JPS5927843B2 - Optical angle detection method - Google Patents

Optical angle detection method

Info

Publication number
JPS5927843B2
JPS5927843B2 JP14300877A JP14300877A JPS5927843B2 JP S5927843 B2 JPS5927843 B2 JP S5927843B2 JP 14300877 A JP14300877 A JP 14300877A JP 14300877 A JP14300877 A JP 14300877A JP S5927843 B2 JPS5927843 B2 JP S5927843B2
Authority
JP
Japan
Prior art keywords
image sensor
spot
plane
work surface
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14300877A
Other languages
Japanese (ja)
Other versions
JPS5476179A (en
Inventor
隆 伊藤
多加夫 和田
隆夫 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14300877A priority Critical patent/JPS5927843B2/en
Publication of JPS5476179A publication Critical patent/JPS5476179A/en
Publication of JPS5927843B2 publication Critical patent/JPS5927843B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はアーク溶接作業や塗装作業のように、作業具を
ワーク面に対して一定距離及びーー定姿勢に保つ必要の
ある作業において、作業具とワーク面との距離及び角度
を非接触で検出ブる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to improve the relationship between the work tool and the work surface in work that requires the work tool to be maintained at a fixed distance and in a fixed posture relative to the work surface, such as arc welding work and painting work. The present invention relates to a method for detecting distance and angle without contact.

従来、作業具とワーク而との相対関係を検出する方法と
a接触形式、すなわち検出器をワーク(alに接触させ
て相対関係を検出する形式のものが知られているが、こ
の方法は高速移動を必要とする作業や接触することの許
されな(・作業などには適用できない。
Conventionally, a method of detecting the relative relationship between the work tool and the workpiece and a contact type, that is, a method of detecting the relative relationship by bringing the detector into contact with the workpiece (al), are known. It cannot be applied to work that requires movement or where contact is not permitted.

−ー方、非接触形式としてスポット光を機械的走査機構
によつて走査してワーク面を照射し、その(4をビデイ
コン、フオ1・ダイオードアレイなどのイメージセンサ
で受け、その受像面におけるスポツl・像の2次元的な
位置からワークの座標を検出する方法があるが、これは
機械的な走査機構を持ち、かつ2次元イメ・−ジセンサ
を必要とするために、装置を小型化することができず、
振動に弱(・という欠点があつた。本発明は叙上の事情
に鑑みなされたもので、非接触形式で可動部分を持たず
、イメージセンサの受光面においてーー次ノl’■、的
な処理が可能な角度検出方法を提供することにある。
- On the other hand, as a non-contact type, a spot light is scanned by a mechanical scanning mechanism to illuminate the work surface, and the spot light (4) is received by an image sensor such as a videcon, photo 1, diode array, etc., and the spot light on the image receiving surface is There is a method of detecting the coordinates of the workpiece from the two-dimensional position of the image, but this requires a mechanical scanning mechanism and a two-dimensional image sensor, so it is difficult to miniaturize the device. I can't do it,
The present invention was developed in view of the above-mentioned circumstances; it is a non-contact type, has no moving parts, and has the disadvantage of being weak against vibrations. The object of the present invention is to provide an angle detection method that can be processed.

以下、図面により本発明の内容を詳細゜て説明する。Hereinafter, the contents of the present invention will be explained in detail with reference to the drawings.

第1図は本発明の原理構成図で、イメージセンサ1とス
ポツl−光源2からなる光学的角度検出装置とワーク面
3との関係を示したものである。
FIG. 1 is a diagram illustrating the principle of the present invention, showing the relationship between an optical angle detection device comprising an image sensor 1 and a spot light source 2, and a work surface 3. As shown in FIG.

すなわち、光源2から照射されるワーク面3上のスポッ
ト4、5、6、7はイメージセンサ1の受光面12に像
を結ひ、その面上ク)像の位置を検出することによつて
、イメージセンサ1とワ・−ク面3とのなす角度が得ら
れる。まず、イメージセンサ1、スポット光源2および
スポット光の拡散角の位置関係を第2図を用(・て説明
する。
That is, the spots 4, 5, 6, and 7 on the workpiece surface 3 irradiated from the light source 2 form an image on the light receiving surface 12 of the image sensor 1, and by detecting the position of the image on the surface. , the angle formed by the image sensor 1 and the work surface 3 can be obtained. First, the positional relationship between the image sensor 1, the spot light source 2, and the diffusion angle of the spot light will be explained using FIG.

第2図において、X、Y、Z軸はイメージセンサ1の1
ノンズ中心点8を原点とし、中心光軸10をz軸とする
右手系直交座標軸であり、同図aはY−−Z−・V面投
影図、をはX−Y平1ハi投影図、cはZ−X平面投影
図である。スポット光源2はその点光源9(拡散スポッ
ト光がその点から兄すると仮定した場合)がY軸トにf
、’f、置するよラ1・【配置され、点8、9の距離を
D、光源2の中心軸11とz軸の成す角度をαとする。
In FIG. 2, the X, Y, and Z axes are 1 of the image sensor 1.
It is a right-handed orthogonal coordinate axis with the nonzu center point 8 as the origin and the central optical axis 10 as the z-axis. Figure a is a Y--Z-/V plane projection view, and is an X-Y plane 1-hi projection view. , c are Z-X plane projection views. The spot light source 2 has its point light source 9 (assuming that the diffused spot light is an older brother from that point) on the Y axis
, 'f, Place the point 1. [The distance between points 8 and 9 is D, and the angle between the central axis 11 of the light source 2 and the z-axis is α.

また、スポツト光4,5,6,7の点光源9からの拡散
角は、そのスボツト光がイメージセンサの視野内に入れ
ば、一般には任意であるが、説明及び計算式を簡単にす
るために、本実施例においては第2図A,bの両投影図
に示すように、光源中心軸に対して左右にβ、上下にγ
1,γ2の角度をもつ−C定め、更に、第3図cに示す
ようをて、スボツト光4,5の光軸、あるいは6,7の
光軸がX一Z平面投影図において重なるように、α,β
,γ1,γ2の間に以下に述べる関係を定める。即ち、
スポツト4,5,6,7のXYZ座標系における座標を
それぞれ(Xi,yi,zi)(1−4,5,6,7)
とすると、第2図A,bより次の2式が成立する。(1
),(2)式ょりYiを消去すると次式が得られる。X
.iぐI.:鹸−?・Tan(±γ1)(+F.i=4
,−〒?−7)}(3)XVzi=Tan(α+β)・
Tan(±γ2)(+:i=5,一:i=6)したがつ
て、第2図cにおいてYz平面に対する光軸の傾きは(
3)式より得られ、α,β,γ1,r2の間に下記(4
)式が成立すれば、第2図cに示すように、スボツト光
4,5の尤軸あるいは6,7の光軸がX−Z平面投影図
において一致する。上記(4)式が成立するとき、第2
図cから明らかなように、スポツト4,5,6,7のイ
メージセンサ焦点面12(Z軸上1C原点を持ち、X,
Y軸に平行なV,H軸からなる平面を考え、これをV一
H平而で表わす)A:の像13,14,15,16のV
,H座標を(Hi,vi)(1:4,5,6,7)とし
、イメージセンサのIz゛ンズ係数をFとすると、(3
)式におけるXi/ZiはVi/Fに等しくなるのでV
iは次式で表わされる定数となる。第3図はイメージセ
ンサの焦点而を示したもので、これから明らかなように
、スポット光4,5,6,7は(5)式で表わされるイ
メージセンサ面.ヒの2直線17.181二に像13,
14,15,16を結び、V−H平面内の2直線17,
18上でスポツト像のH座標Hi(1=4,5,6,7
)を・一次元的に計測することで、スボツト光4,5,
6,7の三次元座標を得ることができる。
In addition, the diffusion angle of the spot lights 4, 5, 6, and 7 from the point light source 9 is generally arbitrary as long as the spot lights fall within the field of view of the image sensor, but for the purpose of simplifying the explanation and calculation formula, In this embodiment, as shown in both the projection views of FIG.
-C with an angle of 1, γ2 is determined, and further, as shown in FIG. ,α,β
, γ1, and γ2, the relationship described below is established. That is,
The coordinates of spots 4, 5, 6, and 7 in the XYZ coordinate system are (Xi, yi, zi) (1-4, 5, 6, 7), respectively.
Then, the following two equations hold true from FIG. 2A and b. (1
), (2) and eliminate Yi, the following equation is obtained. X
.. iguI. : Ken-?・Tan (±γ1) (+F.i=4
,−〒? -7)}(3)XVzi=Tan(α+β)・
Tan (±γ2) (+: i=5, 1: i=6) Therefore, in Fig. 2c, the inclination of the optical axis with respect to the Yz plane is (
3), and the following (4
) If the formula holds true, then the likelihood axes of the sub-beam lights 4 and 5 or the optical axes of the spot lights 6 and 7 coincide in the X-Z plane projection, as shown in FIG. 2c. When the above formula (4) holds true, the second
As is clear from FIG.
Consider a plane consisting of V and H axes parallel to the Y axis, and express this as V - H plane) A: images 13, 14, 15, 16 of V
, H coordinates are (Hi, vi) (1:4, 5, 6, 7), and the Iz゛ lens coefficient of the image sensor is F, then (3
) in the equation is equal to Vi/F, so V
i is a constant expressed by the following formula. FIG. 3 shows the focal point of the image sensor, and as is clear from this, the spotlights 4, 5, 6, and 7 are focused on the image sensor surface expressed by equation (5). 2 straight lines 17.181 2 image 13,
14, 15, 16, two straight lines 17 in the V-H plane,
H coordinate Hi (1=4,5,6,7
) by measuring one-dimensionally, Subotto light 4, 5,
6 and 7 three-dimensional coordinates can be obtained.

この王次元座標(Xi,yi,zi)は王角測量の原理
によつて、次のように容易に求められる。882図bに
示すように、スポツト光4,5,6,7とそれらの像1
3,14,15,16はイメージセンサのレンズ中心点
8に関して点対称の位置関係にあるから、次の2式が成
立する。
The king dimension coordinates (Xi, yi, zi) can be easily obtained as follows based on the principle of king angle measurement. As shown in Figure 882b, spot lights 4, 5, 6, 7 and their images 1
Since 3, 14, 15, and 16 are in a point-symmetrical positional relationship with respect to the lens center point 8 of the image sensor, the following two equations hold true.

(1),(7)式より、Yiを消去すると、次式が得ら
れる。
By eliminating Yi from equations (1) and (7), the following equation is obtained.

また、(3),(4),(5),(8)式よりXiは次
式で得られる。
Furthermore, from equations (3), (4), (5), and (8), Xi can be obtained by the following equation.

同様に、 となる。Similarly, becomes.

上の(8),(9),00)式において複号はi:5,
6のとき正、i:4,7のとき負である。以一ヒ、(8
),(9),00)式から得られるスポット光4,5,
6,7の三次元座標のうちの3点の座標から、ワーク面
を平Mjと仮定したときのその平面の方程式が定まり、
X−Y平面に対するワーク面の任意の方向の傾きを得る
ことができる。
In equations (8), (9), 00) above, the sign is i:5,
It is positive when it is 6, and negative when it is i: 4 and 7. Ichihi, (8
), (9), 00) Spot light obtained from equations 4, 5,
From the coordinates of three points among the three-dimensional coordinates 6 and 7, when the work surface is assumed to be a plane Mj, the equation of the plane is determined,
The inclination of the work surface in any direction with respect to the X-Y plane can be obtained.

いま、その平面の方程式をAx+By+Cz+d=Oと
し、(8),(9),(10)式の(Xi,yi,zi
)(1=4,56)を代人することによつて、乎而の方
程式は次めようになる。
Now, let the equation of the plane be Ax + By + Cz + d = O, and (Xi, yi, zi
)(1=4,56), the equation becomes as follows.

したがつて、(自)式より、X−Y平面即ち第1図のイ
メージセンサ1のレンズ面とワーク面3とのX軸方向の
傾きGx,Yllllj向の傾きGゾまそれぞれ次式の
ようになる。
Therefore, from the equation (self), the inclination Gx in the X-axis direction and the inclination Gzo in the Yllllj direction of the X-Y plane, that is, the lens surface of the image sensor 1 and the work surface 3 in FIG. become.

C&t▼ よつて、X−Y平而とワーク面とのX軸、Y軸方向にお
ける傾斜角はである。
C&t▼ Therefore, the inclination angle between the X-Y plane and the work surface in the X-axis and Y-axis directions is.

また、−イメージセンサとワ・−ク面との距離Lは、(
(4)式でx=y;0とおくことによつて、どして得ら
れる。第4図に・↑く発明のアーク溶接への応用例を示
す。
Also, the distance L between the -image sensor and the work surface is (
By setting x=y;0 in equation (4), it can be obtained. Figure 4 shows an example of application of the invention to arc welding.

図において、イメージセンサ1とスポツト光源2は取付
具21によつて溶接装置19に取り付けられ、該溶接装
置19と一体的に運動する。この時、溶接線20−ヒの
溶接点23の近傍の而24が光源2からの一定の拡散角
α,β,rをもつた例えば4個のスボツト光で照射され
、そのスボツト像がイメージセン′f″1の受尤面に結
ばれる。このスボツト像を電気信号に変換し、出力線2
2を介して計算機(図示せず)に与えることにより、計
算機ではまずHiを求め(α,β,rは定数として予め
与えられる)、しかる後、(12)〜(15)及び(1
6)式により面24とイメージセンサ1との傾柵角及び
距離を算出することになる。従つて、この算出した傾斜
角及び距離を予め定めた値と比較すれば、溶接装置19
の姿勢をワーク面3に対して常に一定の距離かつ垂直に
保つように制御することが可能となる。この場合、アー
ク光の影響を除去する為に、スポツト光源2としてはレ
ーザーを用い、イメージセンサ1に光学的なバンドバス
フイルタをかけることが考えられる。まだ、イメージセ
ンサ1としてはITVカメラや、フオトダイオードアレ
イやCCD等のラインイメージセンサなどが適用できる
。更に、前述のα,β,γ1,γ2の角度で定められた
スポツト光の代りに、同様なβの角度によつて定められ
る2本のスリツト光を使用することも可能である。以上
の説明から明らかな如・く、本発明によれば、アーク溶
接作業や塗装作業などにおいて作業具のワーク面に対3
−る相対的な位置を制御するために必要な距離と角度情
報の検出を、光源が可動部分を持たず、かつ、一次元的
なイメージセンサで行うことが可能で、この種の検出装
置が小型、堅固なものになるという効果がもたらされる
In the figure, the image sensor 1 and the spot light source 2 are attached to a welding device 19 by a fixture 21 and move integrally with the welding device 19. At this time, the area 24 near the welding point 23 of the welding line 20-A is irradiated with, for example, four spot lights having fixed diffusion angles α, β, and r from the light source 2, and the spot image is displayed on the image sensor. 'f''1 is connected to the receiving plane. This spot image is converted into an electrical signal and output line 2
2 to a computer (not shown), the computer first calculates Hi (α, β, r are given as constants in advance), and then calculates (12) to (15) and (1
The tilt angle and distance between the surface 24 and the image sensor 1 are calculated using equation 6). Therefore, by comparing the calculated inclination angle and distance with predetermined values, the welding device 19
It is possible to control the posture of the workpiece so that it is always kept at a constant distance and perpendicular to the work surface 3. In this case, in order to eliminate the influence of arc light, it is conceivable to use a laser as the spot light source 2 and apply an optical bandpass filter to the image sensor 1. However, as the image sensor 1, an ITV camera, a line image sensor such as a photodiode array, or a CCD can be used. Furthermore, instead of the spot lights defined by the angles α, β, γ1, and γ2 described above, it is also possible to use two slit lights defined by similar angles β. As is clear from the above description, according to the present invention, the workpiece surface of the work tool can be
- The distance and angle information necessary to control the relative position of the light source can be detected using a one-dimensional image sensor and the light source does not have any moving parts. This has the effect of making it smaller and more solid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理構成図、第2図は第1図の投影図
、第3図は第1図のイメージセンサの焦点面の図、第4
図は本発明の応用列を示t図である。 1・・・イメージセンサ、2・・・スポツト光源、3・
・・ワーク而、4,5,6,7・・・スポツト。
Figure 1 is a diagram of the principle configuration of the present invention, Figure 2 is a projected view of Figure 1, Figure 3 is a view of the focal plane of the image sensor in Figure 1, and Figure 4 is a diagram of the focal plane of the image sensor in Figure 1.
The figure is a diagram showing an applied sequence of the present invention. 1... Image sensor, 2... Spot light source, 3...
... Work, 4, 5, 6, 7... spot.

Claims (1)

【特許請求の範囲】[Claims] 1 ワーク面上に3個以上複数個のスポット光を一定拡
散角をもつて照射して、その像をイメージセンサの焦点
面に結び、上記ワーク面とイメージセンサとの相対位置
関係の変化に対する上記イメージセンサの焦点面におけ
るスポット像の位置変化を検出することによつて、上記
ワーク面のイメージセンサ光軸に対する傾斜角を算出す
ることを特徴とする光学的角度検出方法。
1. A plurality of three or more spot lights are irradiated on the work surface with a constant diffusion angle, and their images are connected to the focal plane of the image sensor, and the above-mentioned method is applied to changes in the relative positional relationship between the work surface and the image sensor. An optical angle detection method, comprising: calculating an inclination angle of the work surface with respect to an optical axis of the image sensor by detecting a change in position of a spot image on a focal plane of an image sensor.
JP14300877A 1977-11-29 1977-11-29 Optical angle detection method Expired JPS5927843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14300877A JPS5927843B2 (en) 1977-11-29 1977-11-29 Optical angle detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14300877A JPS5927843B2 (en) 1977-11-29 1977-11-29 Optical angle detection method

Publications (2)

Publication Number Publication Date
JPS5476179A JPS5476179A (en) 1979-06-18
JPS5927843B2 true JPS5927843B2 (en) 1984-07-09

Family

ID=15328796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14300877A Expired JPS5927843B2 (en) 1977-11-29 1977-11-29 Optical angle detection method

Country Status (1)

Country Link
JP (1) JPS5927843B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657012A (en) * 1979-10-16 1981-05-19 Canon Inc Distance detecting optical system
JPS57189005A (en) * 1981-05-18 1982-11-20 Mitsubishi Electric Corp Detector for angle of inclination of plane
JPS59136606A (en) * 1983-01-26 1984-08-06 Kawasaki Heavy Ind Ltd Detector for weld line
JPS59203906A (en) * 1983-05-04 1984-11-19 Mitsubishi Electric Corp Detector for inclination of plane
JPS60113528U (en) * 1984-01-05 1985-08-01 川崎製鉄株式会社 Planar vibration component measuring device
US4879664A (en) * 1985-05-23 1989-11-07 Kabushiki Kaisha Toshiba Three-dimensional position sensor and three-dimensional position setting system
WO1990007690A1 (en) * 1985-05-23 1990-07-12 Toshimitsu Suyama Sensor and system for setting three-dimensional position
JP2641829B2 (en) * 1992-11-10 1997-08-20 株式会社小松製作所 Bending angle detection device in bending machine

Also Published As

Publication number Publication date
JPS5476179A (en) 1979-06-18

Similar Documents

Publication Publication Date Title
US10052734B2 (en) Laser projector with flash alignment
US20040201856A1 (en) Laser digitizer system for dental applications
US5363185A (en) Method and apparatus for identifying three-dimensional coordinates and orientation to a robot
JP2669223B2 (en) Optical sensor device for rendezvous docking
JP2006514739A5 (en)
US4760269A (en) Method and apparatus for measuring distance to an object
JPS5927843B2 (en) Optical angle detection method
JP2956657B2 (en) Distance measuring device
JPS6332306A (en) Non-contact three-dimensional automatic dimension measuring method
JPH0758172B2 (en) Shape measuring method and apparatus
JPS60117102A (en) Welding-seam profile-detecting apparatus
JPS5847209A (en) Device for measuring surface configuration
JP2003148926A (en) Portable three-dimensional shape measuring apparatus
JPS63225108A (en) Distance and inclination measuring instrument
EP1202074A2 (en) Distance measuring apparatus and distance measuring method
JPS6210361B2 (en)
JPH0334563B2 (en)
JPS6129709A (en) Measuring method of shape
JPS60154145A (en) Visual inspecting device
JP2504944B2 (en) Three-dimensional information processing method
JPH0324603B2 (en)
JPS6171778A (en) Solid state image pickup element containing light emitting function
JPH06347227A (en) Apparatus and method for measuring surface shape
JPH0450521B2 (en)
JPS6180008A (en) Shape measuring apparatus