JPS5927086B2 - Temperature coefficient adjustment method for magnetic induction in rare earth-cobalt permanent magnets - Google Patents

Temperature coefficient adjustment method for magnetic induction in rare earth-cobalt permanent magnets

Info

Publication number
JPS5927086B2
JPS5927086B2 JP49122229A JP12222974A JPS5927086B2 JP S5927086 B2 JPS5927086 B2 JP S5927086B2 JP 49122229 A JP49122229 A JP 49122229A JP 12222974 A JP12222974 A JP 12222974A JP S5927086 B2 JPS5927086 B2 JP S5927086B2
Authority
JP
Japan
Prior art keywords
temperature coefficient
alloy powder
magnetic induction
magnet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49122229A
Other languages
Japanese (ja)
Other versions
JPS5152319A (en
Inventor
雅行 多田
卓 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP49122229A priority Critical patent/JPS5927086B2/en
Publication of JPS5152319A publication Critical patent/JPS5152319A/en
Publication of JPS5927086B2 publication Critical patent/JPS5927086B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、希土類コバルト永久磁石に関し、特にその磁
気誘導の温度係数を調整する方法を提供することを目的
とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to rare earth cobalt permanent magnets, and in particular, it is an object of the present invention to provide a method for adjusting the temperature coefficient of magnetic induction thereof.

代表的な永久磁石の磁気誘導Bdの温度計数は、Baフ
ェライト系で約−0.18%/℃、アルニコ系で約−0
.025%/℃、SmCo5系で約−O、05cf6/
℃である。
The temperature coefficient of magnetic induction Bd of typical permanent magnets is approximately -0.18%/℃ for Ba ferrite type and approximately -0 for alnico type.
.. 025%/℃, about -O in SmCo5 system, 05cf6/
It is ℃.

SmCo5系磁石は アルニコ系磁石に比べ優れた磁気
特性を有しているにもかかわらず、前述のとおり温度係
数が劣るため電気計測器方面には適用できなかつた。
Although SmCo5-based magnets have superior magnetic properties compared to Alnico-based magnets, they cannot be applied to electrical measuring instruments because of their inferior temperature coefficients as described above.

上記代表的な永久磁石の磁気誘導Bdの温度係数は負の
温度係数を呈するものであるが、正の所望の値の温度係
数を呈する永久磁石を製造することができれば、上記の
ような負の温度係数を有する永久磁石と組み合わせるこ
とにより優秀な磁気回路を実現できる。
The temperature coefficient of the magnetic induction Bd of the above-mentioned representative permanent magnet is a negative temperature coefficient, but if it is possible to manufacture a permanent magnet that exhibits a temperature coefficient of a desired positive value, it is possible to produce a negative temperature coefficient as described above. By combining it with a permanent magnet that has a temperature coefficient, an excellent magnetic circuit can be realized.

本発明はSmCo5系磁石の上記欠点を解消するととも
に上記要求を満足し得る永久磁石を提供しようとするも
のである。
The present invention aims to eliminate the above-mentioned drawbacks of SmCo5-based magnets and to provide a permanent magnet that can satisfy the above-mentioned requirements.

本発明はSmCo5合金とGdCo5合金あるいはEr
Co5合金と混合して得られた永久磁石の温度係数が該
GdCo5合金あるいはErCo5合金の混合比(ただ
し重量比である。
The present invention is based on SmCo5 alloy, GdCo5 alloy or Er
The temperature coefficient of the permanent magnet obtained by mixing with Co5 alloy is the mixing ratio (weight ratio) of the GdCo5 alloy or ErCo5 alloy.

以下特にことわりのない限り、同様とする。)により変
化することの発見に基づくもので、これらの混合比と温
度係数の関係を明確にせしめることにより所望とする温
度係数を呈する永久磁石を実現できるようにしたもので
ある。以下本発明を図面により説明する。
The same applies hereinafter unless otherwise specified. ), and by clarifying the relationship between these mixing ratios and temperature coefficients, it has become possible to realize permanent magnets exhibiting desired temperature coefficients. The present invention will be explained below with reference to the drawings.

第1図aは粒径3μ前後の34.1wt%のSmを含む
SmCo5合金粉末を5to「dの圧力で磁場中成型し
た磁石の減磁曲線の温度変化、bは粒径3μ前後の33
.8wt%のGdを含むGdCo5合金粉末を5ton
//cTlの圧力で磁場中成型した磁石の減磁曲線の温
度変化、cは粒径3.5μ前後の35.5wt%のEr
を含むErCo5合金粉末を5ton/cllの圧力で
磁場中成型した磁石の減磁曲線の温度変化を示すもので
、いずれも大気中での測定である。
Figure 1a shows the temperature change of the demagnetization curve of a magnet made of SmCo5 alloy powder containing 34.1wt% Sm with a particle size of around 3μ and molded in a magnetic field at a pressure of 5 to d.
.. 5 tons of GdCo5 alloy powder containing 8 wt% Gd
//c Temperature change in the demagnetization curve of a magnet molded in a magnetic field at a pressure of Tl, c is 35.5 wt% Er with a particle size of around 3.5 μ
It shows the temperature change of the demagnetization curve of a magnet made by molding ErCo5 alloy powder containing ErCo5 in a magnetic field at a pressure of 5 tons/cll, and all measurements were taken in the atmosphere.

SmC05、GdC05およびErCo5を種々混合し
て、パーミアンス係数が約1.0の磁石を作成した。こ
のときの磁石の磁気誘導の温度係数Tkと、混合したG
dCO5およびErCO5の全重量の磁石全重量に対す
る混合比との関係は、第2図のとおりであつた。第2図
において混合比と温度係数に幅があるのは磁気誘導Bd
の測定に用いたフラックスメーターの精度上、生ずる温
度係数Tkのバラツキの範囲である。第2図に示される
ように、合金粉末の混合体の磁気誘導の温度係数は、混
合比の増大とともに負から正に変化するが、温度係数零
までは直線的に、温度係数が正の範囲では曲線的に変化
している。第3図aはSmCO5合金粉末とGdCO5
合金粉末とを混合してなる磁石の室温における減磁曲線
を、磁石全量に対するGdCO5合金粉末の種々の混合
比について示したものであり、第3図bはSmCO5合
金粉末とErCO5合金粉末とを混合してなる磁石につ
いての減磁曲線を第3図aと同様に示したものである。
A magnet with a permeance coefficient of about 1.0 was prepared by variously mixing SmC05, GdC05 and ErCo5. At this time, the temperature coefficient Tk of magnetic induction of the magnet and the mixed G
The relationship between the total weight of dCO5 and ErCO5 and the mixing ratio with respect to the total weight of the magnet was as shown in FIG. In Figure 2, there is a wide range in the mixing ratio and temperature coefficient due to magnetic induction Bd.
This is the range of variation in the temperature coefficient Tk that occurs due to the accuracy of the flux meter used for measurement. As shown in Figure 2, the temperature coefficient of magnetic induction of a mixture of alloy powders changes from negative to positive as the mixing ratio increases, but linearly until the temperature coefficient reaches zero, and the temperature coefficient changes from positive to positive. The range changes in a curved manner. Figure 3a shows SmCO5 alloy powder and GdCO5
The demagnetization curves at room temperature of magnets made by mixing SmCO5 alloy powder and ErCO5 alloy powder are shown for various mixing ratios of GdCO5 alloy powder to the total amount of the magnet. The demagnetization curve for the magnet made by the above method is shown in the same way as in FIG. 3a.

第3図より、すべての動作点の磁石についても第2図に
示された関係があることが推察される。
From FIG. 3, it can be inferred that the relationship shown in FIG. 2 holds for the magnets at all operating points.

以下本発明の実施例を説明する。実施例 1 34.1wt%のSmを含むSmCO5合金、33.8
wt%のGdを含むGdCO5合金および35.5wt
%のErを含むErCO5合金を3.0〜4.0μに粉
砕し、第2図において温度係数Tk〔×10−2%/℃
〕がO近傍になる混合比0.5を満足するよう、SmC
O5合金粉末とを1:1の割合(ただし重量割合である
Examples of the present invention will be described below. Example 1 SmCO5 alloy containing 34.1 wt% Sm, 33.8
GdCO5 alloy containing wt% Gd and 35.5wt
% of Er is ground to 3.0 to 4.0μ, and the temperature coefficient Tk [×10-2%/℃ is shown in Fig. 2].
) to satisfy the mixing ratio of 0.5 near O.
and O5 alloy powder at a ratio of 1:1 (however, this is a weight ratio).

以下特にことわりのない限り同様とする。)で混合し、
またSmCO5合金粉末とErCO5合金粉末とErC
O5合金粉末とを1:1の割合で混合し、それぞれの混
合体を磁場配向して圧縮成型し、得られた圧粉体に有機
媒体を含浸させ、有機媒体結合型磁石とした。得られた
各磁石を寸法比L/D′−0.4(パーミアンス係数B
/H′−.1.0)に加工して、温度係数を測定した。
室温から80℃までの温度係数は第一表に示すとおりで
あつた。第一表に示された温度係数は、第2図における
当該混合比の場合の温度係数の幅内にあることが確認さ
れる。実施例 2 実施例1にて用いた合金粉末を、第2図において温度係
数が正になるような混合比を満足するように、SmCO
5合金粉末とGdCO5合金粉末とを3:7の割合(混
合比0.7)に混合し、一方SmCO5合金粉末とを2
:8の割合(混合比0.8)になるよう混合し、両混合
体を、それぞれ実施例1と同様な工程を経て有機媒体結
合型磁石とした。
The same applies hereinafter unless otherwise specified. ) and mix with
In addition, SmCO5 alloy powder, ErCO5 alloy powder and ErC
O5 alloy powder was mixed at a ratio of 1:1, each mixture was oriented in a magnetic field and compression molded, and the resulting green compact was impregnated with an organic medium to form an organic medium bonded magnet. Each of the obtained magnets has a dimension ratio L/D'-0.4 (permeance coefficient B
/H'-. 1.0) and the temperature coefficient was measured.
The temperature coefficients from room temperature to 80°C were as shown in Table 1. It is confirmed that the temperature coefficient shown in Table 1 is within the range of the temperature coefficient in the case of the mixing ratio in FIG. 2. Example 2 The alloy powder used in Example 1 was mixed with SmCO so as to satisfy the mixing ratio such that the temperature coefficient was positive in Fig. 2.
5 alloy powder and GdCO5 alloy powder were mixed at a ratio of 3:7 (mixing ratio 0.7), while SmCO5 alloy powder and GdCO5 alloy powder were mixed at a ratio of 3:7 (mixing ratio 0.7).
:8 (mixing ratio: 0.8), and both mixtures were made into organic medium bonded magnets through the same steps as in Example 1.

得られた各磁石を寸法比L/D′−.0.4に加工して
、゜温度係数を測定した。室温から80℃までの温度係
数は第二表に示すとおりであつた。第二表の温度係数は
実施例1同様、第2図に示される当該混合比における温
度係数の幅内にあることが確認された。実施例 3実施
例1にて用いた合金粉末を用い、SmCO5合金粉末8
0wt%、GdCO5合金粉末15wt%、ErCO5
合金粉末5wt%の比で混合し、(混合比0.2)、実
施例1と同様な製造法により有機媒体結合磁石とした。
Each of the obtained magnets has a dimensional ratio L/D'-. It was processed to a temperature of 0.4 and the temperature coefficient was measured. The temperature coefficients from room temperature to 80°C were as shown in Table 2. It was confirmed that the temperature coefficient in Table 2 was within the range of the temperature coefficient at the mixing ratio shown in FIG. 2, as in Example 1. Example 3 Using the alloy powder used in Example 1, SmCO5 alloy powder 8
0wt%, GdCO5 alloy powder 15wt%, ErCO5
The alloy powders were mixed at a ratio of 5 wt % (mixing ratio 0.2), and an organic medium bonded magnet was produced by the same manufacturing method as in Example 1.

得られた磁石を寸法比L/D′−0.4に加工して温度
係数を測定した。室温から80℃までの温度係数は−2
.8×10−2%/℃であり、第2図に示される温度係
数の当該混合比におけるときの幅内にあることが確認さ
れた。実施例 4 37.0wt%SmCO5合金及び338wt%GdC
O5合金を3.0〜4.0μに粉砕し、SmCO5合金
粉末とGdCO5合金粉末とが4:1の割合(混合比0
.2)になるように混合し、磁場配向して圧縮成型し、
得られた圧粉体を1100〜1150℃で1時間焼結し
て焼結体とした。
The obtained magnet was processed to have a dimension ratio of L/D'-0.4, and its temperature coefficient was measured. The temperature coefficient from room temperature to 80℃ is -2
.. It was confirmed that the temperature coefficient was 8×10 −2%/° C., which was within the range of the temperature coefficient shown in FIG. 2 at the mixing ratio. Example 4 37.0 wt% SmCO5 alloy and 338 wt% GdC
The O5 alloy was ground to 3.0 to 4.0μ, and the SmCO5 alloy powder and GdCO5 alloy powder were mixed at a ratio of 4:1 (mixing ratio 0).
.. 2), mixed in a magnetic field orientation and compression molded,
The obtained green compact was sintered at 1100 to 1150°C for 1 hour to obtain a sintered body.

その後焼結体を800〜900℃で1時間熱処理して焼
結型磁石とした。得られた磁石を寸法比L/D!−0.
4に加工して温度係数を測定した。室温から150℃ま
での温度係数は−3.1×10−201)/℃であり、
第2図における当該混合比のときの温度係数の幅内にあ
ることが確認された。以上の実施例よりSmcO5合金
粉末に対する混合合金粉末であるGdCO5合金粉末あ
るいはErCO5合金粉末が単独であつても複合であつ
ても第2図に示された曲線の範囲内であり、最終的に温
度係数を変える要因は混合合金粉末の混合比に直接関係
しており、更に磁石の形体としても結合型でも焼結型で
も同様な関係を示していることが理解される。
Thereafter, the sintered body was heat-treated at 800 to 900°C for 1 hour to obtain a sintered magnet. The dimension ratio of the obtained magnet is L/D! -0.
4 and the temperature coefficient was measured. The temperature coefficient from room temperature to 150°C is -3.1 x 10-201)/°C,
It was confirmed that the temperature coefficient was within the range of the temperature coefficient at the mixing ratio shown in FIG. From the above examples, whether GdCO5 alloy powder or ErCO5 alloy powder, which is a mixed alloy powder with respect to SmcO5 alloy powder, is used alone or in combination, it is within the range of the curve shown in Figure 2, and the final temperature It is understood that the factors that change the coefficient are directly related to the mixing ratio of the mixed alloy powder, and that the same relationship is shown whether the magnet shape is a bonded type or a sintered type.

従つて第2図に示された磁石全量に対する混合合金粉末
の混合比と温度係数の関係を用いることにより所望とす
る温度係数を呈する希土類コバルト永久磁石を製造する
ことができる。
Therefore, by using the relationship between the mixing ratio of the mixed alloy powder to the total amount of the magnet and the temperature coefficient shown in FIG. 2, it is possible to manufacture a rare earth cobalt permanent magnet exhibiting a desired temperature coefficient.

第2図に示された曲線を数式に表わせば以下のとおりと
なる。
If the curve shown in FIG. 2 is expressed in a mathematical formula, it will be as follows.

すなわち、磁石全量に対する混合合金粉末の混合比をx
とし、所望とする温度係数をTkとなる。
In other words, the mixing ratio of the mixed alloy powder to the total amount of the magnet is x
The desired temperature coefficient is Tk.

ただし、GdCO5合金粉末あるいはErCO5合金粉
末を多量に含有すると第3図に示されるように磁気特性
が悪くなるため最大限温度係数が改善される範囲内であ
ることが好ましい。
However, if a large amount of GdCO5 alloy powder or ErCO5 alloy powder is contained, the magnetic properties deteriorate as shown in FIG. 3, so it is preferable that the temperature coefficient be within a range where the temperature coefficient can be improved to the maximum extent possible.

このことより混合比は0.77未満ということが実用上
の目安となる。更に積極的には賦合比0.5以下が望ま
れる。なお、上記した例では、SmCO5合金粉末にG
dCO5あるいはErcO5合金粉末を添加したが、予
め、Gd、あるいはErを含むSm−Gd−COあるい
はSm−Er−CO三元系合金粉末を作り、これにSm
−CO二元系合金粉末を添加して、全体に含まれるGd
やErの割合を調整して、所望の温度係数を与えること
もできる。以下にこの場合の実施例を説明する。
From this, it is a practical guideline that the mixing ratio is less than 0.77. More actively, it is desired that the mixing ratio be 0.5 or less. In addition, in the above example, G is added to the SmCO5 alloy powder.
Although dCO5 or ErcO5 alloy powder was added, Sm-Gd-CO or Sm-Er-CO ternary alloy powder containing Gd or Er was prepared in advance, and then Sm
-Gd contained in the whole by adding CO binary alloy powder
It is also possible to give a desired temperature coefficient by adjusting the proportions of and Er. An example in this case will be described below.

まず、(GdO.27smO.73)CO4.67で表
わされる合金インゴツトを用意し、これから次の試料を
得て第三表に示す特性の焼結磁石を得た。
First, an alloy ingot represented by (GdO.27smO.73)CO4.67 was prepared, and the following samples were obtained from it to obtain sintered magnets having the characteristics shown in Table 3.

なお焼結時間は1時間で、800〜90(以上述べた如
く、本発明による希土類コバルト系永久磁石は、従来主
にアルニコ系磁石で占められていた電気計測器の分野へ
の応用分野を拡張することにより、より小型で優れた計
測器の実現を可能ならしめるばかりか、温度係数が正と
なる磁石にいたつては、既存の磁石と組み合わせること
により従来にない優れた磁気回路設計を可能ならしめる
ものであり、本発明が工業上果す役割は非常に大きい。
The sintering time is 1 hour, and the magnetization is 800 to 90%. This not only makes it possible to create smaller and better measuring instruments, but also allows magnets with a positive temperature coefficient to be combined with existing magnets to create an unprecedented magnetic circuit design. Therefore, the role played by the present invention in industry is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aはSmCO5合金粉末の減磁曲線の温度変化を
示す図、bはGdCO5合金粉末の減磁曲線の温度変化
を示す図、cはErCO5合金粉末の減磁曲線の変化を
示す図。
FIG. 1a is a diagram showing temperature changes in the demagnetization curve of SmCO5 alloy powder, b is a diagram showing temperature changes in the demagnetization curve of GdCO5 alloy powder, and FIG. 1c is a diagram showing changes in the demagnetization curve of ErCO5 alloy powder.

Claims (1)

【特許請求の範囲】 1 SmCo_5にGdCo_5およびErCo_5の
少なくとも一種を磁石全重量を1としたとき下記式(1
)、(2)で与えられる重量割合x(但し、X<0.7
7)で混合することによつて磁気誘導の温度係数を所望
値T_k(×10^−^2%/℃)に調整することを特
徴とする希土類−コバルト永久磁石の磁気誘導の温度係
数調整法T_k≦0の場合 0.1×T_k+0.43≦x≦0.1×T_k+0.
50…(1)T_k>0の場合022√(T_k+2.
34)+0.083≦x≦0.22√(T_k+2.1
4)+0.172……………………………(2)
[Scope of Claims] 1 SmCo_5 and at least one of GdCo_5 and ErCo_5 are expressed by the following formula (1) when the total weight of the magnet is 1.
), weight ratio x given by (2) (however, X<0.7
7) A method for adjusting the temperature coefficient of magnetic induction of a rare earth-cobalt permanent magnet, which is characterized by adjusting the temperature coefficient of magnetic induction to a desired value T_k (×10^-^2%/°C) by mixing. If T_k≦0, 0.1×T_k+0.43≦x≦0.1×T_k+0.
50...(1) If T_k>0, 022√(T_k+2.
34) +0.083≦x≦0.22√(T_k+2.1
4) +0.172………………………………(2)
JP49122229A 1974-10-23 1974-10-23 Temperature coefficient adjustment method for magnetic induction in rare earth-cobalt permanent magnets Expired JPS5927086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49122229A JPS5927086B2 (en) 1974-10-23 1974-10-23 Temperature coefficient adjustment method for magnetic induction in rare earth-cobalt permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49122229A JPS5927086B2 (en) 1974-10-23 1974-10-23 Temperature coefficient adjustment method for magnetic induction in rare earth-cobalt permanent magnets

Publications (2)

Publication Number Publication Date
JPS5152319A JPS5152319A (en) 1976-05-08
JPS5927086B2 true JPS5927086B2 (en) 1984-07-03

Family

ID=14830752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49122229A Expired JPS5927086B2 (en) 1974-10-23 1974-10-23 Temperature coefficient adjustment method for magnetic induction in rare earth-cobalt permanent magnets

Country Status (1)

Country Link
JP (1) JPS5927086B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739102A (en) * 1980-08-19 1982-03-04 Takagi Kogyo Kk Production of permanent magnet
JPS59226135A (en) * 1983-06-06 1984-12-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of permanent magnet alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101596A (en) * 1972-04-10 1973-12-20
JPS4928897A (en) * 1972-07-12 1974-03-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101596A (en) * 1972-04-10 1973-12-20
JPS4928897A (en) * 1972-07-12 1974-03-14

Also Published As

Publication number Publication date
JPS5152319A (en) 1976-05-08

Similar Documents

Publication Publication Date Title
US3565806A (en) Manganese zinc ferrite core with high initial permeability
Cochardt Recent ferrite magnet developments
US3901741A (en) Permanent magnets of cobalt, samarium, gadolinium alloy
JPS6110209A (en) Permanent magnet
JPH03236202A (en) Sintered permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPS63301505A (en) R-b-fe sintered magnet
JPS5927086B2 (en) Temperature coefficient adjustment method for magnetic induction in rare earth-cobalt permanent magnets
JPS60243247A (en) Permanent magnet alloy
JP3296507B2 (en) Rare earth permanent magnet
JPH0732090B2 (en) permanent magnet
JPS61147503A (en) Rare earth magnet
JP2003217918A (en) Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
US3919002A (en) Sintered cobalt-rare earth intermetallic product
US3919003A (en) Sintered cobalt-rare earth intermetallic product
JP2005045167A (en) Anisotropic ferrite magnet
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
Charles et al. A 10, 000 Oe B‐Coercive Force Magnet
JPH0246657B2 (en)
JPH0246658B2 (en)
JPH02145739A (en) Permanent magnet material and permanent magnet
JP2000114012A (en) Magnetic material and manufacture thereof
JPH0362775B2 (en)
JP4696191B2 (en) Permanent magnet with nanocomposite structure
Fujii et al. Development of Non-Shrinking Ni-Zn-Cu Soft Ferrites