JPS59231723A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS59231723A
JPS59231723A JP10520183A JP10520183A JPS59231723A JP S59231723 A JPS59231723 A JP S59231723A JP 10520183 A JP10520183 A JP 10520183A JP 10520183 A JP10520183 A JP 10520183A JP S59231723 A JPS59231723 A JP S59231723A
Authority
JP
Japan
Prior art keywords
magnetic
layer
thin film
thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10520183A
Other languages
Japanese (ja)
Inventor
Nobumasa Kaminaka
紙中 伸征
Kazuo Nakamura
和夫 中村
Yuji Komata
雄二 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10520183A priority Critical patent/JPS59231723A/en
Publication of JPS59231723A publication Critical patent/JPS59231723A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • G11B5/3106Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing where the integrated or assembled structure comprises means for conditioning against physical detrimental influence, e.g. wear, contamination
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a head having improved resistance to corrosion, wear, etc. by using a thin amorphous magnetic alloy film for forming the part of a thin film magnetic head exposed from the surface facing a magnetic recording medium and laminating a thin crystalline magnetic alloy film only on the non-exposed part near an electromagnetic transducer where a thickness is required. CONSTITUTION:A non-magnetic insulating layer 16 of SiO2 or Al2O3, etc. is formed by sputtering vapor deposition on a base plate 11 consisting of a material such as Al2O3- TiC, etc. and thereafter a thin metal-metal amorphous alloy film 12a of Co83.5-Fe2- Nb14.5, etc. having high resistance to corrosion and wear is formed by ion beam sputtering on the patterned part of a resist 17'. The unnecessary thin film 12a is removed together with the resist 17' thereunder. A thin film 17 of a plating electrode material is then formed and thin magnetic films 12b, 12c of an Ni-Fe alloy, etc. are laminated by a plating method to form a thick magnetic layer 12. A gap layer 18, an inter-layer insulating layer 19, a coil layer 20 and an inter-layer insulating layer 21 are successively formed then an upper magnetic layer 13 is formed in order of a magnetic layer 13a, a conductive layer 13a, a conductive thin film 22 and a magnetic layer 13b similarly with the lower magnetic layer 12. A protective layer 23 is finally formed. The head having good resistance to corrosion is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は高密度な磁気記録の応用分野であるPCMレ
コーダ、を算機用ディスク装置、ビデオテープレコーダ
などに使用され得る磁気へ・ラドに関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a magnetic field that can be used in PCM recorders, computer disk drives, video tape recorders, etc., which are an application field of high-density magnetic recording. be.

従来例の構成とその問題点 従来の電算機用の薄膜磁気へ・ラドは、第1図に示すよ
′)IC,基板1上にトラ・lり幅精度の規制で効果の
あるめっき法でNi−Fe合金からなる磁性薄膜2.3
1に形成し、この磁性薄膜2.3によって磁気回路を構
成し、非磁性絶縁膜4を保獲層として形成し、所定の形
状に加工される。記録媒体(ディスク)5とは図のよう
に相対し、所定の浮上高さ状態で、信号の書込み/読出
しが行われる。基板1上には、通常非磁性絶縁層6が形
成され、同様の材料でギャップ形成用非磁性絶縁層7が
構成される。磁性薄膜2.3間には、コイル層8および
層間絶縁層9.10が形成される。図では巻数6ターン
の例を示している・ このような構成によると、磁気回路全梠成するなどの主
留な薄膜素子部は5i02あるいはA12o3といった
物性的に安定な非磁性絶縁層4.6でほとんど蔽われる
が、記録媒体5に而する側はどうしても露出する。した
がって、このような薄膜磁気ヘッドが苛酷な条件下で使
用されると、磁性薄膜2.3の露出部で腐蝕等が発生し
、信頼性劣下が起こるという問題点があった。このよう
な間萌の時、単に磁性薄膜2.3を腐蝕等に強い材料で
置i!!換えるという考え方は、容易に考えつるが、構
成および側法の点で制約があり、これまで解決されてい
ない。ここで構成といったのは、第1図の磁性薄膜2.
3部分を拡大した第2図でわかるように、下側の磁性薄
膜2け、2a、2b、2cという3層よりなり、また、
上側の磁性薄膜3は、3a、3bという2層よりなる。
The configuration of the conventional example and its problems The conventional thin film magnetic layer for computers is shown in Figure 1. Magnetic thin film 2.3 made of Ni-Fe alloy
The magnetic thin film 2.3 constitutes a magnetic circuit, the nonmagnetic insulating film 4 is formed as a capture layer, and the magnetic thin film 2.3 is processed into a predetermined shape. It faces a recording medium (disc) 5 as shown in the figure, and signals are written/read at a predetermined flying height. A non-magnetic insulating layer 6 is usually formed on the substrate 1, and a gap-forming non-magnetic insulating layer 7 is made of the same material. A coil layer 8 and an interlayer insulating layer 9.10 are formed between the magnetic thin films 2.3. The figure shows an example of 6 turns. According to such a configuration, the main thin film element part that forms the entire magnetic circuit is a physically stable non-magnetic insulating layer 4.6 such as 5i02 or A12o3. However, the side facing the recording medium 5 is inevitably exposed. Therefore, when such a thin film magnetic head is used under severe conditions, there is a problem in that corrosion occurs in the exposed portion of the magnetic thin film 2.3, resulting in a decrease in reliability. In such cases, simply place the magnetic thin film 2.3 with a material that is resistant to corrosion. ! The idea of changing the structure is easy to think of, but there are limitations in terms of structure and sideways, which have not been solved to date. Here, the structure refers to the magnetic thin film 2.
As can be seen in Figure 2, which is an enlarged view of the three parts, the lower magnetic thin film consists of three layers: 2a, 2b, and 2c.
The upper magnetic thin film 3 consists of two layers, 3a and 3b.

これは、へりド特性としての周波数特性?改善するため
に先端部(媒体対向面近傍)を比較的薄くする必要があ
り、−?、次書込み時の磁気飽和を避けるために後部(
コイル近傍)を厚くする必要があるためである。したが
って、このような構成のものを特性を劣下させずに、し
かも製法的に簡便なものとする方法が見つかっていなか
った。すなわち、めっき法では共析現象が起きないとめ
つきできないわけで、結晶質合金への第3元素の添加に
よって耐蝕性を向上させるということが難しく、また、
他の磁性材料、例えばセンダスト、アモルファス等は、
めっき法では難しく、I〜かも池の、形成方法、例えば
蒸着法、スバ・フタ法では、高温あるいは化学上・ソチ
ングのrf4度の点から第2図に示したような多層状構
成を実現することは難しいことがあげられる。
Is this a frequency characteristic as a helical characteristic? In order to improve this, it is necessary to make the tip (near the medium facing surface) relatively thin, and -? , then the rear (
This is because it is necessary to thicken the area (near the coil). Therefore, no method has been found to make a product having such a structure simple to manufacture without deteriorating its characteristics. In other words, in the plating method, plating cannot be performed unless the eutectoid phenomenon occurs, and it is difficult to improve the corrosion resistance by adding a third element to the crystalline alloy.
Other magnetic materials such as sendust, amorphous, etc.
This is difficult to achieve with plating methods, but with other methods such as vapor deposition and sub-lid methods, it is difficult to achieve the multilayer structure shown in Figure 2 due to the high temperature or chemical/soching RF of 4 degrees. This can be difficult.

発明の目的 この発明は耐蝕i生を向上させることができ、しかも製
造の容易な薄膜磁気へ・フド金提供することを目的とす
る。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a thin film magnetic material that can improve corrosion resistance and is easy to manufacture.

発明の構成 この発明の薄膜磁気へ−Jドは、基板と、この基板上に
形成した電磁変換素子と、・前記基板上に前記lt磁斐
換累子の近傍が厚くなるとともに記録媒体への対向面近
傍が薄くなるように多層形成して前記電磁変換素子と前
記記湿媒体とを磁気結合する磁性層であって前記記録媒
体への対向面より’B出する最下層を非晶質合金薄膜で
形成するとともに非蕗出の前記電磁変換素子の近傍のみ
前記最下層に積置する上層を結晶質合金W!rで形成し
fc磁性層と金備える構成である。
Structure of the Invention The thin film magnetic device of the present invention includes a substrate, an electromagnetic transducer formed on the substrate, and an electromagnetic transducer formed on the substrate. A magnetic layer is formed in multiple layers so as to be thinner in the vicinity of the facing surface to magnetically couple the electromagnetic transducer element and the humidity recording medium, and the lowest layer protruding from the surface facing the recording medium is made of an amorphous alloy. The upper layer formed of a thin film and stacked on the lowermost layer only in the vicinity of the electromagnetic transducer which is not exposed is a crystalline alloy W! The structure is made of r, fc magnetic layer and gold.

このように構成すれば、磁性層のうちplp体苅向面よ
り露出する部分、すなわち最下層が非晶質合金薄膜で形
成されるため耐蝕性が向上ず4)ことになる。また、非
露出の電磁変換素子d[傍において最下層に結晶質合金
薄膜からなる上層全積層して磁性層の屯Ff!i変醜素
千升傍を厚くしているため、めっき法等の低温ブ′「1
セヌで精度良く層形成することができ、製へか谷型lと
なり、まブこ、非晶質合金薄膜への熱的損傷も防止でき
る。
With this configuration, the portion of the magnetic layer exposed from the plane facing the plp body, that is, the bottom layer, is formed of an amorphous alloy thin film, so that the corrosion resistance does not improve4). In addition, the entire upper layer consisting of a crystalline alloy thin film is laminated as the bottom layer next to the non-exposed electromagnetic transducer d [to form a magnetic layer Ff! Since the 1,000 squares of the i-transparent element are thickened, low-temperature baths such as plating methods can be used.
Layers can be formed with high precision using the SEN, resulting in a hollow or valley-shaped structure, and thermal damage to the amorphous alloy thin film can also be prevented.

実施例の説明 この発明の一実施例を第3図および第4図に基づいて説
明する。この薄膜磁気ヘッドは、第3図に示すように、
記録媒体5に面する磁性薄膜12a。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 3 and 4. This thin film magnetic head, as shown in FIG.
A magnetic thin film 12a facing the recording medium 5.

13a f非晶質合金薄膜で構成する。この非晶質合金
薄膜は安定性の点からメタル−メタ〃系非晶質合金が適
しており、さらに耐摩耗性、耐蝕性に優れたco83.
5−pe2 Nb14.5合金が最適テアル。mu薄膜
12b、12cおよび13bはめっき法による結晶質合
金薄膜、例えば従来通りNi−Fe二元合金系が低温形
成できるので、前記非晶質合金薄膜へ熱的損傷牙与えず
、適していることがわかった。すなわち、記録媒体5に
面する側に露出゛していない磁性薄膜12b 、 12
c 、  13bは、めっき法のような低温プロセスと
いった製法によって得られることが不可欠となる。
13a fConstructed with an amorphous alloy thin film. For this amorphous alloy thin film, a metal-metal amorphous alloy is suitable from the viewpoint of stability, and CO83, which has excellent wear resistance and corrosion resistance.
5-pe2 Nb14.5 alloy is the best teal. The mu thin films 12b, 12c, and 13b are crystalline alloy thin films formed by plating, for example, Ni-Fe binary alloys, which can be formed at low temperatures as in the past, and therefore are suitable because they do not cause thermal damage to the amorphous alloy thin films. I understand. That is, the magnetic thin films 12b, 12 are not exposed on the side facing the recording medium 5.
It is essential that c and 13b be obtained by a manufacturing method such as a low temperature process such as a plating method.

以下、より詳しく説明する。Al2O3−Tic  の
ような基板11上に5i02あるいはA12o3といっ
た非磁性絶縁層16がスパッタ蒸着される。その後、磁
性薄膜12a f形成するが、耐蝕性の良い非晶質合金
薄膜のため、膜形成後、化学エツチング等によるバター
ニングは難しく、スバ・フタエヮチング等のドライエ・
フチングでは膜厚が薄ければ、比較的容易である。しか
し、通常1〜3μmといった比較的厚い膜がボールピー
ス厚としては必いのため、いわゆるリフトオフ法とイオ
ンビームスバラタリング法による膜形成が現在最も適し
た簡便な製法である。この方法によると、直流あるいは
高周波スバウタ法に比較し、よりガス圧が低い状II!
でしかも基板温度としては低い状態で膜形成が行われる
ため、雰囲気ガスの膜中への混入の少ない良好な非晶質
合金薄膜が得られる。リフトオフ法は、第4図に示すよ
うに、レジスト17′がバターニングされたところへ前
記非晶質合金からなる磁性層112a’iイオンビーム
スバ・ツタリングで形成し、その後、レジスト17′上
の磁性薄膜12a’i、レジスl−17’i溶解すると
いう処理の際、同時に除去し、所望のパターンを得る方
法である。このあと、めつ′@電極材となる導電性薄膜
17が全面に形成され、通常のレジスト窓によるめっき
法で、Ni−Fe合金からなる磁性薄膜12b、12C
が形成される。
This will be explained in more detail below. A non-magnetic insulating layer 16, such as 5i02 or A12o3, is sputter deposited onto a substrate 11, such as Al2O3-Tic. After that, a magnetic thin film 12a f is formed, but since it is an amorphous alloy thin film with good corrosion resistance, it is difficult to pattern it by chemical etching after film formation, and dry etching such as sub-bottom and lid etching is difficult.
Bordering is relatively easy if the film thickness is thin. However, since a relatively thick film of 1 to 3 .mu.m is required as the thickness of the ball piece, film formation by the so-called lift-off method and ion beam balataring method is currently the most suitable and simple manufacturing method. According to this method, the gas pressure is lower than that of the direct current or high frequency swauter method!
Moreover, since the film is formed at a low substrate temperature, a good amorphous alloy thin film with less atmospheric gas mixed into the film can be obtained. In the lift-off method, as shown in FIG. 4, a magnetic layer 112a'i made of the amorphous alloy is formed by ion beam swirling on the patterned part of the resist 17', and then In this method, a desired pattern is obtained by simultaneously removing the magnetic thin film 12a'i and the resist l-17'i during the process of dissolving it. After this, a conductive thin film 17 that will become the electrode material is formed on the entire surface, and magnetic thin films 12b and 12C made of Ni-Fe alloy are formed by plating using a normal resist window.
is formed.

導電性薄膜17としては通常500〜2000人の厚み
であり、Ni−Fe合金膜ないしはNi膜あるいはCu
膜といった磁性薄膜12b、12cと晶なった材質であ
っても構わない。めっきが終了した時点でレジストが除
去され、不要部分の導電性薄膜17が除去される。つい
で、ギヤ、ツブ層となる5i02あるいはAl2o3の
非磁性絶縁層18.第1の層間絶縁層19゜Cu等のコ
イ1vli120.第2の層間絶縁層21が形成される
The conductive thin film 17 is usually 500 to 2000 thick, and is made of a Ni-Fe alloy film, a Ni film, or a Cu film.
The magnetic thin films 12b and 12c may be made of a crystalline material such as a film. When the plating is completed, the resist is removed and unnecessary portions of the conductive thin film 17 are removed. Next, a non-magnetic insulating layer 18 of 5i02 or Al2o3, which will become a gear and knob layer, is formed. First interlayer insulating layer 19° Cu etc. 1vli120. A second interlayer insulating layer 21 is formed.

」二側の磁性層13の形成は、下側の磁性層12の形成
と同じ方法で実施される。非晶質合金からなる磁性薄膜
13aは高段差部上に形成されるため、リフトオフ法の
際、比較的厚いレジストでバターニングする必要がある
。Ni−Fe合金からなる磁性N膜13bは、□同・1
様に導電性薄膜22上に形成される。その後、5i02
桑るいけAl2o3といった保獲層23で蔽われる。
The formation of the second magnetic layer 13 is carried out in the same manner as the formation of the lower magnetic layer 12. Since the magnetic thin film 13a made of an amorphous alloy is formed on the high step portion, it is necessary to pattern it with a relatively thick resist during the lift-off method. The magnetic N film 13b made of Ni-Fe alloy is
Similarly, it is formed on the conductive thin film 22. After that, 5i02
It is covered with a capture layer 23 such as Mulberry Ruike Al2O3.

この発明の実施例としては、第3図に示すような巻線型
薄膜磁気ヘッドだけに限定されるものではなく、例えば
、記録媒体から磁束を収束して磁気抵抗効果素子へ導く
ための磁性薄膜を有する磁気ヘッド金構成する際にも適
用されうる。また、垂直磁気記録ヘーlドにおける主磁
極等の噌7り成についても媒体対向面より露出させる最
下層を非晶質合金薄膜で形成し、非露出の電磁変換素子
近傍は結晶質合金薄膜を積層してその厚みケ大きくする
と(八つこの発明の趣旨は適用される。
Embodiments of the present invention are not limited to wire-wound thin film magnetic heads as shown in FIG. It can also be applied when configuring a magnetic head with metal. Furthermore, regarding the main magnetic pole and other components in the perpendicular magnetic recording head, the bottom layer exposed from the medium facing surface is formed of an amorphous alloy thin film, and the area near the non-exposed electromagnetic transducer is formed of a crystalline alloy thin film. If the thickness of the layers is increased by laminating them, the gist of this invention is applicable.

このように4成した結果、つぎのような効果を得ること
ができる。
As a result of these four steps, the following effects can be obtained.

■ 磁性薄膜のうち、外界に露出する部分に耐蝕性の良
好な非晶質合金薄膜を用いているため、へ・ラドとして
の信頼性が著しく向上する。
■ Since amorphous alloy thin film with good corrosion resistance is used in the part of the magnetic thin film exposed to the outside world, reliability as a HE/RAD is significantly improved.

■ 露出しない電磁変換素子近傍vc積層する磁性薄膜
層は磁気的飽和をおこさせないようにすると同時に書込
み効率を向上させろが、この磁性薄膜層としてNi−F
e系結晶質合金薄膜全めっき法で形成することが、低温
形成の利点、すなわち結晶化するなど比較的l晶度履歴
に弱い非晶質合金薄膜の磁気特性を損わずに積層化が可
能といった効果金持たらす。
■ The magnetic thin film layer stacked near the electromagnetic transducer that is not exposed should prevent magnetic saturation and at the same time improve writing efficiency.
Forming an e-based crystalline alloy thin film using the full plating method has the advantage of low-temperature formation, in other words, it is possible to stack layers without impairing the magnetic properties of amorphous alloy thin films that are relatively susceptible to crystallinity history such as crystallization. The effect is to make money.

その結果、信頼性が高く、しかも製法が簡便な薄膜磁気
ヘッドを実現できることになる。
As a result, a thin film magnetic head that is highly reliable and easy to manufacture can be realized.

発明の効果 この発明の薄膜磁気ヘッドは、媒体対向面から露出する
部分を非晶質合金薄膜で形成しているため耐蝕性を良好
とすることができ、厚みを必要とする非露出の電磁変換
素子近傍は結晶質合金を上層VC積層するようにしてい
るため製色が容易となる。
Effects of the Invention The thin film magnetic head of the present invention has good corrosion resistance because the portion exposed from the medium facing surface is formed of an amorphous alloy thin film. In the vicinity of the element, a crystalline alloy is laminated as an upper layer of VC, making it easy to produce colors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜磁気へ・ラドの断面図、第2図はそ
の拡大図、第3図はこの発明の実施例の断面図、第4図
はりフトオフ法の説明図である・5・・・記録媒体、1
1・・・基板、12・・・下側磁t!!E層、i2a・
・・磁性薄膜(非晶質合金)、12b、12c・・・磁
性薄膜(結晶質合金)、13・・・上側磁性層、13a
・・・磁性薄膜(非晶質合金)、13b・・・磁性薄膜
(結<r′、、  2  ry:I 2γ33図 第 4 図
Fig. 1 is a cross-sectional view of a conventional thin-film magnetic field, Fig. 2 is an enlarged view thereof, Fig. 3 is a cross-sectional view of an embodiment of the present invention, and Fig. 4 is an explanatory diagram of the beam lift-off method.・Recording medium, 1
1... Board, 12... Lower magnet t! ! E layer, i2a・
...Magnetic thin film (amorphous alloy), 12b, 12c...Magnetic thin film (crystalline alloy), 13...Upper magnetic layer, 13a
...Magnetic thin film (amorphous alloy), 13b...Magnetic thin film (crystal <r',, 2 ry:I 2γ33Fig. 4

Claims (1)

【特許請求の範囲】 (11基板と、この基板上に形成した電磁変換素子と、
前記基板上に前記電磁変換素子の近傍が厚くなるととも
に記録媒体への対向面近傍が薄くなるように多層形成し
て前記電磁変換素子と前記記録媒体とを磁気結合する磁
性層であって前記記録媒体への対向面よV露出する最下
層を非晶質合金薄膜で形成するとともに非露出の前記電
磁変換素子の近傍のみ前記最下層に積層する上層を結晶
質合金薄膜で形成したla磁性層全備えた薄膜磁気へ・
ラド・ (2)  前記非晶質合金薄膜がメタル−メタル系非晶
質合金よりなる特許請求の範囲第(1)項記載の薄膜磁
気へ・ラド。 (3)前記メタル−メタル系非晶質合金がCo −Fe
−Nb合金である特許請求の範囲第(21項記載の薄膜
磁気ヘッド。 (41前起結品質合金薄膜がめつき法で形成されている
特許請求の範囲第(11項記載の薄膜磁気へ・ラド。
[Claims] (11 substrate, an electromagnetic conversion element formed on this substrate,
A magnetic layer that magnetically couples the electromagnetic transducer and the recording medium by forming multiple layers on the substrate so that the area near the electromagnetic transducer is thicker and the area facing the recording medium is thinner, and the magnetic layer is formed to magnetically couple the electromagnetic transducer and the recording medium. The entire la magnetic layer has a lowermost layer exposed from the surface facing the medium made of an amorphous alloy thin film, and an upper layer laminated to the lowermost layer only near the non-exposed electromagnetic transducer element made of a crystalline alloy thin film. To the thin film magnetism equipped with
(2) The thin film magnetic layer according to claim (1), wherein the amorphous alloy thin film is made of a metal-metal amorphous alloy. (3) The metal-metal amorphous alloy is Co-Fe
- A thin film magnetic head according to claim 21, in which the Nb alloy is formed by a plating method. .
JP10520183A 1983-06-13 1983-06-13 Thin film magnetic head Pending JPS59231723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10520183A JPS59231723A (en) 1983-06-13 1983-06-13 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10520183A JPS59231723A (en) 1983-06-13 1983-06-13 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS59231723A true JPS59231723A (en) 1984-12-26

Family

ID=14401048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10520183A Pending JPS59231723A (en) 1983-06-13 1983-06-13 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS59231723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128012A (en) * 1985-11-29 1987-06-10 Citizen Watch Co Ltd Thin film magnetic head
JPS6353707A (en) * 1986-08-22 1988-03-08 Hitachi Ltd Thin film magnetic head
FR2716996A1 (en) * 1994-03-07 1995-09-08 Commissariat Energie Atomique Vertical magnetic head and its production method.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128012A (en) * 1985-11-29 1987-06-10 Citizen Watch Co Ltd Thin film magnetic head
JPS6353707A (en) * 1986-08-22 1988-03-08 Hitachi Ltd Thin film magnetic head
FR2716996A1 (en) * 1994-03-07 1995-09-08 Commissariat Energie Atomique Vertical magnetic head and its production method.
EP0671724A1 (en) * 1994-03-07 1995-09-13 Commissariat A L'energie Atomique Vertical magnetic head and manufacturing process

Similar Documents

Publication Publication Date Title
US3813766A (en) Process for manufacture of a magnetic transducer using a pre-existing unitary foil
US4516180A (en) Thin film magnetic head
US4489484A (en) Method of making thin film magnetic recording heads
US5959813A (en) Combination read/write thin film magnetic head using a shielding magnetic layer
JPS59231723A (en) Thin film magnetic head
JPH0329104A (en) Thin-film magnetic head
JPS62172515A (en) Thin film magnetic head for varied servo system
JPS61178710A (en) Thin film magnetic head and manufacture thereof
US6042897A (en) Combination read/write thin film magnetic head and its manufacturing method
JP3177852B2 (en) Thin film magnetic head
JP2891817B2 (en) Magnetic head manufacturing method
JPS62164203A (en) Production of thin film magnetic head
JP2629326B2 (en) Magnetic head and method of manufacturing the same
JPS61158017A (en) Thin film magnetic head
JPS62132209A (en) Thin film magnetic head
JP3175277B2 (en) Thin film magnetic head
JPH03252909A (en) Magnetic substrate of groove structure for thin-film head for perpendicular magnetic recording and reproducing
JPH0498607A (en) Thin-film magnetic head
JP2630380B2 (en) Method for manufacturing thin-film magnetic head
JP2002025009A (en) Thin film magnetic head and its manufacturing method
JPH06131627A (en) Thin film magnetic head and its production
JPH0192914A (en) Thin film magnetic head
JPS63103409A (en) Thin film magnetic head
JPS5898823A (en) Production for thin film magnetic head
JPH0457205A (en) Perpendicular magnetic recording and reproducing thin film head