JP2002010491A - Voltage stabilizer control method - Google Patents

Voltage stabilizer control method

Info

Publication number
JP2002010491A
JP2002010491A JP2000192320A JP2000192320A JP2002010491A JP 2002010491 A JP2002010491 A JP 2002010491A JP 2000192320 A JP2000192320 A JP 2000192320A JP 2000192320 A JP2000192320 A JP 2000192320A JP 2002010491 A JP2002010491 A JP 2002010491A
Authority
JP
Japan
Prior art keywords
load
amount
voltage
control method
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000192320A
Other languages
Japanese (ja)
Inventor
Toru Maeda
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000192320A priority Critical patent/JP2002010491A/en
Publication of JP2002010491A publication Critical patent/JP2002010491A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage stabilizer control method which can assure low cost and high control precision. SOLUTION: The capacities, required to cutoff the load and power capacitor, are determined within the target range in advance, in preparation at interruption time of transmission lines. In step 21 to 25, a load bus voltage VL and load power PL are checked if they are within the target range. If they are not, the require capacities for cutting off the load and power capacitor are newly calculated, so that they are within the target range in step 26 to 34. In case the transmission lines are interrupted, the cut off operation is carried out, on the basis of the result thus calculated in advance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統に送電
線断が生じた場合の電圧安定度を維持するための電圧安
定化制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage stabilization control method for maintaining voltage stability when a transmission line is cut off in a power system.

【0002】[0002]

【従来の技術】従来、電力系統の電圧安定度問題を解決
するための対策としては、 1)送電線の増設 2)静止無効電力補償装置(SVC)、静止無効電力発
生装置(SVG)の導入 3)調相設備の増設 4)過負荷リレーの導入 などがある。図7は、過負荷リレー装置が設置された系
統のモデル系統図であり、図において、1は過負荷リレ
ー装置、2は無限大母線、4は負荷母線、3は無限大母
線2と負荷母線4を接続する送電線路、5は負荷母線4
に接続された負荷、6は負荷母線に接続された調相設備
である電力コンデンサ、7は送電線路3および負荷母線
4の電圧データ、電流データを計測するセンサである。
2. Description of the Related Art Conventionally, as measures to solve the voltage stability problem of a power system, 1) additional transmission lines 2) introduction of a static var compensator (SVC) and a static var generator (SVG). 3) Expansion of phase adjustment equipment 4) Introduction of overload relay. FIG. 7 is a model system diagram of a system in which an overload relay device is installed. In the figure, 1 is an overload relay device, 2 is an infinite bus, 4 is a load bus, 3 is an infinite bus 2 and a load bus. 4 is a transmission line to connect 4 and 5 is a load bus 4
, 6 is a power capacitor which is a phase adjusting device connected to the load bus, and 7 is a sensor for measuring voltage data and current data of the transmission line 3 and the load bus 4.

【0003】次に動作について説明する。過負荷リレー
装置1では、常時、送電線路3の線路電圧データ、電流
データ、および負荷5の遮断器信号を計測し、送電線路
3の過負荷を検出した場合に、負荷5の遮断器(図示せ
ず)に対して遮断指令を出力する。
Next, the operation will be described. The overload relay device 1 constantly measures line voltage data and current data of the transmission line 3 and a circuit breaker signal of the load 5, and when the overload of the transmission line 3 is detected, the circuit breaker of the load 5 (see FIG. (Not shown).

【0004】以下、送電線路3の過負荷を検出するため
の、送電線路潮流の算出処理について説明する。 Pe(t)={v(t)・i(t)+v(t−90゜) ・i(t−90゜)}/2 ・・・(1) ただし、v(t)、i(t):現在のサンプリング電
圧、電流の瞬時値v(t−90゜)、i(t−90
゜):電気角90゜前のサンプリング電圧、電流の瞬時
値 (1)式で算出した線路潮流について、下式のように移
動平均処理を行う。 P(t)={Pe(t)+Pe(t−90゜)+Pe(t−180゜) +Pe(t−270゜)}/4・・・(2)
Hereinafter, a description will be given of a process of calculating a power flow in a transmission line for detecting an overload of the transmission line 3. Pe (t) = {v (t) .i (t) + v (t-90}). I (t-90}) / 2 (1) where v (t), i (t) : Current sampling voltage, current instantaneous value v (t-90 °), i (t-90
゜): Instantaneous value of sampling voltage and current 90 ° before electrical angle The moving average processing is performed on the line power flow calculated by the equation (1) as in the following equation. P (t) = {Pe (t) + Pe (t−90 °) + Pe (t−180 °) + Pe (t−270 °)} / 4 (2)

【0005】(2)式で算出した送電線路の移動平均潮
流P(t)が、事前に設定したしきい値を超過した場合
に、負荷5の遮断器に対して遮断指令を出力する。
When the moving average power flow P (t) of the transmission line calculated by the equation (2) exceeds a preset threshold value, a cutoff command is output to the circuit breaker of the load 5.

【0006】[0006]

【発明が解決しようとする課題】電圧安定度問題に対す
る従来の対策に関して、 1)送電線の増設、SVC(またはSVG)の導入、調
相設備の増設については、設備コストが高い。 2)過負荷リレーについては、低コストで導入可能であ
るが、実際に電圧問題が生じるような系統においては、
既に相当量の調相設備(電力用コンデンサ)が投入され
ていることが予想されるため、送電線潮流の大きさのみ
で負荷遮断量を決定する過負荷リレー方式では、負荷遮
断実施後に、逆に過電圧が発生する可能性がある。 などの問題があった。
Regarding the conventional measures against the voltage stability problem, 1) the equipment cost is high for the addition of transmission lines, the introduction of SVC (or SVG), and the addition of phase adjustment equipment. 2) An overload relay can be introduced at low cost, but in a system where a voltage problem actually occurs,
Since it is expected that a considerable amount of phase adjustment equipment (power capacitors) has already been installed, the overload relay method, which determines the amount of load shedding only by the magnitude of the transmission line power flow, requires a reverse Overvoltage may occur. There was such a problem.

【0007】この発明は上記のような問題を解決するた
めになされたもので、従来の対策と比較して低コスト、
かつ、同等以上の制御精度が確保できる電圧安定化制御
方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and has a lower cost and a lower cost than conventional measures.
It is another object of the present invention to provide a voltage stabilization control method capable of ensuring equal or higher control accuracy.

【0008】[0008]

【課題を解決するための手段】請求項1に係る電圧安定
化制御方法は、電力系統の送電線断時に系統の運転点を
目標運転範囲内に収めるために必要な負荷遮断量および
電力用コンデンサ遮断量を事前に算出しておき、送電線
断が発生したとき、事前算出結果に基づいて負荷遮断お
よび電力用コンデンサ遮断を実施することにより、電圧
安定度を維持するものである。
According to a first aspect of the present invention, there is provided a voltage stabilization control method, comprising: a load shedding amount and a power capacitor required to keep an operation point of a system within a target operation range when a transmission line of a power system is cut off. The interruption amount is calculated in advance, and when the transmission line is disconnected, the load stability and the power capacitor interruption are performed based on the result of the preliminary calculation, thereby maintaining the voltage stability.

【0009】請求項2に係る電圧安定化制御方法は、電
力系統の送電線断時に系統の運転点を目標運転範囲内に
収めるために必要な負荷遮断量を事前に算出しておき、
送電線断が発生したとき、事前算出結果に基づいて負荷
遮断を実施することにより、電圧安定度を維持するもの
である。
In the voltage stabilization control method according to a second aspect, a load shedding amount required to keep an operation point of a system within a target operation range when a transmission line of a power system is cut off is calculated in advance,
When a transmission line disconnection occurs, voltage stability is maintained by performing load shedding based on a pre-calculation result.

【0010】請求項3に係る電圧安定化制御方法は、電
力系統の送電線断時に系統の運転点を目標運転範囲内に
収めるために必要な負荷遮断量、電力用コンデンサ遮断
量および分路リアクトル投入量を事前に算出しておき、
送電線断が発生したとき、事前算出結果に基づいて負荷
遮断、電力用コンデンサ遮断および分路リアクトル投入
を実施することにより、電圧安定度を維持するものであ
る。
According to a third aspect of the present invention, there is provided a voltage stabilization control method, comprising: a load interrupting amount, a power capacitor interrupting amount, and a shunt reactor required to keep an operating point of a power system within a target operating range when a power transmission line of a power system is disconnected. Calculate the input amount in advance,
When a transmission line disconnection occurs, the load stability, the power capacitor disconnection, and the shunt reactor injection are performed based on the pre-calculation result, thereby maintaining the voltage stability.

【0011】請求項4に係る電圧安定化制御方法は、請
求項1から請求項3のいずれかに記載のものにおいて、
負荷遮断の優先順を、制御量の少ない順にするものであ
る。請求項5に係る電圧安定化制御方法は、請求項1か
ら請求項3のいずれかに記載のものにおいて、負荷遮断
の優先順を、重要度の低い順にするものである。
According to a fourth aspect of the present invention, there is provided a voltage stabilization control method according to any one of the first to third aspects.
The priority order of load shedding is set in the order of smaller control amount. According to a fifth aspect of the present invention, in the voltage stabilization control method according to any one of the first to third aspects, the priority order of load shedding is set in order of decreasing importance.

【0012】[0012]

【発明の実施の形態】実施の形態1.実施の形態1の電
圧安定化制御方法を実施するための電圧安定化リレー装
置の配置構成は、従来の過負荷リレーの場合と同様に図
7にて示され、電圧安定化リレー装置は図中の1であ
り、図7は従来とこの実施の形態との共通のモデル系統
図である。電圧安定化リレー装置1では、常時、送電線
路3の線路電圧データ、電流データ、および負荷5の遮
断器信号、調相設備である電力用コンデンサ6の遮断器
信号を計測する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 The arrangement of the voltage stabilizing relay device for carrying out the voltage stabilizing control method according to the first embodiment is shown in FIG. 7 as in the case of the conventional overload relay. FIG. 7 is a model system diagram common to the prior art and this embodiment. The voltage stabilizing relay device 1 constantly measures line voltage data and current data of the transmission line 3, a circuit breaker signal of the load 5, and a circuit breaker signal of the power capacitor 6 which is a phase adjustment facility.

【0013】以下、図示外の別の送電線で、送電線断が
発生したときの、電圧安定化制御の動作について説明す
る。図1は、事前演算部分の制御フロー図であり、図1
に示すフローにしたがって、送電線断時にP−Vカーブ
上で系統の運転点を目標運転範囲内に収めるために必要
な負荷遮断量および調相設備(電力用コンデンサ)遮断
量を、一定周期で事前に算出する。
The operation of the voltage stabilization control when another transmission line (not shown) breaks the transmission line will be described below. FIG. 1 is a control flow diagram of a pre-computation part.
According to the flow shown in (1), the amount of load shedding and the amount of phase adjustment equipment (power capacitor) interruption required to keep the operating point of the system on the PV curve within the target operating range when the power transmission line is cut off are periodically changed. Calculate in advance.

【0014】まず、ステップ11では電圧安定化リレー
装置1の計測により自端情報を収集する。次に、ステッ
プ12の制御テーブル作成では、制御対象となる負荷お
よび調相設備(電力用コンデンサ)の遮断パターンをす
べて算出し、これを制御量の少ないものから順に並べ
る。ステップ13のXL算出では、送電線断時の線路等
価リアクタンスXLを求める。
First, in step 11, self-end information is collected by measurement of the voltage stabilizing relay device 1. Next, in the creation of the control table in step 12, all the cutoff patterns of the load to be controlled and the phase adjustment equipment (power capacitor) are calculated, and these are arranged in ascending order of control amount. The X L calculated in step 13 to determine the line equivalent reactance X L when the transmission line disconnection.

【0015】ステップ14の制御量算出演算では、送電
線断時のP−Vカーブ上で系統の運転点を目標運転範囲
内に収めるために必要な負荷遮断量および調相設備(電
力用コンデンサ)遮断量を算出する。本演算において想
定するP−Vカーブと目標運転範囲を図2に示す。図
中、黒丸に付いた矢印はそれぞれの遮断による移動方向
を示す。ここで、PLは負荷量(ただし、有効分)、VL
は負荷母線電圧、VLmax、VLminは許容電圧上限と下
限、PLmaxは最大負荷量、Kはマージンのための係数で
ある。
In the control amount calculation calculation in step 14, the load shedding amount and the phase adjustment equipment (electric power capacitor) required to keep the operating point of the system within the target operation range on the PV curve when the transmission line is cut off. Calculate the amount of interruption. FIG. 2 shows a PV curve and a target operation range assumed in this calculation. In the figure, the arrows attached to the black circles indicate the moving directions due to the respective interruptions. Here, P L is the load amount (however, effective portion), V L
Is the load bus voltage, VLmax and VLmin are the upper and lower limits of the allowable voltage, PLmax is the maximum load, and K is a coefficient for margin.

【0016】以下、遮断量算出手法を説明する。図3に
示すモデル系統において、負荷母線電圧VLは下式で与
えられる。 VL 2=VO 2+(VO 4−4PL 2L 2(1+BXL21/2) /(2(1+BXL2)・・・(3) ただし、VOは無限大母線電圧、B=BL−BC、BLとB
Cは負荷5と電力用コンデンサ6のサセプタンスであ
る。また図3中のQLは負荷の無効分電力量、jは虚数
単位である。もしこの電圧値が与えられない場合((V
O 4−4PL 2L 2(1+BXL2)<0の場合)、電圧不
安定であると言える。一方、最大負荷量PLmax(P−V
カーブの先端)は、下式で与えられる。 PLmax=VO 2/(2(1+BXL)XL)・・・(4)
Hereinafter, a method of calculating the cutoff amount will be described. In the model system shown in FIG. 3, the load bus voltage VL is given by the following equation. V L 2 = V O 2 + (V O 4 -4P L 2 X L 2 (1 + BX L) 2) 1/2) / (2 (1 + BX L) 2) ··· (3) However, V O is infinite Large bus voltage, B = B L -B C , B L and B
C is the susceptance of the load 5 and the power capacitor 6. The reactive component power amount Q L is the load in FIG. 3, j is an imaginary unit. If this voltage value is not given ((V
O 4 -4P L 2 X L 2 (1 + BX L) 2) < 0), it can be said that the voltage unstable. On the other hand, the maximum load amount P Lmax ( PV
The tip of the curve) is given by the following equation. P Lmax = V O 2 / (2 (1 + BX L ) X L ) (4)

【0017】以上の式に基づき、P−Vカーブ上の目標
運転範囲を以下の通り設定する。 ・電圧安定度が維持できる。 ・負荷母線電圧VLが下式の条件を満足する。 VLmin<VL<VLmax ・・・(5) ・電圧安定限界(P−Vカーブの先端)における負荷量
Lmaxに対し、遮断後の負荷量PLが下式の条件を満足
する。 PL×K≦PLmax ・・・(6)
Based on the above equation, the target operation range on the PV curve is set as follows. -Voltage stability can be maintained. -The load bus voltage VL satisfies the condition of the following formula. V Lmin <V L <V Lmax ··· (5) · Voltage load P Lmax in stability limit (the tip of the P-V curve) with respect to the load amount P L after blocking satisfies the conditions of the following equation. P L × K ≦ P Lmax (6)

【0018】以上の遮断量算出手法に関するフローを図
4に示す。 ステップ21 (3)式に基づき、送電線断時の負荷母線電圧VLを算
出する。 ステップ22 ステップ21のVL算出時に実数解が得られていればス
テップ23に、得られなければ電圧不安定と判断してス
テップ26に進む。 ステップ23 VLが許容電圧下限VLmin以上であればステップ24
に、下限値未満であれば不足電圧と判断してステップ2
6に進む。 ステップ24 (4)式に基づき送電線断時の最大負荷量PLmaxを算出
する。 ステップ25 負荷量PLにマージン分の係数Kを乗じた値がPLmax
下であれば、制御の必要なしと判断して終了し、PLmax
を超えていれば電圧不安定の可能性ありと判断してステ
ップ26に進む。 ステップ26 制御可能な負荷フィーダ全ての組み合わせを想定し、図
1のステップ12で作成した制御テーブルに従い、遮断
の優先順を制御量の少ない順に設定する。 ステップ27 設定した制御量に従い、まず制御量最少の場合について
制御後の有効分および無効分の負荷量PL、QLを算出す
る。 ステップ28〜32 ステップ21〜25と同様である。設定した制御量で問
題があればステップ26に戻り、次に制御量の少ないパ
ターンを設定し直す。問題なければステップ33へ進
む。 ステップ33 制御実施後の負荷母線電圧VLが許容電圧上限VLmax
下であれば、現状想定している制御パターンで問題なし
として負荷遮断対象を確定し、終了する。また、もし上
限値より大きい場合は、ステップ34に進む。 ステップ34 投入されている調相設備(電力用コンデンサ)の一部を
遮断することを想定し、ステップ28に戻って演算を繰
り返す。
FIG. 4 shows a flow relating to the above-described method for calculating the cutoff amount. Step 21 The load bus voltage VL when the transmission line is disconnected is calculated based on the equation (3). Step 22 If a real number solution is obtained at the time of calculating VL in step 21, the process proceeds to step 23. If not, it is determined that the voltage is unstable, and the process proceeds to step 26. Step 23 If VL is equal to or higher than the allowable voltage lower limit VLmin , step 24
If it is less than the lower limit value, it is determined that there is an undervoltage and step 2
Proceed to 6. Step 24 The maximum load amount P Lmax when the transmission line is disconnected is calculated based on the equation (4). Step 25 If the value obtained by multiplying the load amount P L by the coefficient K for the margin is equal to or less than P Lmax , it is determined that the control is not necessary, and the processing ends .
Is exceeded, it is determined that there is a possibility of voltage instability, and the routine proceeds to step 26. Step 26 Assuming combinations of all controllable load feeders, according to the control table created in step 12 of FIG. 1, the priority of interruption is set in ascending order of the control amount. According to step 27 the set control amount, first load P L for the active component and reactive component after the control for the case of the controlled variable minimum, and calculates the Q L. Steps 28 to 32 The same as steps 21 to 25. If there is a problem with the set control amount, the process returns to step 26, and a pattern with the next smaller control amount is set again. If there is no problem, go to step 33. Step 33 If the load bus voltage VL after the control is performed is equal to or lower than the allowable voltage upper limit VLmax , the load interruption target is determined as having no problem with the control pattern assumed at present, and the processing is ended. If it is larger than the upper limit, the process proceeds to step 34. Step 34 Returning to step 28, the operation is repeated, assuming that a part of the phase adjustment equipment (power capacitor) that has been turned on is cut off.

【0019】図5は事後演算部分の制御フロー図であ
る。送電線断が実際に発生したときは、図5に示すフロ
ーにしたがって、上記で示した事前演算結果に基づいて
負荷遮断および調相設備(電力用コンデンサ)遮断を同
時に実施する(ステップ41)。
FIG. 5 is a control flow chart of the post-calculation part. When the transmission line disconnection actually occurs, the load disconnection and the phase adjustment equipment (power capacitor) disconnection are simultaneously performed based on the pre-computed result shown above according to the flow shown in FIG. 5 (step 41).

【0020】なお、上記では図1のステップ12におい
て、制御対象の負荷の遮断の優先順を制御量の少ないも
のから順にしたが、予め負荷に重要度を指定しておき、
遮断の優先順を重要度の小さいものから順として、図4
のステップ26において、重要度の小さいものから順に
制御(遮断)するようにしてもよい。
In the above description, in step 12 of FIG. 1, the priority of the interruption of the load to be controlled is set in ascending order of the control amount, but the importance is designated in advance for the load.
FIG. 4 shows that the priority order of the cutoff is determined in ascending order of importance.
In step 26, control (blocking) may be performed in ascending order of importance.

【0021】本制御手法の妥当性を確認するため、図3
に示すモデル系統に対してシミュレーション検討を行っ
た。シミュレーションの前提条件は、送電線断前の状態
を次の通りとした。 PL=0.600[pu]、QL=0.200[pu] 送電線断後のPLmax/Kを0.4とし、許容電圧範囲を
0.95〜1.05[pu]とした制御量演算結果は以
下の通りであり、この結果が得られるまでの過程を図6
に示す。図中、右方から折れ線上の各点で示す中間結果
を経て許容範囲内に入った。 負荷遮断量:0.200[pu] 調相遮断量:0.060[pu] これは、別途、潮流計算プログラムで求めた値とよく一
致しており、本制御手法によって電圧安定度維持や過電
圧抑制が適切に行えることが確認できた。
In order to confirm the validity of this control method, FIG.
A simulation study was conducted on the model system shown in Fig. 1. As a precondition for the simulation, the state before the transmission line was cut was as follows. P L = 0.600 [pu], Q L = 0.200 [pu] P Lmax / K after transmission line disconnection was set to 0.4, and the allowable voltage range was set to 0.95 to 1.05 [pu]. The control amount calculation result is as follows, and the process until this result is obtained is shown in FIG.
Shown in In the figure, the values fell within the allowable range from the right through the intermediate results indicated by the points on the polygonal line. Load interruption amount: 0.200 [pu] Phase interruption amount: 0.060 [pu] This is in good agreement with the value separately obtained by the power flow calculation program. It was confirmed that suppression could be performed appropriately.

【0022】実施の形態2.上記実施の形態1は、遮断
対象となる調相設備(電力用コンデンサ)が存在する場
合を想定しているが、対象系統によっては、負荷母線端
に調相設備(電力用コンデンサ)が十分に設置されてい
ない場合もある。
Embodiment 2 FIG. In the first embodiment, it is assumed that there is a phase adjustment facility (power capacitor) to be interrupted. However, depending on the target system, the phase adjustment facility (power capacitor) is sufficiently provided at the end of the load bus. It may not be installed.

【0023】そこで、遮断対象となる調相設備(電力用
コンデンサ)が存在しない場合、すなわち負荷遮断のみ
実施する場合でも、実施の形態1における負荷遮断量を
決定する部分を抜粋して適用することにより、従来の過
負荷リレー装置と比較して、同等以上の制御精度を確保
することができる。実施の形態2の電圧安定化制御方法
に基づく電圧安定化リレー装置の構成は、実施の形態1
同様、図7にて示され、電圧安定化リレー装置は図中の
1に相当する。
Therefore, even in the case where there is no phase adjustment equipment (power capacitor) to be interrupted, that is, even when only the load interruption is performed, the part for determining the load interruption amount in the first embodiment should be selected and applied. Thereby, control accuracy equal to or higher than that of the conventional overload relay device can be secured. The configuration of the voltage stabilization relay device based on the voltage stabilization control method of the second embodiment is the same as that of the first embodiment.
Similarly, the voltage stabilizing relay device shown in FIG. 7 corresponds to 1 in the figure.

【0024】電圧安定化リレー装置1では、常時、送電
線路2の線路電圧データ、電流データおよび負荷5の遮
断器信号を計測し、実施の形態1と同様、図1に示すフ
ローにしたがって、送電線断時にP−Vカーブ上で系統
の運転点を目標運転範囲内に収めるために必要な負荷遮
断量を一定周期で事前に算出する。図1の制御テーブル
演算、制御量算出演算においては、負荷のみを制御対象
とし、遮断パターンを決定する。そして、送電線断が発
生したときは、図5に示すフローにしたがって、事前演
算結果に基づいて負荷遮断を実施する。
The voltage stabilizing relay device 1 constantly measures the line voltage data and the current data of the transmission line 2 and the circuit breaker signal of the load 5, and transmits the signal according to the flow shown in FIG. The amount of load shedding required to keep the operating point of the system on the PV curve within the target operating range when the electric wire is disconnected is calculated in advance at regular intervals. In the control table calculation and the control amount calculation calculation in FIG. 1, only the load is set as a control target, and the cutoff pattern is determined. Then, when a transmission line disconnection occurs, the load is interrupted based on the pre-computed result according to the flow shown in FIG.

【0025】実施の形態3.上記実施の形態1は、遮断
対象となる調相設備として電力用コンデンサが存在する
場合を想定しているが、対象系統によっては、負荷母線
端に、遮断対象となる電力用コンデンサに加え、投入対
象となる分路リアクトルが設置されている場合もある。
Embodiment 3 In the first embodiment, it is assumed that a power capacitor is present as the phase control equipment to be interrupted. However, depending on the target system, in addition to the power capacitor to be interrupted, The target shunt reactor may be installed.

【0026】そこで、調相設備として電力用コンデンサ
と分路リアクトルの両者が存在する場合には、実施の形
態1の制御対象である負荷遮断、電力用コンデンサ遮断
に、分路リアクトル投入も加味することにより、想定す
る制御対象範囲をより大きくすることができる。実施の
形態3の電圧安定化制御方法に基づく電圧安定化リレー
装置の構成は、実施の形態1同様、図7にて示され、電
圧安定化リレー装置は図中の1に相当する。
Therefore, when both a power capacitor and a shunt reactor are present as phase adjusting equipment, the input of a shunt reactor is added to the load cutoff and the power capacitor cutoff which are the control targets of the first embodiment. As a result, the assumed control target range can be made larger. The configuration of the voltage stabilization relay device based on the voltage stabilization control method of the third embodiment is shown in FIG. 7 similarly to the first embodiment, and the voltage stabilization relay device corresponds to 1 in the figure.

【0027】電圧安定化リレー装置1では、常時、送電
線路2の線路電圧データ、電流データ、負荷5の遮断器
信号、調相設備(電力用コンデンサおよび分路リアクト
ル)の遮断器信号を計測し、実施の形態1と同様、図1
に示すフローにしたがって、送電線断時にP−Vカーブ
上で系統の運転点が目標運転範囲内に収まるために必要
な負荷遮断量および調相設備(電力用コンデンサ)遮断
量、調相設備(分路リアクトル)投入量を一定周期で事
前に算出する。図1の制御テーブル演算、制御量算出演
算においては、負荷、電力用コンデンサ、分路リアクト
ルを制御対象とし、遮断、投入パターンを決定する。そ
して、送電線断が発生したときは、図5に示すフローに
したがって、事前演算結果に基づき負荷遮断および調相
設備(電力用コンデンサ)遮断、調相設備(分路リアク
トル)投入を実施する。
The voltage stabilizing relay device 1 constantly measures line voltage data and current data of the transmission line 2, a circuit breaker signal of the load 5, and a circuit breaker signal of the phase adjustment equipment (power capacitor and shunt reactor). As in the first embodiment, FIG.
According to the flow shown in (1), when the transmission line is disconnected, the load shedding amount and the phase adjustment equipment (power capacitor) interruption amount and the phase adjustment equipment (electric power capacitor) required for the operating point of the system to fall within the target operation range on the PV curve. The shunt reactor) input amount is calculated in advance at a constant cycle. In the control table calculation and the control amount calculation calculation in FIG. 1, the load, the power capacitor, and the shunt reactor are set as control targets, and the cutoff and closing patterns are determined. Then, when a transmission line disconnection occurs, according to the flow shown in FIG. 5, based on the result of the pre-calculation, the load is cut off, the phase adjustment equipment (power capacitor) is cut off, and the phase adjustment equipment (shunt reactor) is turned on.

【0028】[0028]

【発明の効果】請求項1に係る電圧安定化制御方法によ
れば、系統の運転点を目標運転範囲内に収めるために必
要な負荷遮断量および電力用コンデンサ遮断量を事前に
算出しておくので、送電線断時の良好な制御精度を低コ
ストで実現できる。
According to the voltage stabilization control method of the first aspect, the load interruption amount and the power capacitor interruption amount required to keep the operating point of the system within the target operation range are calculated in advance. Therefore, good control accuracy at the time of transmission line disconnection can be realized at low cost.

【0029】請求項2に係る電圧安定化制御方法によれ
ば、負荷遮断量を事前に算出しておくので、制御対象が
負荷のみの場合でも送電線断時の良好な制御精度を低コ
ストで実現できる。
According to the voltage stabilization control method of the second aspect, since the load shedding amount is calculated in advance, even when the control target is only the load, good control accuracy at the time of transmission line disconnection can be achieved at low cost. realizable.

【0030】請求項3に係る電圧安定化制御方法によれ
ば、負荷、電力用コンデンサに加えて分路リアクトルも
制御するので、電圧安定度面がより厳しくなった場合に
も対応することができる。
According to the voltage stabilization control method of the third aspect, since the shunt reactor is controlled in addition to the load and the power capacitor, it is possible to cope with a case where the voltage stability becomes more severe. .

【0031】請求項4に係る電圧安定化制御方法によれ
ば、負荷遮断を制御量の少ない順に行うので、できるだ
け少ない負荷遮断で目標運転範囲内に収めることができ
る。請求項5に係る電圧安定化制御方法によれば、負荷
遮断を重要度の高い順に行うので、負荷遮断の影響を小
さく抑えることができる。
According to the voltage stabilization control method according to the fourth aspect, the load is interrupted in the order of the smaller control amount, so that the load can be kept within the target operation range with as little load interruption as possible. According to the voltage stabilization control method according to the fifth aspect, since the load shedding is performed in the descending order of importance, the influence of the load shedding can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1〜実施の形態3にお
ける事前演算部分の制御フロー図である。
FIG. 1 is a control flow chart of a pre-computation part according to Embodiments 1 to 3 of the present invention.

【図2】 この発明の実施の形態1の電圧安定化制御方
法において想定するP一V力ーブと目標運転範囲の槻念
図である。
FIG. 2 is a diagram illustrating a relationship between a P-IV voltage and a target operation range assumed in the voltage stabilization control method according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1の電圧安定化制御方
法において想定するモデル系統図である。
FIG. 3 is a model system diagram assumed in a voltage stabilization control method according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1の事前演算部分にお
ける遮断量算出のフロー図である。
FIG. 4 is a flowchart for calculating a cutoff amount in a pre-calculation part according to Embodiment 1 of the present invention;

【図5】 この発明の実施の形態1〜実施の形態3にお
ける事後演算部分の制御フロー図である。
FIG. 5 is a control flow diagram of a post-calculation part according to the first to third embodiments of the present invention.

【図6】 この発明の実施の形態1の電圧安定化制御方
法のシミュレーション結果を示す説明図である。
FIG. 6 is an explanatory diagram showing a simulation result of the voltage stabilization control method according to the first embodiment of the present invention.

【図7】 従来とこの発明の実施の形態1に共通のモデ
ル系統図である。
FIG. 7 is a model system diagram common to the related art and the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 送電線路、4 負荷母線、5 負荷、6 電力用コ
ンデンサ、VL 負荷母線電圧、PL 負荷量(有効
分)、QL 負荷量(無効分)、XL 線路等価リアクタ
ンス。
3 transmission line, 4 load bus, 5 load, 6 power capacitor, V L load bus voltage, P L load (active ingredient), Q L load (reactive component), X L line equivalent reactance.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の送電線断時に系統の運転点を
目標運転範囲内に収めるために必要な負荷遮断量および
電力用コンデンサ遮断量を事前に算出しておき、送電線
断が発生したとき、事前算出結果に基づいて負荷遮断お
よび電力用コンデンサ遮断を実施することにより、電圧
安定度を維持することを特徴とする電圧安定化制御方
法。
When the transmission line of a power system is cut off, a load interruption amount and a power capacitor interruption amount required to keep an operation point of the system within a target operation range are calculated in advance, and a transmission line interruption occurs. A voltage stabilization control method characterized by maintaining a voltage stability by performing a load cutoff and a power capacitor cutoff based on a pre-calculation result.
【請求項2】 電力系統の送電線断時に系統の運転点を
目標運転範囲内に収めるために必要な負荷遮断量を事前
に算出しておき、送電線断が発生したとき、事前算出結
果に基づいて負荷遮断を実施することにより、電圧安定
度を維持することを特徴とする電圧安定化制御方法。
2. An amount of load shedding required to keep an operating point of a system within a target operation range when a transmission line of a power system is cut off is calculated in advance. A voltage stabilization control method characterized by maintaining voltage stability by performing load shedding based on the load stabilization control.
【請求項3】 電力系統の送電線断時に系統の運転点を
目標運転範囲内に収めるために必要な負荷遮断量、電力
用コンデンサ遮断量および分路リアクトル投入量を事前
に算出しておき、送電線断が発生したとき、事前算出結
果に基づいて負荷遮断、電力用コンデンサ遮断および分
路リアクトル投入を実施することにより、電圧安定度を
維持することを特徴とする電圧安定化制御方法。
3. A load interrupting amount, a power capacitor interrupting amount, and a shunt reactor input amount necessary to keep an operating point of the system within a target operating range when a power line of a power system is cut off are calculated in advance, A voltage stabilization control method comprising maintaining a voltage stability by performing a load cutoff, a power capacitor cutoff, and a shunt reactor supply based on a pre-calculation result when a transmission line disconnection occurs.
【請求項4】 負荷遮断の優先順を、制御量の少ない順
にすることを特徴とする請求項1から請求項3のいずれ
かに記載の電圧安定化制御方法。
4. The voltage stabilization control method according to claim 1, wherein the priority order of the load shedding is set in an order of a smaller control amount.
【請求項5】 負荷遮断の優先順を、重要度の低い順に
することを特徴とする請求項1から請求項3のいずれか
に記載の電圧安定化制御方法。
5. The voltage stabilization control method according to claim 1, wherein the load shedding is prioritized in the order of decreasing importance.
JP2000192320A 2000-06-27 2000-06-27 Voltage stabilizer control method Pending JP2002010491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000192320A JP2002010491A (en) 2000-06-27 2000-06-27 Voltage stabilizer control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192320A JP2002010491A (en) 2000-06-27 2000-06-27 Voltage stabilizer control method

Publications (1)

Publication Number Publication Date
JP2002010491A true JP2002010491A (en) 2002-01-11

Family

ID=18691470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192320A Pending JP2002010491A (en) 2000-06-27 2000-06-27 Voltage stabilizer control method

Country Status (1)

Country Link
JP (1) JP2002010491A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177896A (en) * 2008-01-23 2009-08-06 Mitsubishi Electric Corp Method and device for stabilizing system
JP2011166888A (en) * 2010-02-05 2011-08-25 Chugoku Electric Power Co Inc:The Voltage stabilization device, and voltage stabilization method
JP2013085452A (en) * 2012-09-18 2013-05-09 Chugoku Electric Power Co Inc:The Voltage regulator
WO2021240835A1 (en) * 2020-05-28 2021-12-02 Hitachi, Ltd. A method and apparatus for transmission branch switching for overload mitigation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177896A (en) * 2008-01-23 2009-08-06 Mitsubishi Electric Corp Method and device for stabilizing system
JP2011166888A (en) * 2010-02-05 2011-08-25 Chugoku Electric Power Co Inc:The Voltage stabilization device, and voltage stabilization method
JP2013085452A (en) * 2012-09-18 2013-05-09 Chugoku Electric Power Co Inc:The Voltage regulator
WO2021240835A1 (en) * 2020-05-28 2021-12-02 Hitachi, Ltd. A method and apparatus for transmission branch switching for overload mitigation
JP7461492B2 (en) 2020-05-28 2024-04-03 株式会社日立製作所 Method and apparatus for switching transmit branches to alleviate overload - Patents.com

Similar Documents

Publication Publication Date Title
EP2236820B1 (en) Voltage control method and system for a power generation plant and wind farm
Hiyama et al. Fuzzy logic control scheme with variable gain for static Var compensator to enhance power system stability
CN112928781A (en) Double-fed fan transient stability control method and system, computer equipment and medium
JP6128931B2 (en) System stabilization device
CN112510696B (en) Micro-grid transient voltage stability regulation and control system and method
AU630155B2 (en) Method and device for stabilizing an electric supply system
JP2002010491A (en) Voltage stabilizer control method
JP5651495B2 (en) Power system stabilization control method and apparatus
KR20200004635A (en) Directional over-current relay using the superconducting fault current limiter&#39;s voltage and setting method
JP2002238163A (en) Power converter
JP4861074B2 (en) Voltage increase control amount determination device, voltage increase control amount determination method, generator control system, and generator control method
JP3350265B2 (en) Power system stabilizer
JP2001078362A (en) Power system stabilizing apparatus
CN115189361A (en) Damping performance improved alternating current voltage feedforward method for flexible direct current transmission system
Yu et al. Self-correction two-machine equivalent model for stability control of FACT system using real-time phasor measurements
CN109742747B (en) Grounding current compensation method and grounding current compensation device
JP3590276B2 (en) Reactive power compensator
US10727843B2 (en) Method for operating a wind turbine
JP7106348B2 (en) System stabilizer
CN109274098B (en) Simple power system emergency control method considering damping
JP3316887B2 (en) Voltage stability monitoring device
JP3820386B2 (en) Isolated system stabilization method and isolated system stabilization system
JP2020005336A (en) System stabilization method and system stabilizer
CN112653077B (en) Method and system for optimizing inverse time limit zero sequence overcurrent protection fixed value after camera switching in
CN109742746B (en) Grounding current compensation method and grounding current compensation device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060623

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060714