JPS59230431A - System stabilizer - Google Patents

System stabilizer

Info

Publication number
JPS59230431A
JPS59230431A JP58102324A JP10232483A JPS59230431A JP S59230431 A JPS59230431 A JP S59230431A JP 58102324 A JP58102324 A JP 58102324A JP 10232483 A JP10232483 A JP 10232483A JP S59230431 A JPS59230431 A JP S59230431A
Authority
JP
Japan
Prior art keywords
synchronous generator
adjustment
output signal
switching logic
reactance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58102324A
Other languages
Japanese (ja)
Other versions
JPH0348736B2 (en
Inventor
三谷 哲之
宏 杉本
松下 邦雄
前田 龍巳
勝 下村
誠一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Shikoku Electric Power Co Inc
Priority to JP58102324A priority Critical patent/JPS59230431A/en
Publication of JPS59230431A publication Critical patent/JPS59230431A/en
Publication of JPH0348736B2 publication Critical patent/JPH0348736B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、電力系統の安定度向上に寄与する系統安定
化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system stabilizing device that contributes to improving the stability of a power system.

従来この種の系統安定化装置として、同期発電機の有効
電力を検出する方式(通常ΔF方式と呼ばれる)、同期
発電機の端子電圧より周波数を検出する方式(通常ΔF
方式と呼はれる)及び同期発電機の速度を検出する方式
(通常Δω方式と呼ばれる)とがあるが、ここでは−例
としてΔF方式で説明する。第1図は従来の系統安定化
装置の構成図を示す。第1図において、1は有効電力変
換器、2は系統安定化装置の位相補正要素、3は系統安
定化装置の増幅要素、4は自動電圧調整装置、5は同期
発電機、6は界磁しゃ断器、1は変流器(以下CTと呼
ぶ)及び8は変圧器(以下PTと呼ぶ)を示す。また1
0は調節装置であって、位相補正要素2及び増幅要素3
とを含むものであ次に動作について説明する。有効電力
変換器1によって検出された同期発電機の有効電力信号
を位相補正要素2及び増幅要素3から構成される装増幅
要素3からなる調節装置10は通常下記の式(1)のよ
うな伝達関数G (81で表わされる。
Conventionally, this type of system stabilization device uses a method to detect the active power of a synchronous generator (usually called the ΔF method), and a method to detect the frequency from the terminal voltage of the synchronous generator (usually called the ΔF method).
There are two methods: a method for detecting the speed of a synchronous generator (usually called a Δω method), and here, the ΔF method will be explained as an example. FIG. 1 shows a configuration diagram of a conventional system stabilizing device. In Fig. 1, 1 is an active power converter, 2 is a phase correction element of the system stabilization device, 3 is an amplification element of the system stabilization device, 4 is an automatic voltage regulator, 5 is a synchronous generator, and 6 is a field magnet. In the circuit breaker, 1 indicates a current transformer (hereinafter referred to as CT) and 8 indicates a transformer (hereinafter referred to as PT). Also 1
0 is an adjustment device, which includes a phase correction element 2 and an amplification element 3.
The operation will be explained next. A regulating device 10 comprising an amplifying element 3 comprising a phase correcting element 2 and an amplifying element 3 transmits the active power signal of the synchronous generator detected by the active power converter 1 as shown in the following equation (1). Function G (represented by 81).

但し、ここで K ・・・・・・・・・・増幅率(ゲイ
ン定数)TR・・・・・・・・・第1時定数 TLD 1・・・・・・第2時定数 TLG 1・・・・・・第3時定数 TLG2・・・・・・第4時定数 この式(1)の各時定数により右辺各項の第1.第2及
び第3位相補正値が決定され、全位相補正値及び増幅率
が適当な値であれば有効電力の変動に対して自動電圧調
整装置4を通して同期発電機5の励磁量を変化させるこ
とによって電力系統の安定化を計ることが可能である。
However, here K......Amplification factor (gain constant) TR......First time constant TLD 1...Second time constant TLG 1. ...Third time constant TLG2...Fourth time constant By each time constant of this equation (1), the first... If the second and third phase correction values are determined and the total phase correction value and amplification factor are appropriate values, the amount of excitation of the synchronous generator 5 is changed through the automatic voltage regulator 4 in response to fluctuations in active power. It is possible to stabilize the power system by

従来のこの種の系統安定化装置にあっては、単一の系統
構成条件のもとで、調節装置100位相補正要素2及び
増幅要素3の各設定定数を一義的に決定しており、多岐
に沿る送電線網からなる系統構成条件が変條した場合に
は、その調節装置のめ各送電線に設けた断路器、しゃ断
器などの作動によ−り系統に充分な安定度が確保できな
くなるという欠点があった。
In a conventional system stabilizing device of this type, each setting constant of the adjustment device 100, phase correction element 2, and amplification element 3 is uniquely determined under a single system configuration condition, and a wide variety of setting constants are determined. If the system configuration conditions consisting of the transmission line network along the line change, sufficient stability of the system can be ensured by operating disconnectors and circuit breakers installed on each transmission line as adjustment devices. The drawback was that it was impossible to do so.

本発明は、上記のような従来のものの欠点を除去するた
めになされたもので、系統構成条件の変化に応じて常に
最適な機能を発揮できる系統安定化装置を提供すること
を目的とするものである。
The present invention was made in order to eliminate the drawbacks of the conventional devices as described above, and an object of the present invention is to provide a system stabilizing device that can always perform optimal functions in response to changes in system configuration conditions. It is.

以下、この発明の一実施例を図について説明する。第2
図は、本実施例の系統安定化装置の動作説明のために描
かれた例示的な電力系統の系統構成1ネ1である。第2
図において、11〜14は送電線、15〜18は母線を
示す。第3図は本発明の一実施例による系統安定化装置
を示すブロック図であり、21は同期発電機5の自端情
報により系統リアクタンス値Xeを計算する演算器、2
2は上記演算器21により計算された同期発電機5の端
子から見た系統側のりアクタンス出力信号、23は上記
リアクタンス出力信号22により、調節装・−6〜 置10の中に   配置されている位相補正要素2〜2
′及び増幅要素3〜3′からなる調節回路力・ら最適な
定数をもつ調節回路を選択し、切換を行なう選択切換ロ
ジック部、24はこの選択切換ロジック部23より切換
出力信号を受けて切換を行1.cう接点である。第4図
は、第3図に示した位相補正要素2〜2′及び増幅要素
3〜3′を選択する選択切換ロジック部23を具体例と
しての構成図を示すもので、第4図において、40は演
算器21のリアクタンス出力信号22より、その系統リ
アクタンス値を模擬する抵抗、60は増幅器、61〜6
1′はいずれも予かじめ設定されたリアクタンス値と演
算器21にて計算した系統リアクタンス値直とを比較す
るための複数の比較器、11〜71舎1接点24〜24
′の夫々を動作させるリレーである。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure is an exemplary power system system configuration 1 drawn for explaining the operation of the system stabilizing device of this embodiment. Second
In the figure, 11 to 14 indicate power transmission lines, and 15 to 18 indicate bus bars. FIG. 3 is a block diagram showing a system stabilizing device according to an embodiment of the present invention, in which reference numeral 21 denotes an arithmetic unit that calculates the system reactance value Xe based on self-end information of the synchronous generator 5;
2 is a grid side reactance output signal as seen from the terminal of the synchronous generator 5 calculated by the arithmetic unit 21, and 23 is arranged in the adjustment device 6 to 10 based on the reactance output signal 22. Phase correction element 2-2
A selection switching logic unit 24 receives a switching output signal from this selection switching logic unit 23 and performs switching by selecting an adjustment circuit having an optimal constant from among the adjustment circuit power consisting of the amplification elements 3 to 3'. Row 1. It is a contact point. FIG. 4 shows a configuration diagram as a specific example of the selection switching logic section 23 for selecting the phase correction elements 2 to 2' and the amplification elements 3 to 3' shown in FIG. 40 is a resistor that simulates the system reactance value from the reactance output signal 22 of the arithmetic unit 21; 60 is an amplifier; 61 to 6;
1' is a plurality of comparators for comparing the reactance value set in advance and the system reactance value directly calculated by the calculator 21; 11-71 contacts 24-24;
This is a relay that operates each of .

次に動作について説明する。第2図に例示的に示すよう
な電力系統では、その時点の潮流、事故等で同期発電機
5の端子から見た系統リアクタンス値xeは変動する。
Next, the operation will be explained. In a power system as exemplarily shown in FIG. 2, the system reactance value xe seen from the terminal of the synchronous generator 5 fluctuates depending on the power flow at that time, an accident, etc.

そこで、この系統リアクタンスを同期発電機5の目端情
報に基づき演算器21が計算し、その前嬶された系統リ
アクタンス出力信号22により最適な定数をもつ調節回
路の位相補正要素2〜2′と増幅要素3〜3′からいず
れかを選択する操作が選択切換ロジック部23で行われ
るO 次に一例として演算器21にて行われる系統リアクタン
ス値の計算方法を以下に説明することにする。同期発電
機5の自端情報として有効電力をP、無効電力なQ、端
子電圧をvt、同期リアクタンス値をXd及びその背後
電圧をBfdとすると、下式が成り立つ。
Therefore, the system reactance is calculated by the arithmetic unit 21 based on the edge information of the synchronous generator 5, and the system reactance output signal 22 is used to calculate the phase correction elements 2 to 2' of the adjustment circuit having the optimum constant. An operation for selecting one of the amplification elements 3 to 3' is performed by the selection switching logic section 23.Next, as an example, a method of calculating the system reactance value performed by the arithmetic unit 21 will be described below. Assuming that the active power is P, the reactive power is Q, the terminal voltage is vt, the synchronous reactance value is Xd, and the back voltage is Bfd as self-end information of the synchronous generator 5, the following formula holds true.

・・・・−・・・・・・・(3) 式(21、(3)より位相角δを消去すれば、系統リア
クタンス出力信号22としての系統リアクタンス値Xc
は容易に求められることになる。
・・・・・・・・・・・・・・・(3) If the phase angle δ is eliminated from equations (21 and (3)), the system reactance value Xc as the system reactance output signal 22
can be easily found.

また、次に第4図に示した具体例として選択切換ロジッ
ク部の動作を説明することにする。ここでは上記のよう
に計算された系統リアクタンス値Xeに応じて可変抵抗
40を変化させ、その可変抵抗40の電圧信号を増幅す
る増幅器60の出力信号とあらかじめ設定したりアクタ
ンス値と比較する各比較器61〜61により、系統構成
条件の時々刻々の変化に伴い最も近い系統リアクタンス
値を選んで、その時点での接点24〜24′のいずれか
を働かせる。これにより計算された系統リアクタンス値
に対して最適な制御定数の伝達関数をもつ調節回路IQ
a〜10a′が選択される。以上より任意の系統構成条
件に対して最適な系統安定化装置を得ることができる。
Next, the operation of the selection switching logic section will be explained as a specific example shown in FIG. Here, the variable resistor 40 is changed according to the system reactance value Xe calculated as described above, and each comparison is made to compare the voltage signal of the variable resistor 40 with the output signal of the amplifier 60 that amplifies it or with a preset reactance value. The closest system reactance value is selected by the switches 61 to 61 as the system configuration conditions change moment by moment, and any one of the contacts 24 to 24' at that time is activated. Adjustment circuit IQ with the optimum control constant transfer function for the system reactance value calculated by this
a to 10a' are selected. From the above, it is possible to obtain an optimal system stabilizing device for any system configuration conditions.

なお上記実施例では系統安定化装置のハードウェアを接
点等を揚げて説明したがこれらは全てディジタル装置で
もよく、またアナログ回路及びリレー回路の組合せもし
くはディジタル回路及びアナログ回路の並用でも上記実
施例と同様の効果な同期発電機の自端情報により系統リ
アクタンス値を求めその系統リアクタンス値により最適
な要素を選択する様に系統安定化装置を構成したので、
常に系統構成条件に応じた最適な効果をもった系統安定
化装置が実現できる。
In the above embodiment, the hardware of the system stabilization device was explained by referring to contacts, etc., but all of these may be digital devices, or a combination of an analog circuit and a relay circuit, or a combination of a digital circuit and an analog circuit may also be used. Since the system stabilization device was configured to obtain the system reactance value using the self-end information of the synchronous generator, which has a similar effect, and select the optimal element based on the system reactance value,
It is possible to realize a system stabilizing device that always has an optimal effect according to the system configuration conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の系統安定化装置の構成図、第2図は本発
明の一実施例装置を適用する電力系統例の系統構成図、
第3図は本発明の一実施例による系統安定化装置の構成
図、第4図は第3図実施例の一部をなす選択切換ロジッ
ク部の具体構成図を示す。 1・・・有効電力変換器、2〜2′・・・位相補正要素
、3〜3′・・・増幅要素、4・−・自動電圧調整装置
、5・・・同期発電機、6・・・界磁しゃ断器、1・・
・CT、8・・・PT、10・・・調節装置、IQa〜
I Q a’・・・調節回路、11〜14・・・送電線
、15〜18・・・母線、21・・・71〜71′・・
・リレー。 なお、図中、同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第  1  図 第2図 ++  12  1,5  14 節  3  図 第  4  図 第1頁の続き 0発 明 者 田中誠− 神戸市兵庫区和田崎町1丁目1 番2号三菱電機株式会社制御製 作所内 ■出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2 番3号
FIG. 1 is a configuration diagram of a conventional system stabilizing device, and FIG. 2 is a system configuration diagram of an example of a power system to which an embodiment of the present invention is applied.
FIG. 3 is a block diagram of a system stabilizing device according to an embodiment of the present invention, and FIG. 4 is a specific block diagram of a selection switching logic section forming a part of the embodiment of FIG. DESCRIPTION OF SYMBOLS 1... Active power converter, 2-2'... Phase correction element, 3-3'... Amplifying element, 4... Automatic voltage regulator, 5... Synchronous generator, 6...・Field breaker, 1...
・CT, 8...PT, 10...adjustment device, IQa~
I Q a'...adjustment circuit, 11-14...power transmission line, 15-18...bus bar, 21...71-71'...
·relay. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa 1 Figure 2 ++ 12 1,5 Section 14 3 Figure 4 Continued from Figure 1 Page 0 Inventor Makoto Tanaka - Mitsubishi Electric Co., Ltd., 1-1-2 Wadazaki-cho, Hyogo-ku, Kobe City Inside the company control manufacturing facility ■Applicant Mitsubishi Electric Corporation 2-2-3 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 同期発電機からの有効電力、周波数又は速度信号を検出
し入力された調節装置の出力信号に基づいて上記同期発
電機への励磁量を自動電圧調整装置を介して制御する系
統安定化装置において、上記調節装置は相互に位相補正
値及び増幅率を異にする複数の調節回路を有すると共に
、上記同期発電機からの自端情報に基づき上記同期発*
、機の端子から見た系統リアクタンス値を算出する演算
器の出力信号を選択切換ロジック部に供給し、上記選択
切換ロジック部は上記調節装置の中から最適な制御定数
を有する調節回路を選定することにより上記同期発電機
に連系される系統の安定度を制御したことを特徴とする
系統安定化装置。
A system stabilization device that detects active power, frequency, or speed signals from the synchronous generator and controls the amount of excitation to the synchronous generator via an automatic voltage regulator based on the input output signal of the regulator, The adjustment device has a plurality of adjustment circuits that have mutually different phase correction values and amplification factors, and the synchronous generator * based on own-end information from the synchronous generator.
, the output signal of the arithmetic unit that calculates the system reactance value seen from the terminal of the machine is supplied to a selection switching logic section, and the selection switching logic section selects an adjustment circuit having an optimal control constant from among the adjustment devices. A system stabilizing device characterized by controlling the stability of a system connected to the synchronous generator.
JP58102324A 1983-06-08 1983-06-08 System stabilizer Granted JPS59230431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102324A JPS59230431A (en) 1983-06-08 1983-06-08 System stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102324A JPS59230431A (en) 1983-06-08 1983-06-08 System stabilizer

Publications (2)

Publication Number Publication Date
JPS59230431A true JPS59230431A (en) 1984-12-25
JPH0348736B2 JPH0348736B2 (en) 1991-07-25

Family

ID=14324368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102324A Granted JPS59230431A (en) 1983-06-08 1983-06-08 System stabilizer

Country Status (1)

Country Link
JP (1) JPS59230431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179224A (en) * 1988-12-28 1990-07-12 Tokyo Electric Power Co Inc:The Rotary machine controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179224A (en) * 1988-12-28 1990-07-12 Tokyo Electric Power Co Inc:The Rotary machine controller

Also Published As

Publication number Publication date
JPH0348736B2 (en) 1991-07-25

Similar Documents

Publication Publication Date Title
JP2846261B2 (en) Power system stabilizer
JP3657818B2 (en) Motor control device
JPS59230431A (en) System stabilizer
JP4073776B2 (en) Excitation control device
JPH09252537A (en) Power system stabilizer
US4308565A (en) Method and apparatus for fault direction determination
JPH06121598A (en) Excitation controller for synchronous machine
JP3796166B2 (en) Output adjustment method for multiple power supplies
JPH0348735B2 (en)
JP2981604B2 (en) Control device for private power generator
JPH01129800A (en) Excitation controller for synchronous machine
JP3829529B2 (en) Peak cut controller
JP2002010491A (en) Voltage stabilizer control method
JP2001268996A (en) Excitation controller for synchronous generator
JP3893097B2 (en) Frequency stabilizer
US2189630A (en) High speed presetting relay
JP2821722B2 (en) Method and apparatus for stabilizing power system
JPH0348734B2 (en)
JPH0530799A (en) Equipment for controlling excitation of synchronous machine
JPH027900A (en) Excitation control device of synchronous generator
JPS6362986B2 (en)
SU1372310A2 (en) Multiphase pulse voltage stabilizer
JPH04334999A (en) Digital control automatic voltage regulator for synchronous generator
JPS63144798A (en) Excitation controller for synchronous machine
JPH0270234A (en) Reactive power compensator