JPS5925229A - Method for heating semiconductor substrate - Google Patents

Method for heating semiconductor substrate

Info

Publication number
JPS5925229A
JPS5925229A JP13415982A JP13415982A JPS5925229A JP S5925229 A JPS5925229 A JP S5925229A JP 13415982 A JP13415982 A JP 13415982A JP 13415982 A JP13415982 A JP 13415982A JP S5925229 A JPS5925229 A JP S5925229A
Authority
JP
Japan
Prior art keywords
wafer
heat treatment
heating
vacuum
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13415982A
Other languages
Japanese (ja)
Other versions
JPH0376021B2 (en
Inventor
Minoru Inoue
実 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13415982A priority Critical patent/JPS5925229A/en
Publication of JPS5925229A publication Critical patent/JPS5925229A/en
Publication of JPH0376021B2 publication Critical patent/JPH0376021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

PURPOSE:To contrive formation of large diameter wafers as well as to automate the manufacture of wafers by a method wherein a wafer is placed in a metal processing container which has been brought to the degree of vacuum of 10<-2>Torr or less, and the above is heated up by microwaves through a microwave transmitting window. CONSTITUTION:A wafer 4 to be treated is placed in a load-lock chamber 2, and the chamber is evacuated to a vacuum state using a vacuum system V2. A gate valve G2 is opened, and the wafer 4 is carried into a heat treatment chamber 1 by a belt conveyor 5. After the valve G2 has been closed and the heat treatment chamber has been evacuated to the degree of 10<-2>Torr or below, microwaves are applied from a microwaveguide 7 through a transmitting window 6. As a result, the waver 4 itself is heated up and annealed by absorbing microwaves.

Description

【発明の詳細な説明】 (a)  発明の技tLj分町・ 本発明は半導体装置を作成する際、ウェハープロセスに
おいて、くりかえし行われる半導体装(板(ウェハー)
の加熱方法に関する。
[Detailed Description of the Invention] (a) Techniques of the Invention The present invention is directed to a semiconductor device (board (wafer)) that is repeatedly performed in a wafer process when manufacturing a semiconductor device.
The present invention relates to a heating method.

(i))従来技1q:r ト間+bn 、c17゜半導
体装置はヨ1′導体基板例えし1“シリコンウェハーの
面上に8数の素子を形成するいわゆるウェハープロセス
(クー1理工−タノ1理工稈)を経て作成されるが、こ
のウェハープロセスは高温加熱が繰り返し行われる処理
上程と言って差17支えない。即ち、ンIJ HIンウ
エハーの面上に二酸化シリコン(S−io2)膜を生成
する酸化処亜、不純物イオンをLじ入した後の活VL化
熱処理あるいは不純物拡11(処す11などd約100
0℃の高温に)AI熱され、寸だ表面に専屯膜や絶縁膜
をプラズマを利用した(化学外11イして成長する)薄
膜形成技術ではウェハー(半導体!1(板をウェハーと
略称する)面を約1!i、100℃に力1熱する必要が
あυ、更にパターニング時のレジヌト膜塗布にも100
〜200℃にシリコンウェハーが加熱されて、ベーキン
グが行われる。
(i)) Conventional technology 1q: r +bn, c17° Semiconductor devices are manufactured using the so-called wafer process (Ku 1 Science and Technology - Tano 1) in which eight elements are formed on the surface of a silicon wafer. This wafer process is a process in which high-temperature heating is repeatedly performed17.In other words, a silicon dioxide (S-IO2) film is created on the surface of the wafer. oxidation treatment, activated VL heat treatment after introducing impurity ions, or impurity expansion 11 (treatment 11, etc.)
Wafer (semiconductor! ) It is necessary to heat the surface to about 100°C for about 100°C, and also to apply the resin film during patterning.
Baking is performed by heating the silicon wafer to ~200°C.

従来、これらの加熱は多くの場合電気11(抗体に°ル
カを加えて発熱させる抵抗加熱方法が採られており、稀
に低温度加熱の際に赤外ヲンブが用いられているのみで
、ウェハーはくりかえし7F気1戸中あるいはヒーター
上に載置されて、加熱される。
Conventionally, in most cases, these heating methods have been conducted using resistance heating methods in which electricity is added to the antibody to generate heat, and on rare occasions infrared heating has only been used for low temperature heating; It is repeatedly heated in a 7F air room or placed on a heater.

しかしながら、半導体の発展に伴う爪産化のため、ウェ
ハーも直径5インチと大I」径化され、またウェハープ
ロセスも自動的に処理される処理装置が汎用されてきて
おり、大口径・ウェハーを処理する自動処理装置は駆動
系を含めて益々大型化して生産コストが高くなるばかり
でなく、その自動115.大型化にも充分子+応できる
、い状況である。
However, due to the development of semiconductors and the production of nails, the diameter of wafers has increased to 5 inches, and processing equipment that automatically processes wafers has become widely used, and large-diameter wafers are now being processed. Not only is the automatic processing equipment including the drive system becoming larger and the production cost is increasing, but the automatic 115. We are in a good position to be able to cope with the increase in size.

(C1尾明のト1的 木つd明は」−記し、たウェハーの犬(−1径化および
ウエハーソ゛!]セメの自動化に適切に対処するウェハ
ーの加Hl)j、(方法をIJl(唱するものである。
(C1 Oaki's To1 tree d light is written down and the wafer dog (-1 diameter and wafer so!] Wafer addition Hl) j, (method IJl (-1 diameter and wafer so!) It is something to sing.

+(]j  471j明のil”i成 その目的υ=11、ウェハーを1O−2Tc庄r以下の
真空1iとしだ金1+’& N処+1111容器に収納
し、マイクロ波透過窓を介してマイクロ波によりウェハ
ーがハ1熱さiLる加熱方法に」、つて÷成することが
できる。
+(]j 471j 471j Light generation purpose υ = 11, the wafer was placed in a vacuum 1i below 1O-2Tc Sho, and placed in a 1+'&N +1111 container, and exposed to the microwave through a microwave transmission window. It is possible to create a heating method in which the wafer is heated to a certain temperature by the waves.

(O)  発明の失h(1Σ例 Iり丁、−実/7(lJ、例に」、つて本発明をr+゛
(: ljl[に説明する。:r< 1図(r↓ウェハ
ーに不純物イオンを注入した後、その不純物イ刈ンを〆
所外化する自!(iIl熱処3J]j装置を示しており
、熱処理室lの両側にロー1−゛ロック室2,3が設け
である。被処理つ:iニハー4・がロー]・′I−Iツ
ク室2に納められて真空系v2によってj’(空V、、
IJト気され、既に真空系V1にj、って、1【空1ブ
ト気された+)”、il処Jllj室1どの境界のゲー
■パルプ02イC開いて、熱処理室1にウェハー4.イ
〔ベル1−5によって送り込む。べ/L’+5は金11
す<if!!’が9!斗しい(* y’c 他VCニー
\・ベアリングを用いて送り込んでもよい)。次いでゲ
ートパルプG2を閉じ/こ後、熱処理究1が1O−2T
orr以下の品真空になると、透過窓6全通してマイク
ロ波iff、波管7よりマイクロ波(例えば波長245
(川Z)を印加する。ぞうすると誘電体である・ウェハ
ー4・はマイクロ波を吸収してウェハー自身が加熱され
、アニール(熱処理)される。マイクロ波の透過窓6は
石英(主イフイ料s:lo。
(O) Loss of the invention h(1ΣExample I digit, - real/7(lJ, example), the present invention is explained as r+゛(: ljl[:r< 1Fig.(r↓ Impurity in the wafer After implanting ions, the impurities are removed from the heat treatment chamber 3J. There is one to be processed: i Nihar 4 is placed in the vacuum chamber 2 and j'
IJ is already in the vacuum system V1, 1 [Empty 1 has been evacuated +)], IJ chamber 1 which boundary gate Pulp 02 IC is opened, and wafer 4 is placed in heat treatment chamber 1. .I [Sent by bell 1-5.B/L'+5 is gold 11
S<if! ! ' is 9!斗し(*y'c You may also use other VC knee/bearings to send it in.) Next, gate pulp G2 is closed/After this, heat treatment 1 is 1O-2T.
When the product vacuum becomes below orr, the microwave iff is transmitted through the entire transmission window 6, and the microwave (for example, wavelength 245
(river Z) is applied. Then, the wafer 4, which is a dielectric material, absorbs the microwave, and the wafer itself is heated and annealed (heat treated). The microwave transmission window 6 is made of quartz (main material: lo).

)又はセラミック(主A:、A月Δe203)又d、パ
イレックスガラスなどからなり、これはマイクロ波をほ
ぼ完全に透過させる。寸た熱処理室全体にし不銹61・
mなどを用いた金属容器で作成され、導′肛体は加熱さ
れることがない。今、マイクロ波マEカ500 vtl
 ヲ1[J加するとl000℃程度に加熱されるのは約
4分で、第2図にその印加1晴間とウェハーの加熱温度
との関係図表を示している。
) or ceramic (main A:, A month Δe203) or d, Pyrex glass, etc., which allows microwaves to pass through almost completely. The entire small heat treatment chamber is rust-free 61.
It is made of a metal container using a material such as M, and the anal conduit body is not heated. Currently, I have a microwave machine 500 VTL.
When 1[J is applied, it takes about 4 minutes to heat the wafer to about 1000° C., and FIG. 2 shows a graph of the relationship between the applied time and the wafer heating temperature.

このようにして熱処理室1において新装温度で所要時間
加熱処理して活性化を終える表、ゲートパルプ((3を
開いて真空系v3によって既にyr空Ijl気されてい
るu−lτJツク5i>’ :3に・\ル1移送される
In this way, the activated pulp is heat treated in the heat treatment chamber 1 at the new temperature for the required time. :Transferred to 3・\ru1.

−J二N己のようにマイクロ波によってウェハーを加;
ii’!すると、招福、又は降rA71が通常のvlを
用いた場621、リフ、(月(J間に′I)わねて、且
つ、1枚づつ処理できる/・:め自動71’< l准に
僧した加熱方法と言える。且つ、この−マイク1.1波
加熱法d:ウエハーのみ加熱されるからノJll熱効率
が良く、加熱温度の制御も管易であり、(加熱γ7#を
没勾配も少なくなって)、県に′電気炉に比較して加熱
処理装置がll1i易化できる。寸だ、操作者が熱気に
さらされることも′/rくなる。
- Apply wafer by microwave like J2N self;
ii'! Then, if Blessing or Descendance rA71 uses normal vl, 621, riff, (moon ('I) between J) can be twisted and processed one by one/...: Me automatic 71'< l This heating method can be said to be the most sophisticated heating method.Moreover, this - Microphone 1. Single-wave heating method d: Only the wafer is heated, so the thermal efficiency is good, the heating temperature can be easily controlled, and (the heating γ7# is also Compared to an electric furnace, the heat treatment equipment can be much easier to use, and the operator's exposure to hot air can also be reduced.

木づ11明によJL +=、l: lも処理室内をI 
O”Ton”以下の高真空に抽気しなければならノf:
いが、そ−れば10−2’l”a目 、しり、11’j
、圧下でd、ブ′ラズマが発圧し、ウコーハーに1(f
予相(鳩を与える事があり、井だ人気中では加f執(1
; 、1:りの熱(l\導に1.9て熱処理室全体が加
〜ささハて、シソ)効率が41.1.i (々るから、
それを避けるためである。しかも、真空中の熱処理は表
面酸化などのスセf(を防くことができて、高品質化に
(夕(めて好寸しい方法でΔりる。
Kizu 11 Akira JL +=, l: l is also inside the processing room.
Air must be extracted to a high vacuum below O"Ton":
But then, 10-2'l"a, Shiri, 11'j
, d under pressure, the plasma generates pressure, and 1 (f
Yoso (sometimes pigeons are given, and during Ida's popularity, Kafushi (1)
, 1: Heat efficiency (1.9 times the entire heat treatment chamber heats up) efficiency is 41.1. i
This is to avoid that. In addition, heat treatment in vacuum can prevent surface oxidation and other defects, resulting in high quality (in an efficient manner).

上記熱処理例の他に、化学気朴成長(C’J i−j 
)法などの被膜形成にも本発明を適用でき−C1例えば
減圧成長法は真空度10 ”l’or]゛4.)4度で
あるから問題はない。また表面酸化も酸素を流入し、同
(、)−の真?空度如してS:i02膜を生成させるこ
とができる。その他の低温加熱に利用できることは白う
までもない。
In addition to the above heat treatment examples, chemical vapor growth (C'J ij
The present invention can also be applied to film formation using methods such as -C1. For example, in the reduced pressure growth method, the degree of vacuum is 10"l'or]4.), so there is no problem. Surface oxidation also causes oxygen to flow in, An S:i02 film can be produced at the same (,)-vacuum degree.It goes without saying that it can be used for other low-temperature heating.

(f゛)発明の効果 以上の鋭、明から明らかなように、本発明d、従来の電
気抵抗体を発熱させて、半導体基板を加熱する間接加熱
法と異なり、半導体基板のみ加i(νきする直接加熱法
であるから、′dy力の簡約、装置のIli′ill1
i易化析があり、特に自動化流れ工程に投入できる効果
は大きくて、寸だ半専体装1?’lの品質向」二にも役
立つ方法である。
(f゛) The effect of the invention is more acute than that of the present invention. Since it is a direct heating method with
There is an easy-to-use analysis system, and the effect that it can be especially applied to automated flow processes is great, and it is almost like a semi-dedicated system 1? This method is also useful for improving quality.

4・、  図面(D I?!1 jl すib+!明第
1同第1図明にかかる一実施例の熱処理装置1!!断面
図、第2図はマイクロ波印加時間とウェハーの加熱沼1
度との関係図表である。図中、1はN)処理室、2.a
tJ:ロードロック室、4・はウェハー、5は(多J久
ベルl、6&、l:仇J尚窓、7Q」、マイクrJi皮
導波管、v 1 、 V 2 、  V 3iJ:+’
4空系、02.G3はグー−1−パル)を示す。
4. Drawing (D I?!1 jl sib+! Ming 1) Heat treatment apparatus 1 of an embodiment according to Fig. 1!! Cross-sectional view, Fig. 2 shows microwave application time and wafer heating time 1
This is a diagram of the relationship between In the figure, 1 is N) processing chamber, 2. a
tJ: load lock chamber, 4. is wafer, 5 is (Taku Bell l, 6&, l: J Naomado, 7Q', microphone rJi skin waveguide, v 1, V 2, V 3iJ: +'
4 air system, 02. G3 indicates Goo-1-pal).

第1図 第21川 四方口8I向 (介)Figure 1 21st river For Yomoguchi 8I (intermediate)

Claims (1)

【特許請求の範囲】[Claims] 半導体爪板を10 ”Torr 以下の部力とした金属
製処理容器に収容し、マイクロ波透過窓を介してマイク
ロ波によりH記半導体基板を)fi+熱することを特徴
どする半導体基板の加熱方法。
A method for heating a semiconductor substrate, which comprises placing a semiconductor nail plate in a metal processing container with a force of 10" Torr or less, and heating the semiconductor substrate (H) with microwaves through a microwave transmission window. .
JP13415982A 1982-07-30 1982-07-30 Method for heating semiconductor substrate Granted JPS5925229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13415982A JPS5925229A (en) 1982-07-30 1982-07-30 Method for heating semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13415982A JPS5925229A (en) 1982-07-30 1982-07-30 Method for heating semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS5925229A true JPS5925229A (en) 1984-02-09
JPH0376021B2 JPH0376021B2 (en) 1991-12-04

Family

ID=15121836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13415982A Granted JPS5925229A (en) 1982-07-30 1982-07-30 Method for heating semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS5925229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127532A (en) * 1990-09-19 1992-04-28 Nec Yamagata Ltd Heat treatment of semiconductor wafer
JP2011134836A (en) * 2009-12-24 2011-07-07 Toshiba Corp Method of manufacturing backside illumination type imaging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178316A (en) * 1981-04-27 1982-11-02 Hitachi Ltd Manufacture of semiconductor element and device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178316A (en) * 1981-04-27 1982-11-02 Hitachi Ltd Manufacture of semiconductor element and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127532A (en) * 1990-09-19 1992-04-28 Nec Yamagata Ltd Heat treatment of semiconductor wafer
JP2011134836A (en) * 2009-12-24 2011-07-07 Toshiba Corp Method of manufacturing backside illumination type imaging device

Also Published As

Publication number Publication date
JPH0376021B2 (en) 1991-12-04

Similar Documents

Publication Publication Date Title
GB2136258A (en) Method and apparatus for the heat-treatment of a plate-like member
JPS5959876A (en) Operating method of light irradiation furnace
TW350102B (en) Semiconductor device manufacturing method
JPS5861635A (en) Method of treating semiconductor
US4636400A (en) Method of treating silicon nitride film formed by plasma deposition
KR100246963B1 (en) Stage for wafer holdring of semiconductor device manufacturing apparatus
JPS5925229A (en) Method for heating semiconductor substrate
TWI292441B (en)
JPS57183041A (en) Annealing method for chemical semiconductor
JPS593931A (en) Forming of thin film
JPS63271922A (en) Heat treatment device
JPS5710240A (en) Forming method of insulating film
JPH05206048A (en) Lamp anneal device
JPS63217623A (en) High pressure, low temperature heat treatment of semiconductor wafer
JPS593929A (en) Etching of thin-film
JPH0234824Y2 (en)
JP3362420B2 (en) Method for manufacturing semiconductor device
JPS622616A (en) Heat treatment method of semiconductor wafer
JPS6386436A (en) Lamp annealing device
JPS5939020A (en) Heat-treating apparatus
JPS56155530A (en) Manufacture of semiconductor device
JPH03240238A (en) Heat-treating equipment
JPH1012561A (en) Semiconductor treating apparatus
JPS62249423A (en) Processing apparatus
JPS5613720A (en) Heat treating device