JPS63103409A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS63103409A
JPS63103409A JP24912386A JP24912386A JPS63103409A JP S63103409 A JPS63103409 A JP S63103409A JP 24912386 A JP24912386 A JP 24912386A JP 24912386 A JP24912386 A JP 24912386A JP S63103409 A JPS63103409 A JP S63103409A
Authority
JP
Japan
Prior art keywords
substrate
magnetic core
core
head
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24912386A
Other languages
Japanese (ja)
Inventor
Masanobu Yoshisato
善里 順信
Naoto Matono
直人 的野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24912386A priority Critical patent/JPS63103409A/en
Publication of JPS63103409A publication Critical patent/JPS63103409A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks

Abstract

PURPOSE:To easily make a track form in a narrow shape, and to make a track width itself form with high accuracy, by forming a lower part magnetic core in a cross-sectional rectangular shape, embedding the lower part magnetic core in a substrate, and exposing the plane on the short side of the core on the substrate. CONSTITUTION:The width of the lower part magnetic core 10 embedded in a head substrate 7 with structure in which a second nonmagnetic substrate 9 is laminated on a first nonmagnetic substrate 8, and the cross-section of which is formed in a rectangular shape, that is the length of the short side is formed <=10mum, and the plane of the short side on one side is exposed on the substrate 7 by sandwiching both side planes with the nonmagnetic substrate 9 in the head substrate 7, and it is flushed with the upper plane of the substrate 7. In such way, in the titled thin film magnetic head, the gap width of the head is decided by the gap width of the lower magnetic core 10, that is, the length of the short side, thereby, it is possible not only to constitute it smaller than the processing width of etching of an upper part magnetic core 14 considerably, but, to prevent the gap width from being affected by the thickness of the upper part magnetic core 14 even when it is formed in a thick shape considerably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気記録再生装置に装備される薄膜磁気ヘ
ッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film magnetic head installed in a magnetic recording/reproducing device.

〔従来の技術〕[Conventional technology]

従来より、磁気記録再生装置に装備される磁気ヘッドに
おいては、ヘッドの小形化ならびに量産性向上を図るだ
めに、薄膜技術を駆使してなる薄膜磁気ヘッドの開発と
実用化が進められている。
2. Description of the Related Art Conventionally, with respect to magnetic heads installed in magnetic recording and reproducing devices, development and practical use of thin film magnetic heads using thin film technology have been progressing in order to reduce the size of the heads and improve mass productivity.

この薄膜磁気ヘッドは、第5図に示すように、基板(1
)上に蒸着あるいはスパッタリングにより膜状の下部磁
性コア(2)を形成したのち、ホトリゾグラフィ技術を
用いて、ギャップスペーサ層(3)、導体コイル層(4
)、絶縁層(5)および膜状の上部磁性コア(6)を順
次積層形成して構成されており、この種薄膜磁気ヘッド
は、たとえば特開昭60−170013号(GIIB 
5/31)公報にも示きれている。
This thin film magnetic head has a substrate (1
), a film-like lower magnetic core (2) is formed by vapor deposition or sputtering, and then a gap spacer layer (3) and a conductor coil layer (4) are formed using photolithography technology.
), an insulating layer (5), and a film-like upper magnetic core (6) are sequentially laminated, and this type of thin-film magnetic head is described, for example, in Japanese Patent Application Laid-Open No. 170013/1983 (GIIB
5/31) It is also shown in the official gazette.

一方、近年、磁気記録技術においては、記録密度を向上
するため、 (1)記録媒体の抗磁力を上げ、記録波長を短かくする
(線密度の向上) (11)記録トラックのトラック幅を小さくする(トラ
ック密度の向上) の両方の技術開発が中心になって進められている。
On the other hand, in recent years, in magnetic recording technology, in order to improve recording density, (1) increasing the coercive force of the recording medium and shortening the recording wavelength (improving linear density) (11) decreasing the track width of the recording track (Improvement of track density)

そして、前記薄膜磁気ヘッドにおいても、前述した記録
密度の向上のために、 (I)高抗磁力媒体への記録密度を向上するため、磁性
コアの飽和磁束密度を向上させるとともに、磁性コアの
膜厚を可能な限り厚く形成し、特に記録時におけるコア
内部での磁束の飽和を防止する (II)ホトリゾグラフィ技術により、トラック幅を可
能な限り小さく加工する の技術開発が進められている。
Also in the thin film magnetic head, in order to improve the recording density as described above, (I) In order to improve the recording density on a high coercive force medium, the saturation magnetic flux density of the magnetic core is improved, and the film of the magnetic core is Technological developments are underway to make the track width as small as possible using (II) photolithography technology, which makes the track width as thick as possible and prevents the saturation of magnetic flux inside the core, especially during recording.

ところが、(II)のホトリゾグラフィ技術によるエツ
チング加工では、サイドエツチングにより被エツチング
膜の模写に応じて最小エツチング幅およびエツチング精
度に限界を生じ、このため、薄膜磁気ヘッドにおいても
、上部磁性コアの膜厚で最小トラック幅および精度(ば
らつき)が制限されている。
However, in the etching process using photolithography technology (II), there are limits to the minimum etching width and etching accuracy due to side etching, depending on the copying of the film to be etched. The minimum track width and accuracy (variation) are limited by the film thickness.

すなわち、第6図は薄膜磁気ヘッドのギャップ面を示し
ているが、このヘッドのトラック幅tは、ホトリゾグラ
フィ技術によって加工された下部磁性コア(2)および
ギャップスペーサ層(3)上に積層された上部磁性コア
(6)の底辺の幅で決定される。
That is, FIG. 6 shows the gap plane of a thin-film magnetic head, and the track width t of this head is determined by the thickness of the gap spacer layer (3) laminated on the lower magnetic core (2) and gap spacer layer (3) processed by photolithography. It is determined by the width of the bottom of the upper magnetic core (6).

ここで、ホトエツチング加工では、前述したように、被
エツチング膜(磁性コア)にサイドエッチが必然的に発
生し、エツチング面は±θの角度(0くθ<90°)の
傾斜面となり、この結果、上部磁性コア(6)の断面は
、底辺がトラック幅t、高さが膜J!¥dの台形となる
Here, in the photoetching process, as mentioned above, side etching inevitably occurs on the film to be etched (magnetic core), and the etched surface becomes an inclined surface with an angle of ±θ (0° and θ<90°). As a result, the cross section of the upper magnetic core (6) has a track width t at the bottom and a film J! at the height. It becomes a trapezoid of ¥d.

ところで、前記(I)に述べたように、メタルテープ等
の高抗磁力記録媒体に十分な記録能力を持たせるために
は、記録時におけるコア内部での磁束の飽和を防止する
必要があり、磁性コアの膜厚を厚く形成することが要求
され、10μm以上の膜厚が必要と考えられている。
By the way, as mentioned in (I) above, in order to provide a high coercive force recording medium such as a metal tape with sufficient recording capacity, it is necessary to prevent saturation of the magnetic flux inside the core during recording. It is required to form the magnetic core with a thick film thickness, and it is thought that a film thickness of 10 μm or more is necessary.

他方、前記したサイドエッチの角度θは、通常45°以
上であり、高い方向性を持つイオンビームエツチング法
を利用しても、高々30°以上である。
On the other hand, the angle θ of the side etching described above is usually 45° or more, and even if an ion beam etching method with high directionality is used, it is at most 30° or more.

この結果、上部磁性コア(6)の膜厚dを10μmに保
持した場合、トラック幅tは12〜20μmが限界で、
これより小さくしようとすると、第7図に示すように、
上部磁性コア(6)が断面三角形となり、その膜厚dが
10μm以下となる上、断面積がより小さくなり、記録
時にコア内部での磁束の飽和がより発生しやすく、高抗
磁力記録媒体への記録が困難になる。
As a result, when the film thickness d of the upper magnetic core (6) is kept at 10 μm, the track width t is limited to 12 to 20 μm.
If you try to make it smaller than this, as shown in Figure 7,
The upper magnetic core (6) has a triangular cross-section, the film thickness d is 10 μm or less, and the cross-sectional area is smaller, making saturation of magnetic flux inside the core more likely to occur during recording, making it a high coercive force recording medium. becomes difficult to record.

さらに、前記したように、この種薄膜磁気ヘッドのトラ
ック幅は、ホトリゾグラフィ技術によって形成された上
部磁性コア(6)の底辺の幅で決定されるが、このトラ
ック幅は、上部磁性コア(6)の膜厚が厚くなる程、エ
ツチング時間およびサイドエツチングの形成の角度のば
らつきの影響を受け、たとえば10μmの膜厚のエツチ
ングでは±2μm以上のばらつきは避けられず、トラッ
ク幅精度に限界を生じ、歩留りの上からも不都合となる
Furthermore, as described above, the track width of this type of thin film magnetic head is determined by the width of the bottom of the upper magnetic core (6) formed by photolithography; 6) As the film thickness increases, it is affected by variations in etching time and side etching angle. For example, when etching a film thickness of 10 μm, variations of ±2 μm or more are unavoidable, which limits the track width accuracy. This is disadvantageous in terms of yield.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、前記の点に留意してなされたものであり、
薄膜磁気ヘッドにおいて、上部磁性コアおよび下部磁性
コアに十分なコア厚みを有し、狭トラツク化が可能なト
ラック幅の規制を実現し、かつトラック幅の寸法精度を
高め得る手段を提供しようとするものである。
This invention was made with the above points in mind,
In a thin film magnetic head, an upper magnetic core and a lower magnetic core have sufficient core thickness, the track width can be controlled to be narrower, and the dimensional accuracy of the track width can be improved. It is something.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明は、基板に、下部磁性コア、ギャップスペーサ
′J、導体コイル層および上部磁性コアを)頃次形成し
てなる1嘆磁気ヘッドにおいて、前記下部磁性コアを断
面矩形状とし、前記基板に前記下部磁性コアを埋設する
とともに、該コアの短辺側の面を前記基板上に露出させ
たことを特徴とするものである。
The present invention provides a magnetic head in which a lower magnetic core, a gap spacer 'J, a conductor coil layer, and an upper magnetic core are sequentially formed on a substrate, in which the lower magnetic core has a rectangular cross section, and the lower magnetic core has a rectangular cross section. The present invention is characterized in that the lower magnetic core is buried, and the shorter side surface of the core is exposed on the substrate.

〔作 用〕[For production]

したがって、この発明によれば、基板に埋設てれた断面
矩形状の下部磁性コアの幅、すなわち短辺の長さで1模
磁気ヘッドのトラック幅が決定されるため、下部磁性コ
アの製造法および構造によってトラック幅を高精度に規
制でき、しかも、上部磁性コアの幅を下部磁性コアの短
辺の長さより大きく形成してもトラック幅には何づ影響
を及ぼすことがなく、下部磁性コアのみならず上部磁性
コアを十分な厚みに形成することが可能となる。
Therefore, according to the present invention, the track width of one magnetic head is determined by the width of the lower magnetic core with a rectangular cross section embedded in the substrate, that is, the length of the short side. The track width can be regulated with high precision by the structure, and even if the width of the upper magnetic core is made larger than the length of the short side of the lower magnetic core, the track width will not be affected in any way, and the lower magnetic core In addition, it becomes possible to form the upper magnetic core with a sufficient thickness.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した第1図ない
し第4図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 4 showing one embodiment thereof.

まず、1嘆磁気ヘッドの構造を示した第1図によび第2
図において、(7)は第1非磁注基板(8)上に第2非
磁注基板(9)を積層した構造のヘッド用基板、(10
は該基板(7)に埋設され断面が矩形状をした薄帯状の
下部磁性コアであり、該コアαQの幅、すなわち短辺の
長さが10μm以下に形成され、ヘッド用基板(7)の
非磁性基板(9)によって両側面を挾持され、一方の短
辺側の面が基板(7)上に露出し、該基板(7)の上面
と面一になっている。
First, let's start with Figure 1, which shows the structure of a magnetic head, and Figure 2.
In the figure, (7) is a head substrate having a structure in which a second non-magnetic substrate (9) is laminated on a first non-magnetic substrate (8);
is a thin strip-shaped lower magnetic core with a rectangular cross section embedded in the substrate (7), and the width of the core αQ, that is, the length of the short side, is formed to be 10 μm or less, and the core is embedded in the head substrate (7). Both sides are held between non-magnetic substrates (9), and one short side surface is exposed on the substrate (7) and is flush with the top surface of the substrate (7).

01)は基板(7)上のフロントギャップ近傍に膜状に
形成されたギャップスペーサ層、θのは基板(7)上の
フロントギャップの後方に絶縁膜を介して成膜形成され
た導体コイル層、α東は導体コイル層(2)上にS i
02蒸着等により形成された絶縁層、Q→はギャップス
ペーサ層01.絶縁層@および下部磁性コア00の上面
にまたがって成膜形成された上部磁性コアであり、下部
磁性コアαOの幅(短辺の長さ)より幅広、すなわち1
0μm以上の嘔に形成され、フロントギャップ部におい
て両コアQl 、 (14)がギャップスペーサ層0υ
を介して対向し、バックギャップ部において両コアQQ
 、 Q→が接触している。
01) is a gap spacer layer formed in the vicinity of the front gap on the substrate (7), and θ is a conductive coil layer formed behind the front gap on the substrate (7) via an insulating film. , α East is S i on the conductor coil layer (2)
02 is an insulating layer formed by vapor deposition etc., and Q→ is a gap spacer layer 01. The upper magnetic core is formed as a film over the upper surface of the insulating layer @ and the lower magnetic core 00, and is wider than the width (length of the short side) of the lower magnetic core αO, that is, 1
Both cores Ql (14) are formed as a gap spacer layer of 0μm or more in the front gap part.
and both cores QQ at the back gap part.
, Q→ are in contact.

したがって、前記した構成の薄膜磁気ヘッドでは、その
トラック幅が下部磁性27010幅、すなわち短辺の長
さで決定され、上部磁性コアQ4)のエツチング加工幅
より十分小さく構成することができるばかりでなく、上
部磁性コアQ→を十分な厚みで構成しても、トラック幅
には何ら影響を及ぼすことがない。
Therefore, in the thin film magnetic head having the above configuration, the track width is determined by the width of the lower magnetic core 27010, that is, the length of the short side, and can not only be configured to be sufficiently smaller than the etching width of the upper magnetic core Q4). Even if the upper magnetic core Q→ is configured to have a sufficient thickness, the track width will not be affected in any way.

つぎに、前記薄膜磁気ヘッドの製造方法を、第3図およ
び第4図を用いて説明する。
Next, a method for manufacturing the thin film magnetic head will be explained with reference to FIGS. 3 and 4.

まず、第3図(a)に示すように、ガラヌ、セラミック
等よりなる非磁性基板(9)上に、スパッタリングある
いは蒸着によりセンダスl−、Go系非晶質膜等の磁性
膜α9を所定のトラック幅(たとえば5〜10μm)に
相当する厚みに成膜する。
First, as shown in FIG. 3(a), a magnetic film α9 such as Sendas l- or Go-based amorphous film is deposited on a non-magnetic substrate (9) made of galanus, ceramic, etc. by sputtering or vapor deposition. A film is formed to a thickness corresponding to the track width (for example, 5 to 10 μm).

そして、前記磁性膜α9を成膜した基板(9)を、同図
(b)に示すように、複数枚積層接着してブロック体α
Qを構成し、該ブロック体αQを、下部磁性コア00の
コア厚みに相当する寸法でスライスし、同図(e)に示
すスライス基板0ηを得る。
Then, a plurality of substrates (9) on which the magnetic film α9 has been formed are laminated and bonded to form a block body α, as shown in FIG.
The block body αQ is sliced into a dimension corresponding to the core thickness of the lower magnetic core 00 to obtain a sliced substrate 0η shown in FIG.

さらに、同図(d)に示すように、非磁性基板(8)上
に前記スライス基板(17)を接合し、ヘッド用基板(
7)を完成する。このとき、スライス基板αηの磁性膜
05が断面矩形状の下部磁性コア00となり、該コアO
Qが基板(7)に埋設され、コアQlの短辺側の面が基
板(7)上に露出することになる。
Furthermore, as shown in FIG. 2(d), the sliced substrate (17) is bonded onto the non-magnetic substrate (8), and the head substrate (
Complete 7). At this time, the magnetic film 05 of the sliced substrate αη becomes the lower magnetic core 00 with a rectangular cross section, and the core O
Q is buried in the substrate (7), and the short side surface of the core Ql is exposed on the substrate (7).

つぎに、第4図(a)に示すように、前述のようにして
得られたヘッド用基板(7)上のフロントギャップ近傍
に、ギャップスペーサ層0ηを成膜形成する。
Next, as shown in FIG. 4(a), a gap spacer layer 0η is formed in the vicinity of the front gap on the head substrate (7) obtained as described above.

このとき、基板(7)上の導体コイ/1/層(2)が接
する部分に8102膜等の絶縁膜が形成される。たとえ
ば、基板(7)上に絶縁膜を全面に形成したのち、ギャ
ップスペーサ層αυが形成されるフロントギャップ部分
および上部磁性コアα弔が基板(7)上に接するパック
ギャップ部分のそれぞれの絶縁膜がエツチングにより除
去され、その後、前記ギャップスペーサ層Q1)が形成
される。
At this time, an insulating film such as an 8102 film is formed on the substrate (7) at a portion where the conductor coil/1/layer (2) contacts. For example, after forming an insulating film on the entire surface of the substrate (7), the insulating film is formed on each of the front gap part where the gap spacer layer αυ is formed and the pack gap part where the upper magnetic core αυ contacts the substrate (7). is removed by etching, and then the gap spacer layer Q1) is formed.

さらに、同図(b)に示すように、基板(7)上に導体
コイル層(イ)をホトエツチング法等で形成する。
Furthermore, as shown in FIG. 2(b), a conductive coil layer (a) is formed on the substrate (7) by photoetching or the like.

その後、同図(C)に示すように、導体コイル層亜上の
上部磁性コアQ→が形成される部分に、SiO2膜の蒸
Mあるいはポリイミド系樹脂による絶縁層Oeを形成し
たのち、上部磁性コアα→をスパッタリングおよびホト
リゾグラフィによって形成する。
After that, as shown in the same figure (C), an insulating layer Oe made of vaporized SiO2 film or polyimide resin is formed on the part of the conductor coil layer where the upper magnetic core Q→ is formed, and then the upper magnetic core Q→ is formed. The core α→ is formed by sputtering and photolithography.

したがって、前述のようにして得られた薄膜磁気ヘッド
では、トラック幅を規制する下部磁性コア00の幅が、
蒸着またはスパッタによる磁性層Q9の成膜膜厚によっ
て制御されるため、トラック幅をIOμm〜数μmまで
容易に小さくすることができ、しかも、その精度を±0
.2μm以下とすることができる。
Therefore, in the thin film magnetic head obtained as described above, the width of the lower magnetic core 00 that regulates the track width is
Since it is controlled by the thickness of the magnetic layer Q9 formed by evaporation or sputtering, the track width can be easily reduced from IO μm to several μm, and the accuracy can be reduced to ±0.
.. The thickness can be set to 2 μm or less.

なお、下部磁性コアαGは、実施例で説明したように蒸
着、スパッタによって形成するほか、Co・Fe系非晶
質薄帯あるいはセンダスト薄帯等を所定の厚み(トラッ
ク幅に相当)に形成し、これを第3図で説明した場合と
同様に、基板(9)との積層。
The lower magnetic core αG may be formed by vapor deposition or sputtering as explained in the examples, or may be formed by forming a Co-Fe-based amorphous ribbon or Sendust ribbon to a predetermined thickness (corresponding to the track width). , laminated with the substrate (9) in the same way as described in FIG.

スライス、基板(8)への接合によってヘッド用基板(
7)を構成し、下部磁性コア(IcIとしてもよい。
The head substrate (
7) and may be a lower magnetic core (IcI).

この場合は、下部磁性コア0qとしての薄帯の〒成膜の
機械加工(研摩等)によってトラック幅を制御でき、前
述の場合と同様、トラック幅の狭トラック化、高精度化
が可能となる。
In this case, the track width can be controlled by machining (polishing, etc.) of the film formed on the thin strip as the lower magnetic core 0q, and as in the case described above, it is possible to narrow the track width and improve precision. .

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の薄膜磁気ヘッドによると、ト
ラック幅を断面矩形状の下部磁性コアの幅(短辺の長さ
)によって制御できるため、その狭トラツク化が容易で
あるとともに、トラック幅自身の高精変化が図れ、狭ト
ラツク化による高密度記録ができ、しかも、このトラッ
ク幅が上下部磁性コアのコア早みに影響されることがな
く、狭トラツクでかつコアを十分な厚みに形成すること
ができ、高抗磁力記象媒体への記録時でもコア内部の磁
束の飽和が発生しなく、記録密度の向上が図れる。
As described above, according to the thin film magnetic head of the present invention, the track width can be controlled by the width (length of the short side) of the lower magnetic core having a rectangular cross section. It is possible to achieve high-precision changes in the magnetic core itself, and high-density recording is possible by narrowing the track.Furthermore, this track width is not affected by the core speed of the upper and lower magnetic cores, and the track width is narrow and the core is sufficiently thick. Even when recording on a high coercive force recording medium, saturation of the magnetic flux inside the core does not occur, and the recording density can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はこの発明の薄膜磁気ヘッドの1実
施例を示し、第1図は斜視図、第2図は正面図、第3図
(a)〜(d)はそれぞれヘッド用基板の製造過程を示
す斜視図5第4図(a)〜(C)はそれぞれ薄膜磁気ヘ
ッドの製造過程を示す斜視図、第5図以下は従来の薄膜
磁気ヘッドを示し、第5図は斜視図、第6図および第7
図はそれぞれ正面図である。 (7)・・・ヘッド用基板、00・・・下部磁1生コア
、αυ・・・ギャップスペーサ層、04・・・導体コイ
ル層、Q4)・・・上部磁性コア。
1 to 4 show one embodiment of the thin film magnetic head of the present invention, in which FIG. 1 is a perspective view, FIG. 2 is a front view, and FIGS. 3(a) to 4(d) are head substrates, respectively. Figure 4 (a) to (C) are perspective views showing the manufacturing process of a thin film magnetic head, respectively. Figures 5 and below show a conventional thin film magnetic head; Figure 5 is a perspective view , Figures 6 and 7
Each figure is a front view. (7)... Head substrate, 00... Lower magnetic raw core, αυ... Gap spacer layer, 04... Conductor coil layer, Q4)... Upper magnetic core.

Claims (1)

【特許請求の範囲】[Claims] (1)基板に、下部磁性コア、ギャップスペーサ層、、
導体コイル層および上部磁性コアを順次形成してなる薄
膜磁気ヘッドにおいて、 前記下部磁性コアを断面矩形状とし、前記基板に前記下
部磁性コアを埋設するとともに、該コアの短辺側の面を
前記基板上に露出させたことを特徴とする薄膜磁気ヘッ
ド。
(1) On the substrate, a lower magnetic core, a gap spacer layer,
In a thin film magnetic head formed by sequentially forming a conductive coil layer and an upper magnetic core, the lower magnetic core has a rectangular cross section, the lower magnetic core is embedded in the substrate, and the short side surface of the core is A thin film magnetic head characterized by being exposed on a substrate.
JP24912386A 1986-10-20 1986-10-20 Thin film magnetic head Pending JPS63103409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24912386A JPS63103409A (en) 1986-10-20 1986-10-20 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24912386A JPS63103409A (en) 1986-10-20 1986-10-20 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS63103409A true JPS63103409A (en) 1988-05-09

Family

ID=17188277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24912386A Pending JPS63103409A (en) 1986-10-20 1986-10-20 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS63103409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199311A (en) * 2005-01-18 2006-08-03 Seisan Nipponsha:Kk Bag body having zipper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199311A (en) * 2005-01-18 2006-08-03 Seisan Nipponsha:Kk Bag body having zipper

Similar Documents

Publication Publication Date Title
EP0012913B1 (en) A method of making a thin film magnetic head and a head so made
US4321641A (en) Thin film magnetic recording heads
US4516180A (en) Thin film magnetic head
US4489484A (en) Method of making thin film magnetic recording heads
JP2000105906A (en) Production of thin film magnetic head
EP0006269A1 (en) Elements for magnetic heads, magnetic heads manufactured with these elements, methods for producing both
JP3394266B2 (en) Method of manufacturing magnetic write / read head
JPH0785289B2 (en) Method of manufacturing magnetic head
US7800862B1 (en) Magnetic recording head having secondary sub-gaps
JPS63103409A (en) Thin film magnetic head
JP2707758B2 (en) Method for manufacturing thin-film magnetic head
JPH0594603A (en) Perpendicular magnetic head
JP2891817B2 (en) Magnetic head manufacturing method
JPS60177418A (en) Thin film head for vertical magnetic recording and reproduction and its production
JPH05314448A (en) Bonding pad and forming method of bonding pad section
JPS62164203A (en) Production of thin film magnetic head
JP2664380B2 (en) Method for manufacturing thin-film magnetic head
JP2725878B2 (en) Thin film magnetic head
JPH08180323A (en) Thin film magnetic head and its manufacture
JP2000207709A (en) Manufacture of thin film magnetic head
JPH0721515A (en) Thin-film magnetic head
JPH03292605A (en) Production of floating type magnetic head
JPH04123304A (en) Induction type thin film magnetic head and its production
JPH0498607A (en) Thin-film magnetic head
JPS61276108A (en) Production of thin film magnetic head