左右する磁気シールド間距離がDの均一な距離とな
る。さらに記録は記録コア幅Bの磁束検知領域Cで行う
が、図中に示されるように記録ギャップ8は一直線であ
る。
In FIG. 1, the magnetic flux detection width of the magnetoresistive element portion 3 for reproducing is a width indicated by A, the recording core width for performing recording is B, and the recording is performed between the recording core width B and the upper shield 7. Is performed in the magnetic flux detection region indicated by C in FIG. In this structure, the distance between the magnetic shields which affects the frequency characteristics in the step A and the magnetic flux detection width A generated by the thickness of the magnetoresistive element portion 3 and the conductor layer 5 is a uniform distance D. Further, recording is performed in a magnetic flux detection area C having a recording core width B, and the recording gap 8 is straight as shown in the figure.

【0019】これらの素子部の製造方法は図3,図4,
図5に示す通りである。まず図3(a)に示される様に
下部シールド1の上に下部絶縁層2を設け、その上に磁
気抵抗素子部3を形成し、食刻阻止材10により磁気抵
抗素子部3を物理的あるいは化学的に食刻する。この食
刻阻止材10には一般に写真製版技術に使用される感光
性樹脂が用いられる。
FIGS. 3, 4 and 5 show a method of manufacturing these element portions.
As shown in FIG. First, as shown in FIG. 3A, a lower insulating layer 2 is provided on a lower shield 1, a magnetoresistive element 3 is formed thereon, and the magnetoresistive element 3 is physically Alternatively, it is chemically etched. As the etching stopper 10, a photosensitive resin generally used in photolithography is used.

【0020】次に図3(b)に示される様に磁気抵抗素
子部3の食刻阻止材10を残した状態で磁気抵抗素子部
3の膜厚と同等の中間絶縁層11を磁気抵抗素子部3と
同じ高さに成膜する。その後磁気抵抗素子部3上の中間
絶縁層11を食刻阻止材10と共に除去すると、磁気抵
抗素子部3と中間絶縁層11によって段差の無い平面が
得られる。その後図3(c)に示すように磁気抵抗素子
保護絶縁層4を成膜する。次に図3(d)に示すように
磁束検知幅を規制するための食刻阻止材12を形成し、
次に図4(a)に示すように磁気抵抗素子保護絶縁層4
を物理的あるいは化学的に食刻する。次に図4(b)に
示すように磁気抵抗素子保護絶縁層4の食刻阻止材12
を残した状態で磁気抵抗素子保護絶縁層4と同等の厚み
を持つ導体層5を成膜する。次に磁気抵抗素子保護絶縁
層4上の導体層5を食刻阻止材12と共に除去すると磁
気抵抗素子保護絶縁層4と導体層5上面により平坦面が
得られる(図4(c))。その後上部絶縁層6を設け
(図5(a))、上部シールド7を成膜する(図5
(b))。次にその上に記録ギャップ8を成膜し、記録
コア9をその上に形成する(図5(c))。
Next, as shown in FIG. 3B, an intermediate insulating layer 11 having a thickness equal to the thickness of the magnetoresistive element portion 3 is formed while the etching stopper 10 of the magnetoresistive element portion 3 is left. A film is formed at the same height as the part 3. After that, when the intermediate insulating layer 11 on the magnetoresistive element portion 3 is removed together with the etching stopper 10, a plane having no steps is obtained by the magnetoresistive element portion 3 and the intermediate insulating layer 11. Thereafter, as shown in FIG. 3C, a magnetoresistive element protection insulating layer 4 is formed. Next, as shown in FIG. 3D, an etching stopper 12 for regulating the magnetic flux detection width is formed.
Next, as shown in FIG.
Is physically or chemically etched. Next, as shown in FIG. 4B, the etching preventing material 12 of the magnetoresistive element protection insulating layer 4 is formed.
Is formed, a conductor layer 5 having a thickness equivalent to that of the magnetoresistive element protection insulating layer 4 is formed. Next, when the conductor layer 5 on the magnetoresistive element protection insulating layer 4 is removed together with the etching preventing material 12, a flat surface is obtained by the magnetoresistive element protection insulating layer 4 and the upper surface of the conductor layer 5 (FIG. 4C). Thereafter, an upper insulating layer 6 is provided (FIG. 5A), and an upper shield 7 is formed (FIG. 5A).
(B)). Next, a recording gap 8 is formed thereon, and a recording core 9 is formed thereon (FIG. 5C).

【0021】この様な工法をとることにより磁束検知幅
Aにおいてシールド間距離が均一な構造が得られ、さら
にその上方に形成される記録ギャップ8を直線状に形成
出来るようになる。この磁気抵抗型磁気ヘッドにより記
録再生を行い、出力の線記録密度特性を測定した結果を
図6のbに示す。磁気記録媒体には保磁力1600エル
ステッドの3.5インチのハードディスク媒体を用い、
周速12m/s,浮上量0.2μmで測定した結果を示
す。この際のシールド間距離はD=0.8μm,E=
0.9μmである。
By employing such a method, a structure in which the distance between shields is uniform in the magnetic flux detection width A can be obtained, and the recording gap 8 formed above the shield can be formed linearly. FIG. 6B shows the result of recording / reproducing with this magnetoresistive magnetic head and measuring the linear recording density characteristics of the output. As the magnetic recording medium, a 3.5-inch hard disk medium having a coercive force of 1600 Oe is used.
The results of measurement at a peripheral speed of 12 m / s and a flying height of 0.2 μm are shown. In this case, the distance between the shields is D = 0.8 μm, E =
0.9 μm.

【0022】[0022]

【発明の効果】本発明によれば、磁気抵抗素子部の磁束
検知領域が直線であり、その上に形成される記録ギャッ
プ部も直線となる磁気抵抗効果型磁気ヘッドを製造する
ことができ、それにより高記録密度において高い分解能
を有する磁気抵抗効果型磁気ヘッドを実現できる。
According to the present invention, it is possible to manufacture a magnetoresistive effect type magnetic head in which the magnetic flux detecting region of the magnetoresistive element is linear and the recording gap formed thereon is also linear. Thus, a magnetoresistive head having high resolution at a high recording density can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの構成図
FIG. 1 is a configuration diagram of a magnetoresistive head according to an embodiment of the present invention.

【図2】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの斜視図
FIG. 2 is a perspective view of a magnetoresistive head according to an embodiment of the present invention.

【図3】(a)本発明の一実施例における磁気抵抗効果
型磁気ヘッドの製造工程図 (b)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (c)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (d)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図
3A is a view showing a manufacturing process of a magnetoresistive head according to an embodiment of the present invention; FIG. 3B is a diagram showing a manufacturing process of a magnetoresistive head according to an embodiment of the present invention; Manufacturing process diagram of magnetoresistive effect type magnetic head in one embodiment. (D) Manufacturing process diagram of magnetoresistive effect magnetic head in one embodiment of the present invention.

【図4】(a)本発明の一実施例における磁気抵抗効果
型磁気ヘッドの製造工程図 (b)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (c)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図
4A is a view showing a manufacturing process of a magnetoresistive head according to an embodiment of the present invention; FIG. 4B is a diagram showing a manufacturing process of a magnetoresistive head according to an embodiment of the present invention; Manufacturing process diagram of a magneto-resistance effect type magnetic head in one embodiment

【図5】(a)本発明の一実施例における磁気抵抗効果
型磁気ヘッドの製造工程図 (b)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (c)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図
5A is a view showing a manufacturing process of a magnetoresistive magnetic head according to an embodiment of the present invention; FIG. 5B is a diagram showing a manufacturing process of a magnetoresistive magnetic head according to an embodiment of the present invention; Manufacturing process diagram of a magneto-resistance effect type magnetic head in one embodiment

【図6】本発明の一実施例と従来例における磁気抵抗効
果型磁気ヘッドの出力の線記録密度依存性を示す特性図
FIG. 6 is a characteristic diagram showing the linear recording density dependence of the output of a magnetoresistive head according to one embodiment of the present invention and a conventional example.

【図7】従来の磁気抵抗効果型磁気ヘッドの構成図FIG. 7 is a configuration diagram of a conventional magnetoresistance effect type magnetic head.

【図8】従来の磁気抵抗効果型磁気ヘッドの斜視図FIG. 8 is a perspective view of a conventional magnetoresistive head.

【図9】(a)従来の磁気抵抗効果型磁気ヘッドの製造
工程図 (b)従来の磁気抵抗効果型磁気ヘッドの製造工程図 (c)従来の磁気抵抗効果型磁気ヘッドの製造工程図 (d)従来の磁気抵抗効果型磁気ヘッドの製造工程図
9A is a manufacturing process diagram of a conventional magnetoresistive magnetic head, FIG. 9B is a manufacturing process diagram of a conventional magnetoresistive magnetic head, and FIG. 9C is a manufacturing process diagram of a conventional magnetoresistive magnetic head. d) Manufacturing process diagram of conventional magnetoresistive head

【図10】(a)従来の磁気抵抗効果型磁気ヘッドの製
造工程図 (b)従来の磁気抵抗効果型磁気ヘッドの製造工程図 (c)従来の磁気抵抗効果型磁気ヘッドの製造工程図
10A is a manufacturing process diagram of a conventional magnetoresistive magnetic head; FIG. 10B is a manufacturing process diagram of a conventional magnetoresistive magnetic head; FIG. 10C is a manufacturing process diagram of a conventional magnetoresistive magnetic head.

【符号の説明】[Explanation of symbols]

2 下部絶縁層 3 磁気抵抗素子部 4 磁気抵抗素子保護絶縁層 5 導体層 6 上部絶縁層 10,12 食刻阻止材 11 中間絶縁層 Reference Signs List 2 lower insulating layer 3 magnetoresistive element section 4 magnetoresistive element protective insulating layer 5 conductor layer 6 upper insulating layer 10, 12 etching inhibiting material 11 intermediate insulating layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下部シールド上に下部絶縁層を設け、前記
下部絶縁層上に磁気抵抗素子部を形成して、中間絶縁層
を前記磁気抵抗素子部の周縁に前記磁気抵抗素子と同じ
高さに成膜し、前記磁気抵抗素子上に磁気抵抗素子保護
絶縁層を成膜し、前記磁気抵抗素子上で前記磁気抵抗素
子保護絶縁層の周縁に前記磁気抵抗素子保護絶縁層と同
等の厚みを有する導体層を形成し、前記磁気抵抗素子保
護絶縁層と前記導体層との上に上部絶縁層と上部シール
ドを成膜することを特徴とする磁気抵抗効果型磁気ヘッ
ドの製造方法。
A lower insulating layer is provided on a lower shield, a magnetoresistive element portion is formed on the lower insulating layer, and an intermediate insulating layer is formed on a periphery of the magnetoresistive element portion at the same height as the magnetoresistive element. A magnetoresistive element protection insulating layer is formed on the magnetoresistive element, and a thickness equivalent to the magnetoresistive element protective insulating layer is formed on the periphery of the magnetoresistive element protective insulating layer on the magnetoresistive element. A method of manufacturing a magnetoresistive magnetic head, comprising: forming a conductive layer having a magnetic layer; and forming an upper insulating layer and an upper shield on the protective insulating layer and the conductive layer.
【請求項2】 前記上部シールド上に更に磁気ギャップ層
と記録コア層を形成することを特徴とする請求項に記
載の磁気抵抗効果型磁気ヘッドの製造方法。
2. A method for manufacturing a magneto-resistance effect type magnetic head according to claim 1, characterized in that to form the recording core layer and further magnetic gap layer on the upper shield.
JP05085973A 1993-04-13 1993-04-13 Method of manufacturing magnetoresistive head Expired - Lifetime JP3089886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05085973A JP3089886B2 (en) 1993-04-13 1993-04-13 Method of manufacturing magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05085973A JP3089886B2 (en) 1993-04-13 1993-04-13 Method of manufacturing magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH06301931A JPH06301931A (en) 1994-10-28
JP3089886B2 true JP3089886B2 (en) 2000-09-18

Family

ID=13873671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05085973A Expired - Lifetime JP3089886B2 (en) 1993-04-13 1993-04-13 Method of manufacturing magnetoresistive head

Country Status (1)

Country Link
JP (1) JP3089886B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2688173B2 (en) * 1993-05-18 1997-12-08 インターナショナル・ビジネス・マシーンズ・コーポレイション Magnetoresistive read transducer
JP3188232B2 (en) 1997-12-09 2001-07-16 アルプス電気株式会社 Thin film magnetic head and method of manufacturing the same

Also Published As

Publication number Publication date
JPH06301931A (en) 1994-10-28

Similar Documents

Publication Publication Date Title
JP2637911B2 (en) Method of manufacturing magnetic head, magnetic tape data storage device, thin film magnetic sensor assembly on substrate, and method of manufacturing magnetoresistive (MR) head
US6943993B2 (en) Magnetic recording head with a side shield structure for controlling side reading of thin film read sensor
US5719730A (en) Low fringe-field and narrow write-track magneto-resistive (MR) magnetic read-write head
KR0172018B1 (en) Magnetoresistive element
KR100324844B1 (en) Magnetic head and magnetic memory apparatus using the head
US6424508B1 (en) Magnetic tunnel junction magnetoresistive head
JP3089886B2 (en) Method of manufacturing magnetoresistive head
JPH0291807A (en) Composite thin-film magnetic head
JP3678434B2 (en) Manufacturing method of magnetoresistive head
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JPH08235542A (en) Magnetic reluctance effect element
JP2618380B2 (en) Magnetoresistive head and method of manufacturing the same
JP2718242B2 (en) Magnetoresistive head
JP3210139B2 (en) Magnetoresistive magnetic head
JPH06274836A (en) Magneto-resistance effect type magnetic head and its production
JPS5971124A (en) Magneto-resistance effect magnetic head
JPH0793723A (en) Thin-film magneto-resistance effect type magnetic head
JP3082347B2 (en) Magnetoresistive thin film magnetic head
JPH07110921A (en) Magnetoresistance effect type thin film head
JPS5987615A (en) Manufacture of magnetic thin film head
JPH07153022A (en) Thin-film magnetic head
JPH09153652A (en) Magnetoresistive effect element
JPH0375926B2 (en)
JPS6224849B2 (en)
JPH05159247A (en) Magneto-resistance effect head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070721

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

EXPY Cancellation because of completion of term