JP2020005336A - System stabilization method and system stabilizer - Google Patents

System stabilization method and system stabilizer Download PDF

Info

Publication number
JP2020005336A
JP2020005336A JP2018119821A JP2018119821A JP2020005336A JP 2020005336 A JP2020005336 A JP 2020005336A JP 2018119821 A JP2018119821 A JP 2018119821A JP 2018119821 A JP2018119821 A JP 2018119821A JP 2020005336 A JP2020005336 A JP 2020005336A
Authority
JP
Japan
Prior art keywords
power
load
amount
power generation
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018119821A
Other languages
Japanese (ja)
Inventor
明紀 池見
Akinori Ikemi
明紀 池見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018119821A priority Critical patent/JP2020005336A/en
Publication of JP2020005336A publication Critical patent/JP2020005336A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Abstract

To provide a system stabilization method and a system stabilizer, which adjust power demand supply balance of an isolated system with simpler processing to stabilize the system when isolated system separation takes place without depending on an inner system state.SOLUTION: In a system stabilization method for maintaining an isolated system when isolated system separation takes place in a power system 1A being a control object having a plurality of power generators and a plurality of loads, a total power generation amount is suppressed if a tidal current amount is a positive value and a total load amount is reduced by interrupting a part of the load in a previously determined interruption order to stabilize the power system of the control object if the tidal current amount is a negative value in accordance with the tidal current amount of a cooperative line 2 before the isolated system separation takes place when a tidal current toward an another power system 1B side from a power system 1A side of the control object is defined to be positive, and the isolated system separation takes place and divergence between the total power generation amount by a plurality of power generators 3A to 3D and the total load amount by a plurality of loads 4A to 4E is equal to or more than setting divergence which is previously set.SELECTED DRAWING: Figure 1

Description

本発明は、制御対象の電力系統が外部の擾乱により単独分離系統になった場合に、単独系統となった制御対象の電力系統の系統安定化を図る技術に関する。本発明は、特に、制御対象の電力系統の負荷が工場負荷の場合に効果が大きな技術である。   The present invention relates to a technology for stabilizing a power system to be controlled, which has become a single system, when the power system to be controlled becomes a single separated system due to external disturbance. The present invention is a technology that is particularly effective when the load of the power system to be controlled is a factory load.

電力系統の系統安定化の技術としては、例えば特許文献1に記載の技術がある。
特許文献1に記載されている系統安定化の方法は、系統上のトラブル発生時に、予め設定した複数の単独分離系統事故の想定事故ケースを判別し、判別された想定事故ケースに応じた負荷遮断信号を送出する。
As a technique for stabilizing the power system, there is a technique described in Patent Document 1, for example.
The system stabilization method described in Patent Literature 1 distinguishes a plurality of presumed accident cases of a single isolated system accident set in advance when a trouble occurs on the system, and performs load shedding according to the determined assumed accident case. Send a signal.

特開2011−217495号公報JP 2011-217495 A

特許文献1に記載の系統安定化の方法では、予め想定した事故に対して影響が最小限となるように遮断負荷を選定する。この方法は、内部の系統状態に依存して、制御対象の電力系統が大規模になるほど想定事故件数が膨大となり、また想定外事故などへの対応ができない。
本発明は、上記のような点に着目してなされたもので、内部の系統状態に依存せずに、単独系統分離が発生したときに、より簡易な処理(より簡単な判断)で単独系統の需給バランスを調整して系統安定化を行うことを目的とする。
In the method of system stabilization described in Patent Literature 1, a breaking load is selected so as to minimize the influence on an accident assumed in advance. In this method, depending on the state of the internal system, as the power system to be controlled becomes larger, the number of assumed accidents becomes enormous, and it is impossible to cope with unexpected accidents.
The present invention has been made by paying attention to the above points, and when independent system separation occurs without depending on the internal system state, the simple system (simplified judgment) can be used. To stabilize the grid by adjusting the supply and demand balance of

発明者は、系統上のトラブルが発生した場合に、内部の系統状態に依存せず且つ簡易に系統安定化を図る手段について検討した。そして、発明者は、制御対象の電力系統へ接続されている連系線の潮流に着目し、系統上のトラブルが発生した場合に、潮流の向きや量から、発電機または負荷の調整量を算出し、制御対象の発電機または負荷を必要量まで制限することで、内部の系統状態に依存せず且つ簡易に系統安定化が可能であるとの知見を得た。   The inventor has studied means for easily stabilizing the system without depending on the internal system state when a system trouble occurs. Then, the inventor pays attention to the power flow of the interconnection line connected to the power system to be controlled, and when a trouble occurs in the system, determines the amount of adjustment of the generator or load from the direction and amount of the power flow. By calculating and restricting the generator or load to be controlled to a required amount, it has been found that the system can be easily stabilized without depending on the internal system state.

そして課題を解決するために、本発明の一態様は、複数の発電機と複数の負荷を有する制御対象の電力系統が、他の電力系統と連系線で接続している状態からトラブルにより単独系統分離になった場合に、上記制御対象の電力系統からなる単独系統を維持する系統安定化方法であって、上記制御対象の電力系統側から上記他の電力系統側に向かう潮流を正と定義し、上記単独系統分離が発生し、且つ上記複数の発電機による総発電量と上記複数の負荷による総負荷量との乖離が予め設定した設定乖離以上の場合に、上記単独系統分離となる前の上記連系線の潮流分に応じて、上記潮流分が正値であれば上記総発電量を抑制し、上記潮流分が負値であれば、予め決定した遮断順位で負荷の一部を遮断することで上記総負荷量を低減して、上記制御対象の電力系統の安定化を図る。   In order to solve the problem, according to one embodiment of the present invention, a power system to be controlled having a plurality of generators and a plurality of loads is isolated from trouble in a state where the power system is connected to another power system by a connection line. A system stabilization method for maintaining a single system consisting of the power system to be controlled in the case of system separation, wherein a power flow from the power system to be controlled to the other power system is defined as positive. When the single system separation occurs and the difference between the total power generation amount by the plurality of generators and the total load amount by the plurality of loads is equal to or larger than a preset difference, the single system separation is performed. According to the tidal current of the interconnection line, if the tidal current is a positive value, the total power generation is suppressed.If the tidal current is a negative value, a part of the load is cut off in a predetermined interruption order. By shutting off, the total load is reduced, To stabilize the target of the power system.

また、本発明の他の態様は、複数の発電機と複数の負荷を有する制御対象の電力系統が、他の電力系統と連系線で接続している状態からトラブルにより単独系統分離になった場合に作動して、上記制御対象の電力系統からなる単独系統を維持するための系統安定化装置であって、上記制御対象の電力系統側から上記他の電力系統側に向かう潮流を正と定義し、上記複数の発電機による現在の総発電量と上記複数の負荷による現在の総負荷量との乖離が予め設定した設定乖離率以上か否かを判定する調整判定部と、上記複数の負荷に対し、実績に基づき負荷の変動が大きなものほど優先順位が高くなるようにして、遮断する順番である遮断順位を予め設定する負荷遮断順位設定部と、上記単独系統分離状態であり且つ上記総発電量と上記総負荷量との乖離が設定乖離以上であって、上記単独系統分離となる直前の上記連系線の潮流分が負値の場合に、単独系統分離となる直前の潮流分に応じた負荷量だけ、上記負荷遮断順位設定部されている遮断順位で負荷を遮断する負荷低減部と、上記単独系統分離状態であり且つ上記総発電量と上記総負荷量との乖離が設定乖離率以上であって、上記単独系統分離となる直前の上記連系線の潮流分が正値の場合に、上記総発電量を抑制して上記制御対象の電力系統の安定化を図る発電抑制部と、を備える。   Further, in another aspect of the present invention, a power system to be controlled having a plurality of generators and a plurality of loads has been separated into a single system due to a trouble from a state in which the power system is connected to another power system by a connection line. A system stabilizing device that operates in the case where the power system to be controlled is a single system composed of the power system to be controlled, and a power flow from the power system to be controlled to the other power system is defined as positive. An adjustment determining unit that determines whether a difference between a current total power generation amount by the plurality of generators and a current total load amount by the plurality of loads is equal to or greater than a preset difference ratio; and the plurality of loads. On the other hand, a load fluctuation order setting unit that sets a priority order in which the load is to be interrupted is set in advance by setting a higher priority order as the load fluctuation is larger based on the actual results. Power generation and total load Is greater than or equal to the set deviation, and when the power flow of the interconnection line immediately before the single system separation is a negative value, the load amount corresponding to the power flow immediately before the single system separation becomes A load reduction unit that interrupts a load in an interruption order that is a load interruption order setting unit, and a divergence between the total power generation amount and the total load amount that is in the single system separation state and is equal to or greater than a set divergence rate, A power generation suppressing unit configured to suppress the total power generation amount and stabilize the power system to be controlled when the tidal current of the interconnection line immediately before the single system is separated is a positive value.

本発明の態様によれば、制御対象内の電力系統について、膨大な事故想定ケースへの対応を設定することなく、系統分離する事故に対して、簡易な処理にて需給バランス調整と単独系統維持ができるようになる。また、本発明の態様によれば、連系線潮流の向きによっては、負荷制限のみならず、発電機の調整をすることで単独系統の維持ができ、操業影響の最小化を図ることができる。   According to the aspect of the present invention, it is possible to adjust supply-demand balance and maintain a single system by a simple process for an accident that separates the system without setting a response to an enormous accident assumed case for the power system in the control target. Will be able to Also, according to the aspect of the present invention, depending on the direction of the interconnection flow, not only the load limitation but also the adjustment of the generator can maintain the single system and minimize the operation influence. .

本発明に基づく実施形態に係る電力系統の例を示す図である。It is a figure showing the example of the electric power system concerning the embodiment based on the present invention. 本発明に基づく実施形態に係る系統安定化装置を説明する図である。It is a figure explaining a system stabilization device concerning an embodiment based on the present invention. 系統安定化方法の処理例を説明する図である。It is a figure explaining the example of processing of a system stabilization method. 例1を説明する図である。FIG. 9 is a diagram for explaining Example 1. 例2を説明する図である。FIG. 9 is a diagram for explaining Example 2. 例3を説明する図である。FIG. 9 is a diagram for explaining Example 3. 例4を説明する図である。FIG. 14 is a diagram for explaining Example 4.

次に、本発明の実施形態について図面を参照して説明する。
本実施形態の系統安定化装置5は、図1に示すように、複数の発電機3A〜3Dと複数の負荷4A〜4Eを有する制御対象の電力系統1Aが他の電力系統1Bと連系線2で接続している状態から、トラブルにより単独系統分離になった場合に、制御対象の電力系統1Aからなる単独系統を維持するための簡易な系統安定化処理を行う。
ここで、本明細書では、制御対象の電力系統1A側から他の電力系統1B側に向かう潮流(逆潮流)を正と定義して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the system stabilizing device 5 of the present embodiment is configured such that a power system 1A to be controlled having a plurality of generators 3A to 3D and a plurality of loads 4A to 4E is connected to another power system 1B. When a single system is separated due to a trouble from the state of connection at 2, a simple system stabilization process for maintaining a single system consisting of the power system 1A to be controlled is performed.
Here, in this specification, a power flow (reverse power flow) from the power system 1A to be controlled to the other power system 1B is defined as positive.

制御対象の電力系統1Aは、例えば鉄鋼製造工場などの製造工場に設けられた電力系統であり、その電力系統1Aが、連系線2によって電力会社の電力系統1Bに接続している。そして、制御対象の電力系統1Aに余剰の発電量がある場合には、その余剰の発電を電力会社の電力系統1Bに送電し、制御対象の電力系統1Aに発電量の不足が発生した場合には、電力会社の電力系統1Bから不足分の電力が送電される。   The power system 1A to be controlled is, for example, a power system provided in a manufacturing plant such as a steel manufacturing plant, and the power system 1A is connected to the power system 1B of the power company by the interconnection line 2. Then, when there is a surplus power generation amount in the power system 1A to be controlled, the surplus power generation is transmitted to the power system 1B of the power company, and when the power generation amount shortage occurs in the power system 1A to be controlled. , The shortage of power is transmitted from the power system 1B of the power company.

図1中、符号10A〜10Jは遮断器を示し、符号11A〜11Jはセンサ(計器用変成器)を示している。
遮断器10A〜10Jは、系統安定化装置5からの信号によって作動する。またセンサ11A〜11Jは、所定サンプリング周期で計測を実行する。
単独系統分離になったかどうかは、例えば連系線2が遮断したか否かで判定すればよい。
また、潮流は短期間で大きく変動することは少ないため、単独系統分離直前の潮流といっても瞬時値である必要は無く、単独系統分離直前の潮流として、単独系統分離となる数分前の潮流を採用すればよい。
In FIG. 1, reference numerals 10A to 10J indicate circuit breakers, and reference numerals 11A to 11J indicate sensors (instrument transformers).
Circuit breakers 10 </ b> A to 10 </ b> J are activated by a signal from system stabilizer 5. The sensors 11A to 11J execute measurement at a predetermined sampling cycle.
Whether or not the single system has been separated may be determined, for example, based on whether or not the interconnection line 2 has been interrupted.
In addition, since the tidal current does not fluctuate greatly in a short period of time, it is not necessary to be an instantaneous value even if the tidal current is just before the isolation of the single system. The tide can be adopted.

<構成>
系統安定化装置5は、図2に示すように、負荷遮断順位設定部5Aと、系統情報入力部5Bと、調整量算出部5Cと、調整判定部5Dと、安定化処理部5Eとを備える。
負荷遮断順位設定部5Aは、複数の負荷4A〜4Eに対し、実績に基づき負荷の変動が大きなものほど優先順位が高くなるようにして、遮断する順番である遮断順位を予め設定する。負荷変動は、例えば、過去3ヶ月とか半年とかの長期スパンの変動で取得すればよい。
<Configuration>
As shown in FIG. 2, the system stabilization device 5 includes a load shedding order setting unit 5A, a system information input unit 5B, an adjustment amount calculation unit 5C, an adjustment determination unit 5D, and a stabilization processing unit 5E. .
The load shedding order setting section 5A presets a cutoff order, which is an order of interruption, for a plurality of loads 4A to 4E such that the larger the load fluctuation, the higher the priority based on the results. The load change may be obtained, for example, by a change in a long-term span such as the past three months or six months.

系統情報入力部5Bは、電力系統1Aに設けられたセンサ11A〜11Jの計測値に基づき、連系線2に流れる潮流、各発電機の発電量、各負荷の負荷量、母線電圧、周波数などの情報を予め設定したサンプリング周期で取得して記憶する。
調整量算出部5Cは、系統情報入力部5Bが取得した潮流の履歴から、単独分離系統を維持するための調整量を算出する。調整量は、制御対象の電力系統1Aが単独分離系統となる直前の潮流分に応じた電力値とする、例えば、調整量は、上記直前の潮流分に等しい電力値とする。上記直前の潮流分に等しい電力値に所定の補正係数を乗算した値を調整量としても良い。
The system information input unit 5B, based on the measurement values of the sensors 11A to 11J provided in the power system 1A, based on the tidal current flowing in the interconnecting line 2, the power generation amount of each generator, the load amount of each load, the bus voltage, the frequency, etc. Is acquired and stored at a preset sampling period.
The adjustment amount calculation unit 5C calculates an adjustment amount for maintaining the single separated system from the history of the power flow acquired by the system information input unit 5B. The amount of adjustment is a power value corresponding to the power flow immediately before the power system 1A to be controlled becomes the isolated system. For example, the amount of adjustment is a power value equal to the power flow immediately before. A value obtained by multiplying a power value equal to the immediately preceding power flow by a predetermined correction coefficient may be used as the adjustment amount.

調整判定部5Dは、制御対象の電力系統1Aに設けられた、複数の発電機3A〜3Dによる総発電量と複数の負荷4A〜4Eによる総負荷量との乖離が予め設定した設定乖離以上か否かを判定する。
例えば、下記式で示される乖離率が予め設定した設定乖離率以上か否かで判定する。設定乖離率は例えば10%とする。
乖離率=|(総発電量−総負荷量)/総負荷量|×100
The adjustment determination unit 5D determines whether the difference between the total amount of power generated by the plurality of generators 3A to 3D and the total amount of load by the loads 4A to 4E provided in the power system 1A to be controlled is equal to or greater than a preset difference. Determine whether or not.
For example, the determination is made based on whether or not the deviation rate represented by the following equation is equal to or greater than a preset deviation rate. The set deviation rate is, for example, 10%.
Deviation rate = | (total power generation-total load) / total load | × 100

調整判定部5Dが総発電量と総負荷量との乖離が設定乖離未満と判定した場合には、系統安定化の処理を終了する。設定乖離は、制御対象の電力系統1Aが単独で吸収可能な余力以内の発電量若しくは負荷量となる乖離値を設定する。例えば、電力系統内の周波数偏差の是正で吸収可能な範囲となるように設定乖離の値を設定する。
調整判定部5Dが、総発電量と総負荷量との乖離が設定乖離以上と判定した場合には、安定化処理部5Eに移行する。
安定化処理部5Eは、処理切り分け部5Eaと、負荷低減処理部5Ebと、発電抑制処理部5Ecとを備える。
When the adjustment determining unit 5D determines that the difference between the total power generation amount and the total load amount is less than the set deviation, the system stabilization process ends. The set divergence sets a divergence value that is a power generation amount or a load amount within a surplus power that can be absorbed solely by the power system 1A to be controlled. For example, the value of the setting deviation is set so as to be in a range that can be absorbed by correcting the frequency deviation in the power system.
When the adjustment determining unit 5D determines that the difference between the total power generation amount and the total load amount is equal to or larger than the set difference, the process proceeds to the stabilization processing unit 5E.
The stabilization processing unit 5E includes a processing separation unit 5Ea, a load reduction processing unit 5Eb, and a power generation suppression processing unit 5Ec.

処理切り分け部5Eaは、系統安定化装置5が取得した情報に基づき、潮流の向きから潮流が負値と判定した場合は、負荷低減処理部5Ebに移行する。潮流が正値と判定した場合は、発電抑制処理部5Ecへ移行する。トラブルによって単独分離系統となった直後においては、その直前の潮流が負値ということは、総負荷量が総発電量より大きいことと同義であり、直前の潮流が正値ということは、総発電量が総負荷量より大きいことと同義である。   When the processing separation unit 5Ea determines that the power flow is a negative value from the power flow direction based on the information acquired by the system stabilization device 5, the process separation unit 5Ea shifts to the load reduction processing unit 5Eb. When it is determined that the power flow is a positive value, the process proceeds to the power generation suppression processing unit 5Ec. Immediately after becoming a single isolated system due to a trouble, a negative value of the tidal current immediately before it is synonymous with that the total load is greater than the total power generation, and a positive value of the tidal current immediately before is a total power generation. Synonymous with quantity being greater than total load.

負荷低減処理部5Ebは、調整量分に応じた遮断負荷量となるように、負荷遮断順位設定部5Aに設定されている遮断順位で、順番に複数の負荷4A〜4Eから遮断する負荷を選択し、選択した負荷を遮断する。
発電抑制処理部5Ecは、単独系統分離状態であり且つ総発電量と総負荷量との乖離が設定乖離率以上の場合に、総発電量を抑制して制御対象の電力系統1Aの安定化を図る。
The load reduction processing unit 5Eb sequentially selects loads to be interrupted from the plurality of loads 4A to 4E according to the interruption order set in the load interruption order setting unit 5A so that the interruption load amount corresponds to the adjustment amount. And shut off the selected load.
The power generation suppression processing unit 5Ec suppresses the total power generation amount and stabilizes the power system 1A to be controlled when the single system is separated and the difference between the total power generation amount and the total load amount is equal to or greater than a set deviation rate. Aim.

系統安定化装置5における、調整量算出部5C、調整判定部5D及び安定化処理部5Eでの一連の処理の一例を、図3に示すフローを参照して説明する。
系統上のトラブルが発生し、単独分離系統になったと判定されるとステップS100の処理を開始する。
ステップS100では、連系線2の潮流から系統安定化に必要な調整量を算出する。ステップS100では、例えば、連系線2が遮断されて単独分離系統となる直前の潮流を調整量とする。この調整量の大きさは、単独分離系統となったときの、総発電量と総負荷量との差分と同義である。
An example of a series of processes in the adjustment amount calculation unit 5C, the adjustment determination unit 5D, and the stabilization processing unit 5E in the system stabilization device 5 will be described with reference to a flow illustrated in FIG.
If it is determined that a system trouble has occurred and the system has become an isolated system, the process of step S100 is started.
In step S100, an adjustment amount required for system stabilization is calculated from the tidal current of the interconnection line 2. In step S100, for example, the tidal current immediately before the interconnection line 2 is cut off and becomes a single separated system is set as the adjustment amount. The magnitude of this adjustment amount is synonymous with the difference between the total power generation amount and the total load amount when a single separated system is used.

ステップS110では、単独分離系統となったときの総発電量及び総負荷量を算出する。ステップS100とステップS110はどちらを先に演算処理しても良いし、同時に処理を実行しても良い。
ステップS120では、総発電量と総負荷量の乖離率が設定乖離率(例えば10%)以上か否かを判定する。総発電量と総負荷量の乖離率が設定乖離率(10%)以上の場合には、ステップS130に移行する。一方、乖離率が設定乖離率(10%)未満の場合には、安定化処理を終了する。
In step S110, a total power generation amount and a total load amount when the single separated system is formed are calculated. Either step S100 or step S110 may be operated first, or the processing may be executed simultaneously.
In step S120, it is determined whether the divergence rate between the total power generation amount and the total load amount is equal to or greater than a set divergence rate (for example, 10%). If the divergence rate between the total power generation amount and the total load amount is equal to or greater than the set divergence rate (10%), the process proceeds to step S130. On the other hand, if the deviation rate is less than the set deviation rate (10%), the stabilization processing ends.

ステップS130では、総発電量と総負荷量とを比較し、総発電量の方が大きいと判定した場合には、ステップS160に移行する。一方、総負荷量の方が大きいと判定した場合には、ステップS140に移行する。
ここで、系統分離直後では、総発電量が総負荷量よりも大きいか否かの判定は、潮流の向きが正値か負値かの判定と同義である。すなわち、ステップS130は、潮流分が正値か負値を判定するステップである。ただし、ステップS150やS180等の処理後では、総負荷量や総発電量が更新されることを考慮し、ステップ数を最適化しているために、ステップS130では現在の総発電量と現在の総負荷量とを比較する処理となっている。
In step S130, the total power generation amount and the total load amount are compared, and if it is determined that the total power generation amount is larger, the process proceeds to step S160. On the other hand, when it is determined that the total load is larger, the process proceeds to step S140.
Here, immediately after the system separation, the determination as to whether the total power generation amount is larger than the total load amount is synonymous with the determination as to whether the direction of the power flow is a positive value or a negative value. That is, step S130 is a step of determining whether the tidal component is a positive value or a negative value. However, after the processing of steps S150 and S180, etc., the total number of steps and the total amount of power generation are updated, and the number of steps is optimized. This is a process of comparing with the load amount.

ステップS140では、負荷遮断順位設定部5Aに設定される遮断の優先順位の順番で、ステップS100で求めた調整量以上の負荷量分となるように、遮断する負荷を決定し、その決定した負荷に対応する遮断器に遮断信号を出力する。その後、ステップS150に移行する。
ステップS140では、例えば、負荷遮断順位設定部5Aに設定された優先順位で、上記の調整量に等しい調整初期値からの負荷量の減算を、減算後の調整初期値がゼロ以下、若しくは調整量を越えるまで繰り返す。そして、調整初期値から負荷量を減算した負荷の遮断器に対し遮断信号を出力する。
In step S140, the load to be interrupted is determined in the order of the interrupt priority set in the load interrupting order setting unit 5A so that the load is equal to or greater than the adjustment amount obtained in step S100, and the determined load is determined. And outputs a cutoff signal to the circuit breaker corresponding to. After that, it moves to step S150.
In step S140, for example, in the priority order set in the load shedding order setting unit 5A, subtraction of the load amount from the adjustment initial value equal to the above adjustment amount is performed. Repeat until over. Then, a cutoff signal is output to the circuit breaker of the load obtained by subtracting the load amount from the adjustment initial value.

ステップS150では、総負荷量から、ステップS140で遮断した負荷の遮断前の負荷量を減算して、総負荷量を更新する。その後、ステップS120に移行する。
なお、相対的に変動が大きな負荷から遮断するため、ステップS150において、遮断した負荷以外の稼働中の負荷の負荷量を再度加算することで、総負荷量を再演算するようにしても良い。
総負荷量の初期設定値は、ステップS110で算出した総負荷量である。
In step S150, the load amount before the interruption of the load interrupted in step S140 is subtracted from the total load amount to update the total load amount. Thereafter, the process proceeds to step S120.
In order to cut off from a load having a relatively large fluctuation, the total load may be recalculated in step S150 by adding the load of the operating load other than the cut off load again.
The default value of the total load is the total load calculated in step S110.

一方、ステップS130で総発電量の方が大きいと判定した場合にはステップS160に移行する。ステップS160では、総負荷量に対する調整量の割合が、予め設定した閾値(例えば0.2)未満の場合には、ステップS170に移行する。総負荷量に対する調整量の割合が、予め設定した閾値以上の場合にはステップS190に移行する。
なお、ステップS160にて、総発電量に対する調整量の割合が、予め設定した閾値(例えば0.2)未満か否かで判定しても構わない。
On the other hand, when it is determined in step S130 that the total power generation amount is larger, the process proceeds to step S160. In step S160, if the ratio of the adjustment amount to the total load is less than a preset threshold value (for example, 0.2), the process proceeds to step S170. If the ratio of the adjustment amount to the total load amount is equal to or greater than a preset threshold, the process proceeds to step S190.
In step S160, the determination may be made based on whether the ratio of the adjustment amount to the total power generation amount is less than a preset threshold value (for example, 0.2).

ステップS170では、調整量を稼働中の複数の各発電機の出力にそれぞれ案分して、上記複数の各発電機の出力をそれぞれ抑制する信号を出力する。その後、ステップS180に移行する。
上記の案分は、単純に調整量を発電台数で割って各発電機の発電量を同じ量だけ抑制するようにしても良いが、発電量が大きい発電機ほど多く発電量を抑制するように案分する方が、変動が小さく抑えられて好ましい。すなわち、各発電量で重み付けを行って各発電機の抑制量を設定することが好ましい。
ステップS180で、ステップS170で抑制した発電量だけ、総発電量を小さくする更新処理を実行した後に、ステップS120に移行する。
In step S170, the adjustment amount is divided into the outputs of the plurality of operating generators, and signals for suppressing the outputs of the plurality of generators are output. After that, it moves to step S180.
In the above scheme, the amount of power generated by each generator may be reduced by the same amount by simply dividing the adjustment amount by the number of power generation units. Proportionation is preferable because fluctuation is suppressed to a small value. That is, it is preferable to set the suppression amount of each generator by weighting each power generation amount.
In step S180, after performing the update process of reducing the total power generation amount by the power generation amount suppressed in step S170, the process proceeds to step S120.

一方、ステップS190では、調整量と各発電機の出力とを比較して調整量に近い出力の発電機を選択する。そして、選択した発電機に対応する遮断器に対して遮断信号を出力してステップS200に移行する。ステップS200では、ステップS190で遮断した発電機の発電量だけ総発電量を小さくして、総発電量の更新処理を実行した後にステップS120に移行する。
ここで、ステップS100が調整量算出部5Cを、ステップS120が調整判定部5Dを、ステップS140が負荷低減処理部5Ebを、ステップS170,ステップS190が発電抑制処理部5Ecをそれぞれ対応する。
On the other hand, in step S190, the generator with the output close to the adjustment is selected by comparing the adjustment with the output of each generator. Then, a cutoff signal is output to the circuit breaker corresponding to the selected generator, and the process proceeds to step S200. In step S200, the total power generation amount is reduced by the power generation amount of the generator shut off in step S190, and after updating the total power generation amount, the process proceeds to step S120.
Here, step S100 corresponds to the adjustment amount calculation unit 5C, step S120 corresponds to the adjustment determination unit 5D, step S140 corresponds to the load reduction processing unit 5Eb, and steps S170 and S190 correspond to the power generation suppression processing unit 5Ec.

<安定化処理の処理例について>
安定化処理の処理例について図4〜図7を参照して説明する。
なお、図4〜図7には、潮流、各発電機3A〜3Dの発電量及び、各負荷4A〜4Eの負荷量を付して図示している。
いずれの例も4台の稼働中の発電機と、5つの稼働中の工場負荷がある例である。
(例1)
例1は、図4に示すように、発電機の出力を調整して安定化する処理例を説明する図である。
例1では、図4(a)のように、複数の工場負荷の合計値である総負荷量が700[MW]であり、複数の発電機3A〜3Dの出力の合計値である総発電量が800[MW]であり、連系線2を通じて100[MW]を電力会社への逆潮流の状態とする。
この状態で連系線2が遮断されると、発電量に100[MW]の余剰が生じる。例1では、総負荷量に占める余剰の割合が所定閾値(0.2)未満であると判定した場合であり、ステップS170の処理によって、図4(b)に示すように、各発電機3A〜3Dの出力に応じて、出力が大きいほど大きくなるように発電の抑制量を算出したうえで発電抑制を行った例である。
<Example of stabilization processing>
A processing example of the stabilization processing will be described with reference to FIGS.
4 to 7 show the power flow, the amount of power generated by each of the generators 3A to 3D, and the amount of load of each of the loads 4A to 4E.
Each example is an example in which there are four operating generators and five operating factory loads.
(Example 1)
Example 1 is a diagram for explaining a processing example in which the output of the generator is adjusted and stabilized as shown in FIG.
In Example 1, as shown in FIG. 4A, the total load, which is the total value of the plurality of factory loads, is 700 [MW], and the total power generation, which is the total value of the outputs of the plurality of generators 3A to 3D. Is 800 [MW], and 100 [MW] is set to the state of reverse power flow to the power company through the interconnection line 2.
If the interconnection line 2 is cut off in this state, a surplus of 100 [MW] is generated in the power generation amount. Example 1 is a case where it is determined that the ratio of the surplus to the total load is less than the predetermined threshold (0.2), and by the processing of step S170, as shown in FIG. This is an example in which the amount of power generation suppression is calculated such that the larger the output, the greater the output, in accordance with the output of 3D, and then the power generation is suppressed.

(例2)
例2も、図5に示すように、発電機の出力を調整して安定化する処理例を説明する図である。ただし、例1に比べて潮流(調整量)が大きい場合(ステップS190での処理)の例であり、発電機の調整による安定化として、発電機の遮断を伴う例である。
例2では、トラブルによって単独系統となることで、発電余剰が200[MW]発生するもので、総負荷量に対する余剰の割合が20%以上であると判定した場合であり、ステップS190の処理によって、調整量に近い出力の発電機を遮断して早期に安定化を図った例である。すなわち、この例2では、トラブルによる全負荷に占める余剰の割合が大きいため、早期需給バランス調整の観点から、対象発電機を選定して遮断することで発電抑制を行った例である。
この例2では、調整量と発電機3Bの出力とが等しいと判定して、発電機3Bを遮断している(図5(b))。
(Example 2)
Example 2 is also a diagram for explaining a processing example in which the output of the generator is adjusted and stabilized as shown in FIG. However, this is an example of a case where the power flow (adjustment amount) is larger than that of Example 1 (the processing in step S190), and is an example that involves shutting down the generator as stabilization by adjusting the generator.
Example 2 is a case where it is determined that the surplus of power generation is 200 [MW] due to being a single system due to a trouble, and the ratio of the surplus to the total load is 20% or more. This is an example in which a generator with an output close to the adjustment amount is shut off to achieve early stabilization. That is, in Example 2, since the ratio of the surplus to the total load due to the trouble is large, from the viewpoint of early supply-demand balance adjustment, power generation is suppressed by selecting and shutting down the target generator.
In this example 2, it is determined that the adjustment amount is equal to the output of the generator 3B, and the generator 3B is shut off (FIG. 5B).

(例3)
例3は、図6に示すように、負荷を調整して安定化する処理例を説明する図である。
例3は、各発電機の出力が低く、連系線2の遮断時に発電量が100[MW]不足する場合である。この例3では、負荷変動率が高い負荷から制限するようにあらかじめ順位づけしておくことで、変動が大きな負荷から遮断を行った例である。
ここで、図5中の最下段に記載した数字が負荷遮断の順番を示す。
この例3では、順位1番の負荷4Bを遮断することで安定化を図った例である(図6(b))。
(Example 3)
Example 3 is a diagram for explaining a processing example in which the load is adjusted and stabilized as shown in FIG.
Example 3 is a case where the output of each generator is low and the power generation amount is insufficient by 100 [MW] when the interconnection line 2 is cut off. In the third example, prioritization is performed in advance so as to limit the load from a load with a high load variation rate, and the load is interrupted from a load with a large variation.
Here, the numbers described at the bottom of FIG. 5 indicate the order of load shedding.
In the third example, the stabilization is achieved by interrupting the first load 4B (FIG. 6B).

(例4)
例4も、図7に示すように、負荷を調整して安定化する処理例を説明する図である。ただし、例4は、負荷を制限したことで、逆に発電量に余剰が出る場合の例である。
すなわち、連系線の遮断時に発電量が150[MW]不足していることから、順位1番と2番の負荷4B及び4Cを遮断した場合である。この場合は、負荷制限の後、制御対象の系統容量(全負荷量)に占める発電量の余剰分について、例1のように、発電機の抑制を実施した例である(図7(b))。
例4では、ステップS140にて負荷4B及び4Cを遮断した後、ステップS150で総負荷量を更新し、ステップS120で続けての安定化処理が必要と判断されて、ステップS170にて発電の抑制を行った例である。
(Example 4)
Example 4 is also a diagram for explaining a processing example of adjusting and stabilizing the load as shown in FIG. However, Example 4 is an example in which a surplus is generated in the power generation amount by limiting the load.
That is, this is a case where the loads 4B and 4C of the first and second ranks are cut off because the power generation amount is short of 150 [MW] when the interconnection line is cut off. In this case, as shown in Example 1, the generator is suppressed for the surplus of the power generation amount in the system capacity (full load amount) to be controlled after the load limitation (FIG. 7B). ).
In Example 4, after the loads 4B and 4C are cut off in Step S140, the total load is updated in Step S150, and it is determined that continuous stabilization processing is necessary in Step S120, and power generation is suppressed in Step S170. This is an example of performing.

<作用その他>
本実施形態は、製造工場に設定されている制御対象の電力系統1Aと電力会社の電力系統(他の電力系統1B)とが連系線2で接続されている状態から、系統トラブルが発生して連系線2が電気的に遮断されて、制御対象の電力系統1Aが単独分離系統になった場合における系統安定化の技術である。制御対象の電力系統1Aと連系線2で接続される他の電力系統1Bは、他の工場の電力系統であってもよい。
<Action and others>
In the present embodiment, a system trouble occurs when the power system 1A to be controlled set in the manufacturing factory and the power system of the power company (the other power system 1B) are connected by the interconnection line 2. This is a system stabilization technique in a case where the interconnection line 2 is electrically disconnected and the power system 1A to be controlled becomes an isolated system. The other power system 1B connected to the power system 1A to be controlled by the interconnection line 2 may be a power system of another factory.

本実施形態の系統安定化の技術では、系統トラブルが発生する直前(例えば5分前)の連系線潮流から調整量を算出し、直前の連系線2の潮流の向きから、制御対象の電力系統1A内に存在する発電機や工場負荷の中から制限対象を選定して、制御対象の電力系統の安定化処理を行う。
すなわち、本実施形態では、系統上のトラブルが発生した場合に制御対象の連系線潮流に着目することで、内部の系統状態に依存せずに安定化を図る。
In the system stabilization technique according to the present embodiment, the adjustment amount is calculated from the interconnection flow just before the system trouble occurs (for example, 5 minutes before), and the control target is determined from the direction of the interconnection flow of the interconnection 2 immediately before. A restriction target is selected from the generators and factory loads existing in the power system 1A, and the control target power system is stabilized.
In other words, in the present embodiment, when a trouble occurs in the system, the stabilization is achieved without depending on the state of the internal system by focusing on the power flow of the interconnection line to be controlled.

例えば、系統トラブルの発生によって、連系線潮流に基づき発電量を抑制すると判断した場合、すなわち、発電機を調整しなければならない場合において、調整量が少ないケースでは、周波数偏差も少ないため制御対象に連系されている発電機の台数と出力から、各発電機の抑制量を算出して系統の安定化を図る。一方、連系線潮流から発電量を抑制すると判断し、且つ調整量が多いケースにおいては、潮流が小さかったケースと同様な手法であると、周波数偏差の是正が追い付かず、単独系統維持が困難となるため、早期の需給バランス調整の観点から、発電機を遮断することで安定化を図る。   For example, when it is determined that the amount of power generation should be suppressed based on the interconnection flow due to the occurrence of a system trouble, that is, when the generator must be adjusted, if the amount of adjustment is small, the frequency deviation is small, so the control target Based on the number and output of generators connected to the system, the amount of suppression of each generator is calculated to stabilize the system. On the other hand, in the case where it is determined that the amount of power generation is suppressed from the interconnection flow and the amount of adjustment is large, if the method is the same as the case where the power flow is small, the correction of the frequency deviation cannot catch up and it is difficult to maintain a single system Therefore, from the viewpoint of early supply-demand balance adjustment, stabilization will be achieved by shutting down the generator.

また、連系線潮流に基づき負荷を調整しなければならない場合、本実施形態では、各負荷4A〜4Eの各変動率を考慮した遮断順位を設定し、順位に応じて調整量に応じた負荷低減分まで、順次負荷の遮断を行うことで系統の安定化を図る。
ここで、工場負荷においては、負荷変動率が大きな工場負荷は、通常、重要度が低いことが多く、このように負荷変動から順位を予め決定しておくことで、安定化のための負荷低減を迅速に行うことができる。また変動が大きな負荷を残しておくと、またトラブルが発生し全体の工場負荷を止めるような自体に発展するおそれもある。また変動率の大きな負荷の負荷量は、系統安定化処理時における総負荷量の変動が大きくなる原因ともなる。
In the case where the load has to be adjusted based on the interconnection flow, in the present embodiment, the cutoff order is set in consideration of the respective fluctuation rates of the loads 4A to 4E, and the load is adjusted according to the adjustment amount according to the order. The system will be stabilized by successively shutting down the load until the reduction.
Here, as for the factory load, the factory load having a large load variation rate is usually low in importance. Thus, by determining the order from the load variation in advance, the load reduction for stabilization can be achieved. Can be done quickly. If a load having a large fluctuation is left, there is a possibility that a trouble may occur and the whole factory load may be stopped. Further, the load amount of the load having a large fluctuation rate causes a large fluctuation of the total load amount during the system stabilization processing.

以上のように、本実施形態によれば、制御対象の電力系統1Aについて、膨大な事故想定ケースへの対応をそれぞれ設定することなく、系統分離する事故に対して、簡易な処理(簡単な判断)にて需給バランス調整と単独系統維持ができるようになる。また、本実施形態によれば、連系線潮流の向きによっては、負荷制限のみならず、発電機の調整をすることで単独系統の維持ができ、操業影響の最小化を図ることができる。   As described above, according to the present embodiment, simple processing (simple determination) can be performed for an accident that separates the system without setting the response to the huge accident assumed case for the power system 1A to be controlled. ) Makes it possible to balance supply and demand and maintain a single system. Further, according to the present embodiment, depending on the direction of the interconnection flow, not only the load limitation but also the adjustment of the generator can maintain the single system, thereby minimizing the influence of the operation.

1A 制御対象の電力系統
1B 他の電力系統
2 連系線
3A〜3D 発電機
4A〜4E 負荷
5 系統安定化装置
5A 負荷遮断順位設定部
5B 系統情報入力部
5C 調整量算出部
5D 調整判定部
5E 安定化処理部
5Ea 処理切り分け部
5Eb 負荷低減処理部
5Ec 発電抑制処理部
10A〜10J 遮断器
11A〜11J センサ
1A Control target power system 1B Other power system 2 Interconnection lines 3A to 3D Generators 4A to 4E Load 5 System stabilization device 5A Load shedding order setting unit 5B System information input unit 5C Adjustment amount calculation unit 5D Adjustment determination unit 5E Stabilization processing unit 5Ea Processing separation unit 5Eb Load reduction processing unit 5Ec Power generation suppression processing units 10A to 10J Circuit breakers 11A to 11J Sensors

Claims (7)

複数の発電機と複数の負荷を有する制御対象の電力系統が、他の電力系統と連系線で接続している状態からトラブルにより単独系統分離になった場合に、上記制御対象の電力系統からなる単独系統を維持する系統安定化方法であって、
上記制御対象の電力系統側から上記他の電力系統側に向かう潮流を正と定義し、
上記単独系統分離が発生し、且つ上記複数の発電機による総発電量と上記複数の負荷による総負荷量との乖離が予め設定した設定乖離以上の場合に、
上記単独系統分離となる前の上記連系線の潮流分に応じて、上記潮流分が正値であれば上記総発電量を抑制し、上記潮流分が負値であれば、予め決定した遮断順位で負荷の一部を遮断することで上記総負荷量を低減して、上記制御対象の電力系統の安定化を図ることを特徴とする系統安定化方法。
When a power system to be controlled having a plurality of generators and a plurality of loads is separated from a single system due to a trouble from a state in which the power system is connected to another power system via a connection line, the power system to be controlled is A system stabilization method for maintaining a single system
The power flow from the power system side to be controlled to the other power system side is defined as positive,
When the single system separation occurs, and the difference between the total power generation amount by the plurality of generators and the total load amount by the plurality of loads is equal to or greater than a preset difference,
According to the power flow of the interconnection line before the single system separation, the total power generation is suppressed if the power flow is a positive value, and a predetermined cutoff is performed if the power flow is a negative value. A system stabilization method characterized in that the total load is reduced by interrupting a part of the load in order to stabilize the power system to be controlled.
上記総発電量の抑制は、上記潮流分に応じた調整量を複数の各発電機の出力にそれぞれ案分して、上記複数の各発電機の出力をそれぞれ抑制することで実現することを特徴とする請求項1に記載した系統安定化方法。   The suppression of the total power generation amount is realized by dividing the adjustment amount according to the power flow into outputs of a plurality of generators, respectively, and suppressing the outputs of the plurality of generators. 2. The system stabilization method according to claim 1, wherein: 上記総発電量の抑制は、総負荷量に対する、上記潮流分に応じた抑制する調整量の割合が、予め設定した閾値を超える場合には、上記調整量に近い出力の発電機を遮断することで実現することを特徴とする請求項1又は請求項2に記載した系統安定化方法。   The suppression of the total power generation amount includes shutting down a generator having an output close to the adjustment amount when a ratio of the adjustment amount corresponding to the tidal current to the total load amount exceeds a preset threshold. The system stabilization method according to claim 1 or 2, wherein the method is realized by: 上記複数の負荷に対し、実績に基づき負荷の変動が大きなものほど優先順位が高くなるようにして、遮断する順番である遮断順位を予め設定しておき、
上記総負荷量を低減は、上記潮流分に応じた調整量分だけ、上記設定した遮断順位で負荷を遮断することで実現することを特徴とする請求項1〜請求項3のいずれか1項に記載した系統安定化方法。
For the plurality of loads, the higher the fluctuation of the load based on the results, the higher the priority is, so that the interruption order, which is the order of interruption, is set in advance,
4. The method according to claim 1, wherein the reduction of the total load is realized by interrupting the load in the set interruption order by the adjustment amount corresponding to the power flow. 5. System stabilization method described in 1).
上記負荷の遮断によって、現在の総発電量と現在の総負荷量との乖離が上記設定乖離以上で且つ、現在の総発電量が現在の総負荷量よりも大きくなった場合には、総発電量を抑制して総発電量と総負荷量との乖離を上記設定乖離未満とすることを特徴とする請求項4に記載した系統安定化方法。   If the difference between the current total power generation amount and the current total load amount is equal to or greater than the set deviation and the current total power generation amount is larger than the current total load amount due to the load interruption, the total power generation 5. The system stabilization method according to claim 4, wherein the amount of power generation is suppressed so that the difference between the total power generation amount and the total load amount is less than the set difference. 複数の発電機と複数の負荷を有する制御対象の電力系統が、他の電力系統と連系線で接続している状態からトラブルにより単独系統分離になった場合に作動して、上記制御対象の電力系統からなる単独系統を維持するための系統安定化装置であって、
上記制御対象の電力系統側から上記他の電力系統側に向かう潮流を正と定義し、
上記複数の発電機による現在の総発電量と上記複数の負荷による現在の総負荷量との乖離が予め設定した設定乖離率以上か否かを判定する調整判定部と、
上記複数の負荷に対し、実績に基づき負荷の変動が大きなものほど優先順位が高くなるようにして、遮断する順番である遮断順位を予め設定する負荷遮断順位設定部と、
上記単独系統分離状態であり且つ上記総発電量と上記総負荷量との乖離が設定乖離以上であって、上記単独系統分離となる直前の上記連系線の潮流分が負値の場合に、単独系統分離となる直前の潮流分に応じた負荷量だけ、上記負荷遮断順位設定部されている遮断順位で負荷を遮断する負荷低減処理部と、
上記単独系統分離状態であり且つ上記総発電量と上記総負荷量との乖離が設定乖離率以上であって、上記単独系統分離となる直前の上記連系線の潮流分が正値の場合に、上記総発電量を抑制して上記制御対象の電力系統の安定化を図る発電抑制処理部と、
を備えることを特徴とする系統安定化装置。
The power system to be controlled having a plurality of generators and a plurality of loads is operated when a single system is separated due to a trouble from a state in which the power system is connected to another power system by a connection line, and A system stabilizing device for maintaining a single system consisting of a power system,
The power flow from the power system side to be controlled to the other power system side is defined as positive,
An adjustment determination unit that determines whether the difference between the current total power generation amount by the plurality of generators and the current total load amount by the plurality of loads is equal to or greater than a preset deviation ratio,
For a plurality of the loads, a load fluctuation order setting unit that presets a breaking order, which is a breaking order, such that a higher load variation based on an actual result has a higher priority,
In the case of the single system separation state and the difference between the total power generation amount and the total load amount is equal to or larger than a set difference, and when the power flow component of the interconnection line immediately before the single system separation is a negative value, A load reduction processing unit that cuts off the load in the cutoff order set by the load shedding order setting unit, by a load amount corresponding to the power flow just before the single system is separated;
In the case where the single system is separated and the difference between the total power generation amount and the total load amount is equal to or greater than a set deviation ratio, and the power flow component of the interconnection line immediately before the single system separation is a positive value, A power generation suppression processing unit that suppresses the total power generation amount to stabilize the power system to be controlled,
A system stabilizing device comprising:
上記発電抑制処理部は、総負荷量に対し発電抑制で抑制すべき発電量が予め設定した値よりも大きい場合には、発電抑制で抑制すべき発電量に近い発電機を遮断することで、発電抑制を行うことを特徴とする請求項6に記載した系統安定化装置。   When the power generation amount to be suppressed by power generation suppression is larger than a preset value with respect to the total load, the power generation suppression processing unit shuts down a generator close to the power generation amount to be suppressed by power generation suppression, The system stabilization device according to claim 6, wherein power generation suppression is performed.
JP2018119821A 2018-06-25 2018-06-25 System stabilization method and system stabilizer Pending JP2020005336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018119821A JP2020005336A (en) 2018-06-25 2018-06-25 System stabilization method and system stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018119821A JP2020005336A (en) 2018-06-25 2018-06-25 System stabilization method and system stabilizer

Publications (1)

Publication Number Publication Date
JP2020005336A true JP2020005336A (en) 2020-01-09

Family

ID=69100689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018119821A Pending JP2020005336A (en) 2018-06-25 2018-06-25 System stabilization method and system stabilizer

Country Status (1)

Country Link
JP (1) JP2020005336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210768A1 (en) * 2021-03-31 2022-10-06 株式会社ラプラス・システム Control terminal of power generation system and control program therefor, and production method for power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210768A1 (en) * 2021-03-31 2022-10-06 株式会社ラプラス・システム Control terminal of power generation system and control program therefor, and production method for power generation system
JP7222502B1 (en) * 2021-03-31 2023-02-15 株式会社ラプラス・システム Power generation system control terminal, control program therefor, and power generation system manufacturing method

Similar Documents

Publication Publication Date Title
JP4094206B2 (en) Power system stabilizer
CN111327047B (en) Method and system for determining multi-alternating-current section power transmission capacity of cascaded power grid
JP4119077B2 (en) Frequency stabilizer for power system
JP2018085834A (en) System stabilizer
JP2011019362A (en) System stabilization system with posteriori correction function
JP6410696B2 (en) System control device and system stabilization system
JP2020005336A (en) System stabilization method and system stabilizer
JP2007189840A (en) Power system stabilizing apparatus
JP6128931B2 (en) System stabilization device
JP2012170167A (en) Stabilization control method for power system, and apparatus using the same
JP6005403B2 (en) System stabilizing device and method for controlling system stabilizing device
JP5496246B2 (en) Power storage control system and power storage control method
JP2003319559A (en) Power-system stabilization control system
KR20050091916A (en) Off line state evalution system and method for large scale power system
JP4832600B1 (en) Interrupt control device, interrupt control program, and interrupt control method
KR20200004635A (en) Directional over-current relay using the superconducting fault current limiter&#39;s voltage and setting method
JP2008022612A (en) Emergent frequency controller and control method
JP2017060249A (en) System stabilization system
JP2011019361A (en) Power system stabilization system with load correction control function
CN111756100A (en) Battery control system
JP2010183759A (en) System stabilizer
JP7106348B2 (en) System stabilizer
JP3989160B2 (en) Power system stabilization method, stabilization apparatus, and recording medium
JP4160535B2 (en) Power system stabilization device and power system stabilization processing program
JP7163163B2 (en) Power system stabilization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210518