JPS5939020A - Heat-treating apparatus - Google Patents
Heat-treating apparatusInfo
- Publication number
- JPS5939020A JPS5939020A JP14765182A JP14765182A JPS5939020A JP S5939020 A JPS5939020 A JP S5939020A JP 14765182 A JP14765182 A JP 14765182A JP 14765182 A JP14765182 A JP 14765182A JP S5939020 A JPS5939020 A JP S5939020A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- core tube
- source gas
- outside air
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims description 23
- 239000007789 gas Substances 0.000 abstract description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 8
- 238000011109 contamination Methods 0.000 abstract description 5
- 239000010453 quartz Substances 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 235000012431 wafers Nutrition 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 230000002265 prevention Effects 0.000 description 9
- 238000000137 annealing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000000428 dust Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、半導体プロセスにおいて用いられる横形電気
炉での処理(酸化・拡散・アニール等)において、炉芯
管内へ室内の空気が侵入することを防止するに好適な熱
処理装置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention prevents indoor air from entering the furnace core tube during processing (oxidation, diffusion, annealing, etc.) in a horizontal electric furnace used in semiconductor processing. The present invention relates to a heat treatment apparatus suitable for preventing the heat treatment.
周知のように、半導体プロセスにおける熱処理工程U、
(IJウェハを炉口に置く、(2)ウェハを炉中心へそ
う人する、(3)熱処理、(4)ウェハを炉口まで引き
出す、(5)ウェハを炉口から取シ出す、の5工程から
成る。従来の熱処理では、上記工程(2)、(3)。As is well known, the heat treatment process U in the semiconductor process,
(Place the IJ wafer at the furnace mouth, (2) Move the wafer to the center of the furnace, (3) Heat treatment, (4) Pull out the wafer to the furnace mouth, (5) Take out the wafer from the furnace mouth. Conventional heat treatment consists of steps (2) and (3) above.
(4)は炉口にキャップがある状態で行なわれるが、上
記工程(υ、(5)ではキャップはなく第1図に示した
ように炉内で加熱されたソースガスは炉口で上昇し、室
内の冷たい空気2が炉芯管1の底を伝わって炉芯t1内
へ浸入する。第1図において、記号3,4はそれぞれソ
ースガス訃よびヒーターを表わす。空気の温度や湿度の
調整には限界があシ、季節による変動、日々の変動はさ
けられない。さらに、炉口近くに汚染源や塵埃があれば
高温の炉内への侵入が考えられ、熱処理による特性の劣
化やばらつきの原因となっていた。(4) is carried out with a cap at the furnace mouth, but in the above step (υ, (5), there is no cap and the source gas heated in the furnace rises at the furnace mouth as shown in Figure 1. , the cold air 2 in the room passes through the bottom of the furnace core tube 1 and enters into the furnace core t1.In FIG. There are limits to this, and seasonal and daily fluctuations cannot be avoided.Furthermore, if there is a source of contamination or dust near the furnace opening, there is a possibility that it will enter the high-temperature furnace, causing deterioration and variation in characteristics due to heat treatment. It was the cause.
本発明の目的は、上記従来の問題を解決し、室内の空気
が炉芯管内へ侵入することを防止して、汚染の恐れなし
に熱処理を行なうことのできる熱処理装置を提供するこ
とにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a heat treatment apparatus that solves the above-mentioned conventional problems, prevents indoor air from entering the furnace core tube, and allows heat treatment to be performed without fear of contamination.
上記目的を達成するため、本発明は炉芯管出口に治具を
設けてソースガスの流速を増し、外気の混入を防止する
ものである。In order to achieve the above object, the present invention provides a jig at the outlet of the furnace core tube to increase the flow rate of the source gas and prevent outside air from entering the furnace.
以下、実施例を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using Examples.
炉温度を1000trとし、窒素ガスのみ4.5t/分
炉内へ導入したときの、炉芯管内への空気の浸入の程度
を調べるため、管内の酸素濃度を測定した結果を第2図
に示す。第2図に訃いて、曲線aは炉口にキャップが存
在する場合、曲a!bは炉口にキャップが存在しない場
合を、それぞれ表わす。第2図から明らかなように、炉
口にキャップに減少し、炉口からの空気の侵入深さは3
0crn以上浅くなることがわかった。そこで、この炉
口キャップの役目をする治具が、上記工程(1)、(5
)においても存在すれば同様の結果が得られるはずであ
る。すなわち、この治具を用いることにより、治具周辺
でのガス流速を太きくシ、それによって外気の炉芯管内
への侵入を防止するものである。Figure 2 shows the results of measuring the oxygen concentration in the tube to investigate the degree of air infiltration into the furnace core tube when the furnace temperature was 1000 tr and only nitrogen gas was introduced at 4.5 tons/minute into the furnace. . As shown in Figure 2, curve a is curve a when there is a cap at the furnace mouth. b represents the case where there is no cap at the furnace mouth. As is clear from Fig. 2, the depth of air penetration from the furnace mouth is reduced by the cap at the furnace mouth.
It was found that the depth becomes shallower than 0 crn. Therefore, the jig that serves as the furnace mouth cap is used in the above steps (1) and (5).
), similar results should be obtained. That is, by using this jig, the gas flow velocity around the jig is increased, thereby preventing outside air from entering the furnace core tube.
実施例1
内径130crnφの炉芯管を用い、第3図に示した治
具にて、S1ウエハーの窒素アニールを行なった。外気
侵入防止部は外径120mmφ、厚さ25++onの筒
状である。炉温度を1000′c窒素流量は4.5t1
分である。炉口キャップを取り、ウェハー15を熱処理
治具11に付属したつめ13を外気侵入防止治具12の
受口14に掛けて両者を接続してから炉中へ押し込む。Example 1 Using a furnace core tube with an inner diameter of 130 crnφ, an S1 wafer was subjected to nitrogen annealing using the jig shown in FIG. The outside air intrusion prevention part has a cylindrical shape with an outer diameter of 120 mm and a thickness of 25 mm. Furnace temperature is 1000'c Nitrogen flow rate is 4.5t1
It's a minute. The furnace opening cap is removed, and the wafer 15 is connected by hooking the pawl 13 attached to the heat treatment jig 11 onto the socket 14 of the outside air intrusion prevention jig 12, and then pushing the wafer 15 into the furnace.
炉口キャップをした後5分間で炉芯管中央までそう人し
、30分間の窒素アニールを行なった後5分間で炉口ま
で引き出す。炉口−キャップを取シけずし、外気侵入防
止治具12は炉口に残してウェハー5の乗った上記熱処
理治具11のみを取り出す。After putting on the furnace mouth cap, the furnace core tube was moved to the center for 5 minutes, and after 30 minutes of nitrogen annealing, it was pulled out to the furnace mouth for 5 minutes. The furnace opening cap is removed, and only the heat treatment jig 11 with the wafer 5 placed thereon is taken out, leaving the outside air intrusion prevention jig 12 at the furnace opening.
外気侵入防止治具を用いないで上記処理をしたときの、
9fウエハーの酸化膜厚は50人程度であるが、外気侵
入防止治具を用いた場合には20人程度であり、本発明
により外気の侵入を数分の1に減少する効果があること
が認められた。When the above treatment is performed without using the outside air intrusion prevention jig,
The thickness of the oxide film on a 9F wafer is about 50 people, but when a jig to prevent outside air intrusion is used, it is about 20 people, and the present invention has the effect of reducing the intrusion of outside air to a fraction of that. Admitted.
実施例2
実施例1と同じ条件での窒素アニールを、第4図に示し
たように熱処理治具11の両端を外気侵入防止治具12
ではさむ構造とした治具を用いて行なったところ、形成
された酸化膜の厚さとして、20Å以下の値を得ること
が出来た。Example 2 Nitrogen annealing was carried out under the same conditions as in Example 1, with both ends of the heat treatment jig 11 being connected to outside air intrusion prevention jig 12 as shown in FIG.
When this was carried out using a jig with a sandwich structure, the thickness of the formed oxide film was 20 Å or less.
本治具は、ウェハーの炉口への出入時ばかシでなく、ウ
ェハーの炉芯管中央への出入時督よび熱処理時において
も外気の侵入防止の効果があることが認められた。This jig was found to be effective in preventing outside air from entering and exiting, not only when wafers enter and exit the furnace mouth, but also when wafers enter and exit the center of the furnace tube, and during heat treatment.
実施例3
外気が炉芯管内に侵入する一つの原因は、導入されたソ
ースガスは加熱され、炉口付近で上部に上昇するためと
考えられる。そこで外気と同程度の温度を有するソース
ガスが存在すれば外気の侵入を防止できるはずである。Example 3 One reason why outside air enters the furnace core tube is considered to be that the introduced source gas is heated and rises to the top near the furnace mouth. Therefore, if a source gas having a temperature similar to that of the outside air exists, it should be possible to prevent the outside air from entering.
従来の炉芯管では導入されたソースガスはすべて高温部
を通過するので炉口からの外気の浸入が生じやすかった
。したがって炉口側からソースガスを導入することによ
り、高温部を通過することなく、従って低温の状態で排
気されるソースガスを炉芯管に導入出来る。In conventional furnace core tubes, all the source gas introduced passes through a high-temperature section, making it easy for outside air to enter through the furnace opening. Therefore, by introducing the source gas from the furnace mouth side, the source gas that is exhausted at a low temperature can be introduced into the furnace core tube without passing through the high temperature section.
第5図に示したように、内径130tmφ、長さ2mの
石英製炉芯管1の炉口6側から、外径10、Bφ、長さ
1.5mの石英管で側面に1.5咽φの穴を2Crn間
隔で開けたインジェクタ17を取り付けたものを作製し
た。この炉芯管1にソースガス3として窒素を上記イン
ジェクタ22よシ流し、炉芯管内1の酸素濃度を測定し
て、炉芯管1内への空気の侵入の程度を調べた。炉の温
度は1000C1また炉口には排気口が12o2のキャ
ップをした。窒素ガス流量をかえたときの炉芯管内の酸
素濃度分布を第5図に示す。第5図から明らかなように
1窒素ガスの流量を1011分以上とすることにより外
気の侵入を防止出来ることがわかった。As shown in Fig. 5, from the furnace mouth 6 side of the quartz furnace core tube 1 with an inner diameter of 130 tmφ and a length of 2 m, a quartz tube with an outer diameter of 10 mm, Bφ and a length of 1.5 m is attached to the side. An injector 17 with φ holes drilled at intervals of 2 Crn was attached. Nitrogen was flowed into the furnace core tube 1 as a source gas 3 through the injector 22, and the oxygen concentration inside the furnace core tube 1 was measured to examine the degree of air intrusion into the furnace core tube 1. The temperature of the furnace was 1000C1, and the furnace mouth was capped with a 12o2 exhaust port. Figure 5 shows the oxygen concentration distribution in the furnace core tube when the nitrogen gas flow rate is changed. As is clear from FIG. 5, it was found that the intrusion of outside air could be prevented by setting the flow rate of nitrogen gas to 1011 minutes or more.
実施例4
実施例3で用いた炉芯管において、第3図に示した熱処
理治具を用いて外気の侵入を測定した。Example 4 In the furnace core tube used in Example 3, the intrusion of outside air was measured using the heat treatment jig shown in FIG.
外気侵入防止部12は直径120mmφ、高さ50簡の
円筒形で片面は閉じている。炉温度は1000C1窒素
ガス流量は10t/分である。炉口のキャップの有無に
かかわらず図4のdと重なっており炉芯管内への外気の
侵入が防止されていることが認められた。これによシ、
熱処理工程に訃いて、ウェハーの炉内への出入時には熱
処理治具の外気侵入防止部により、また、熱処理中は炉
口キャップにより外気の侵入を防止することが出来る。The outside air intrusion prevention part 12 has a cylindrical shape with a diameter of 120 mm and a height of 50 cm, and one side is closed. The furnace temperature was 1000 C1 and the nitrogen gas flow rate was 10 t/min. Regardless of the presence or absence of the furnace opening cap, it was observed that the outside air was prevented from entering the furnace core tube, as it overlapped with d in Fig. 4. For this,
During the heat treatment process, the outside air can be prevented from entering by the outside air intrusion prevention part of the heat treatment jig when the wafer is taken into and out of the furnace, and by the furnace opening cap during the heat treatment.
なお、ソースガスを導入するインジェクタは1本とは限
らず2本以上でもよい。′また、インジェクタの途中に
穴のあるものとないものを組合せて使用しても同様の外
気侵入防止効果が得られる。Note that the number of injectors that introduce the source gas is not limited to one, and may be two or more. 'Also, the same effect of preventing outside air from entering can be obtained by using a combination of injectors with and without holes in the middle.
実施例5
上記のように、炉に近傍の空気はソースガスよりも低温
であるため、炉芯管内の内部に沿って、炉芯管中央付近
まで侵入することがわかった。Example 5 As described above, it was found that the air near the furnace was lower in temperature than the source gas, and therefore entered the furnace core tube along the inside thereof to near the center of the furnace core tube.
したがって、排気口近くで、高温度のソースガスの他に
外気と同程度の温度のソースガスが存在すれば、温度の
高いガスは炉口上側を、また低温のガスは炉口の下側を
通って排気され外気の侵入を防げるはずである。Therefore, if there is a source gas with a temperature similar to the outside air in addition to the high-temperature source gas near the exhaust port, the high-temperature gas will flow to the upper side of the furnace mouth, and the low-temperature gas will flow to the lower side of the furnace mouth. It should be possible to prevent outside air from entering through the vent.
そのため、第7図に示したように、炉口近傍からソース
ガスを導入するためのインジェクタ18を炉芯管1内に
設置した。Therefore, as shown in FIG. 7, an injector 18 was installed in the furnace core tube 1 to introduce the source gas from near the furnace mouth.
このインジェクタ18としては、第8図に示すように、
外径10咽φ、長さ90onの石英管制で、管の側面に
1.5胴φの孔19を2t:m間隔であけたものを使用
した。As this injector 18, as shown in FIG.
A quartz tube with an outer diameter of 10 mm and a length of 90 on was used, with holes 19 of 1.5 mm diameter drilled at 2 t:m intervals on the side of the tube.
このようにしたものに、ソースガスとしてNtを4.5
t1分の流量で流し、排気口が12crn2であるキャ
ップを炉口にはめて、キャップの排気口からの空気の侵
入の程度を、炉口近傍における炉芯管内の酸素濃度を測
定することによシ求め第6図に示す結果を得た。なお、
炉の温度は1ooot:’である。また炉の中心は炉口
から1ooCrnの所である。インジェクタ18からの
窒素導入がないときには酸素濃度が10%、すなわち空
気中の酸素濃度の一程度であったものが、窒素を7.5
t1分導入することにより、500ppmと空気中の酸
素濃度の200以下に減少した。以上の結果から、排気
口側から窒素ガスを導入することにより、空気の排気口
からの侵入を従来の」二以下にする00
ことができた。Add 4.5 liters of Nt as a source gas to this
A cap with an exhaust port of 12 crn2 was placed on the furnace mouth, and the degree of air intrusion from the exhaust port of the cap was determined by measuring the oxygen concentration in the furnace core tube near the furnace mouth. The results shown in FIG. 6 were obtained. In addition,
The temperature of the furnace is 1ooot:'. The center of the furnace is 1ooCrn from the furnace mouth. When no nitrogen is introduced from the injector 18, the oxygen concentration is 10%, which is about the same as the oxygen concentration in the air, but the nitrogen concentration has decreased to 7.5%.
By introducing the oxygen for t1 minute, the oxygen concentration decreased to 500 ppm, which is 200 times lower than the oxygen concentration in the air. From the above results, by introducing nitrogen gas from the exhaust port side, it was possible to reduce the amount of air entering from the exhaust port to less than 20% compared to the conventional method.
実施例6
本実施例は、炉口を下向きにして外気の混入を防止した
例である。第10図に示したように、炉芯管の排気口を
兼ねだ熱処理治具出入口20及び治具を炉芯管中央へ移
動するための棒を通すための20鰭φの穴21のある1
30■φの炉芯管1を作製し、1000trにてソース
ガス3として、N、を4.5t/分流したときの炉芯管
内の酸素濃度を測定したところ、管内全長にわたって、
はぼ数百ppmの値を得ることが出来た。Example 6 This example is an example in which the furnace mouth was oriented downward to prevent outside air from entering. As shown in Fig. 10, there is a heat treatment jig inlet/outlet 20 which also serves as the exhaust port of the furnace core tube, and a hole 21 with a diameter of 20 fins for passing a rod for moving the jig to the center of the furnace core tube.
A furnace core tube 1 with a diameter of 30 mm was prepared, and the oxygen concentration inside the furnace core tube was measured when 4.5 t/minute of N was flowed as the source gas 3 at 1000 tr.
We were able to obtain a value of several hundred ppm.
上記治具を用いることによシ、ウェハーを炉口にセット
するとき、炉口から炉芯管内への空気の侵入を数分の1
以下とすることが出来るので、(a) 炉周辺におけ
る塵埃や汚染が炉芯管内に侵入することを数分の1以下
に低減できる、(b) 炉周辺に訃ける環境(温度、
湿度等)の変化による熱処理特性の変動を小さくできる
、(C) 熱アニールにおける酸素濃度低減によるウ
ェハーの酸化が低減される、
(d) 酸素濃度の減少に伴ない、数十人の薄い酸化
膜を再現よく形成できるなど多くの効果が得られる。By using the above jig, when setting the wafer at the furnace mouth, the intrusion of air from the furnace mouth into the furnace core tube can be reduced to a fraction.
(a) The intrusion of dust and contamination around the furnace into the furnace core tube can be reduced to less than a fraction; (b) The environment around the furnace (temperature,
(C) Oxidation of the wafer is reduced due to the reduction in oxygen concentration during thermal annealing. (d) As the oxygen concentration decreases, tens of thin oxide films can be formed. Many effects can be obtained, such as being able to form images with good reproducibility.
また、本発明によれば熱処理中において外気侵入防止治
具はソースガスが熱処理ウェハーに直接触れる事を防ぎ
、適度にガスをかく拌し、ソースガスが均一にウェハー
に導かれることにより、均゛−性のよい酸化あるいは拡
散を行なえるという効果がある。Further, according to the present invention, the outside air intrusion prevention jig prevents the source gas from coming into direct contact with the heat-treated wafer during heat treatment, stirs the gas appropriately, and allows the source gas to be uniformly introduced to the wafer. - It has the effect of performing oxidation or diffusion with good properties.
また、へ記インジェクタを介してソースガスを導入する
ことによって、炉芯管内への空気の侵入を数百分の1以
下とすることが出来るので、(1)炉口から炉芯管内へ
侵入する塵埃や汚染を数百分の1に低減できる。In addition, by introducing the source gas through the injector, the amount of air entering the furnace core tube can be reduced to one hundredth or less. Dust and pollution can be reduced to several hundred times.
(2)炉周辺における環境(気温、湿度)の変化による
熱処理特性(酸化膜厚等)の変動を小さくできるなどの
効果がある。(2) It has the effect of reducing fluctuations in heat treatment characteristics (oxide film thickness, etc.) due to changes in the environment (temperature, humidity) around the furnace.
また、第5図に示したように炉芯管の片面は完全に閉じ
ており、電気炉の片面は断熱材で完全にじゃ閉できるの
で
(1)同一炉体の場合には炉芯管内の均熱長が長くなる
(2)同一均熱長なら炉体が短くなる
などの効果が期待できる。In addition, as shown in Figure 5, one side of the furnace core tube is completely closed, and one side of the electric furnace can be completely closed with heat insulating material. Longer soaking length (2) If the soaking length is the same, effects such as a shorter furnace body can be expected.
しかも本発明によれば、炉芯管内への空気の侵入を10
−”以下とすることが出来るので、(リ 炉芯管内へ侵
入する、炉周辺の塵埃や汚染を従来の10−2以下に低
減する効果
(bJ 炉周辺に訃ける環境(温度や湿度等)の変化
による熱処理特性の変動を小さくする効果(CJ 熱
アニールにおける酸素濃度低減による、熱処理ウェハー
酸化低減の効果
(d) 酸素濃度の減少に伴ない、高温において質の
よい数十人の薄い酸化膜を再現性よく形成できる効果等
がある。Moreover, according to the present invention, the intrusion of air into the furnace core tube is reduced by 10%.
-” or less (Re) Effect of reducing dust and contamination around the furnace that enters the furnace core tube to less than 10-2 (bJ) Environment (temperature, humidity, etc.) that is harmful to the area around the furnace Effect of reducing fluctuations in heat treatment characteristics due to changes in heat annealing (CJ Effect of reducing oxidation of heat-treated wafers by reducing oxygen concentration during thermal annealing (d) As the oxygen concentration decreases, tens of thin oxide films of good quality at high temperatures It has the effect of being able to form with good reproducibility.
第1図は炉芯管の炉口側からの外気の流入を示す図、第
2図はキャップの効果を示す曲線図、第3図1、第4図
、第5図、第7図および第8図は本発明の詳細な説明す
るだめの図、第6図および第9図は本発明の効果を示す
曲線図である。
1・・・炉芯管、2・・・空気、3・・・ソースガス、
4・・・ヒーター、5・・・ソースガス導入管、6・・
・炉口、11・・・熱処理治具(サセプタ)、12・・
・外気侵入防止治具、15・・・ウエノ・−116・・
・熱処理治具を炉芯管内へ出入させるための連結器、1
7.18・・・イ第 2 口
第 3 図
114
y]5 図
第 乙 ロ
文fo力・うの2丘岩鉱(6例)
国分寺市東恋ケ窪1丁目280番
地株式会社日立製作所中央研究
所内
0発 明 者 高橋亮吉
国分寺市東恋ケ窪1丁目280番
地株式会社日立製作所中央研究
所内Figure 1 is a diagram showing the inflow of outside air from the furnace mouth side of the furnace core tube, Figure 2 is a curve diagram showing the effect of the cap, Figure 3 is a diagram showing the effect of the cap, Figures 1, 4, 5, 7 and 7. FIG. 8 is a diagram for explaining the present invention in detail, and FIGS. 6 and 9 are curve diagrams showing the effects of the present invention. 1... Furnace core tube, 2... Air, 3... Source gas,
4...Heater, 5...Source gas introduction pipe, 6...
・Furnace opening, 11...Heat treatment jig (susceptor), 12...
・Outside air intrusion prevention jig, 15...Ueno-116...
・Coupler for moving the heat treatment jig into and out of the furnace core tube, 1
7.18...A No. 2 Exit No. 3 Figure 114 y] 5 Figure No. O Bunfo Riki/Uno 2 Oka Rock Mine (6 cases) 1-280 Higashikoigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory 0 Inventor Ryokichi Takahashi 1-280 Higashikoigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory
Claims (1)
内に導入することにより、上記炉口側よシの外気の混入
を防止することを特徴とする熱処理装置。1. A heat treatment apparatus characterized in that a source gas is introduced into the furnace core tube from the furnace 1 side of the horizontal furnace core tube to prevent outside air from entering the furnace mouth side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14765182A JPS5939020A (en) | 1982-08-27 | 1982-08-27 | Heat-treating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14765182A JPS5939020A (en) | 1982-08-27 | 1982-08-27 | Heat-treating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5939020A true JPS5939020A (en) | 1984-03-03 |
Family
ID=15435164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14765182A Pending JPS5939020A (en) | 1982-08-27 | 1982-08-27 | Heat-treating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939020A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60194527A (en) * | 1984-03-16 | 1985-10-03 | Hitachi Ltd | Heat treating device |
-
1982
- 1982-08-27 JP JP14765182A patent/JPS5939020A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60194527A (en) * | 1984-03-16 | 1985-10-03 | Hitachi Ltd | Heat treating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05217929A (en) | Oxidation diffusion treating apparatus | |
JPH06188413A (en) | Manufacture of mos-type semiconductor device | |
JPS5939020A (en) | Heat-treating apparatus | |
US6593253B1 (en) | Method of manufacturing semiconductor device | |
JPS62140413A (en) | Vertical type diffusion equipment | |
JPH0567577A (en) | Vertical-type diffusion cvd furnace | |
JP2793441B2 (en) | Insulating film formation method | |
JPH05152229A (en) | Heat treatment furnace | |
JP2828457B2 (en) | Heat treatment furnace for semiconductor | |
JPS5922114Y2 (en) | heat treatment equipment | |
JP3089669B2 (en) | Method for manufacturing semiconductor device | |
JPS59227128A (en) | Oxidation method for semiconductor substrate | |
JPS62185329A (en) | Oxidizing device for silicon | |
JPH0376227A (en) | Heat treatment device | |
JPS62249423A (en) | Processing apparatus | |
JPS60211913A (en) | Processing device | |
JPH04134816A (en) | Semiconductor manufacturing equipment | |
JPH07326579A (en) | Vertical reaction furnace | |
JPH09283750A (en) | Method of forming very thin gate oxide film | |
JPS5925229A (en) | Method for heating semiconductor substrate | |
JPH02909Y2 (en) | ||
JPS6132419A (en) | Method for annealing by infrared rays | |
JPH0444324A (en) | Heat treatment of semiconductor wafer | |
JPS6092611A (en) | Diffusing method of impurity of semiconductor element | |
JPS6367729A (en) | Semiconductor heat-treating apparatus |