JPH01129800A - Excitation controller for synchronous machine - Google Patents

Excitation controller for synchronous machine

Info

Publication number
JPH01129800A
JPH01129800A JP62286167A JP28616787A JPH01129800A JP H01129800 A JPH01129800 A JP H01129800A JP 62286167 A JP62286167 A JP 62286167A JP 28616787 A JP28616787 A JP 28616787A JP H01129800 A JPH01129800 A JP H01129800A
Authority
JP
Japan
Prior art keywords
signal
control
synchronous machine
phase
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62286167A
Other languages
Japanese (ja)
Other versions
JPH0697880B2 (en
Inventor
Minoru Manjo
萬城 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62286167A priority Critical patent/JPH0697880B2/en
Publication of JPH01129800A publication Critical patent/JPH01129800A/en
Publication of JPH0697880B2 publication Critical patent/JPH0697880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To assure optimum dynamic stability at all times by adjusting gain and phase control signals supplied to a power system stabilizer in accordance with the condition of a power supply system. CONSTITUTION:A power system stabilizer 30 receives a signal representing an effective power from a power supply system and adds a power system stabilization signal 105 obtained by controlling the received effective power signal in gain and phase to a voltage deviation signal 104. On the other hand, an output ratio control circuit 32 compares the peak value of absolute value of the stabilization signal 105 with that of a control signal 106 and adjusts the gain of the power system stabilizer based on the result of comparison. In addition, a phase difference control circuit 33 obtained a field voltage simulation value 110 from the output of an AVR model 15 receiving the voltage deviation signal 104, and from a signal obtained by impefectly differentiating the field voltage. Finally, the phase of the power system stabilizer is controlled in accordance with the result of comparison between the simulation value 110 and the imperfectly-differentiated signal of the effective power.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期機の励磁制御装置に係り、特に電力系統の
動態安定度向上を行なうのに好適な電力系統安定化装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an excitation control device for a synchronous machine, and particularly to a power system stabilizing device suitable for improving the dynamic stability of a power system.

〔従来の技術〕[Conventional technology]

従来の電力系統の動態安定度向上を目的としたものに、
日立評論VoL、5G、Nu12(1974−12)第
35頁から第40頁に述べられているように電力動揺抑
制を目的とした電力系統安定化袋fl (Power 
System 5tabilizer以下P’jyと略
す)がある。
The aim is to improve the dynamic stability of conventional power systems.
As stated on pages 35 to 40 of Hitachi Review Vol.
There is a system 5 tabilizer (hereinafter abbreviated as P'jy).

この動作原理は次のようなものである。The principle of operation is as follows.

第2図はりアクドルXe24を介して無限大母線23に
接続された1つの同期機22を示すところの、1機無限
大系と呼ばれる系統モデルで、この電力動揺は同期機2
2の運転特性と系統インピーダンスとの関係により説明
される。この動作を微少電力動揺について線形近似化す
るとトルクΔT及び速度Δω、相差角Δδ、端子電圧Δ
Vgとして第3図に示すブロック図のように表ねすこと
ができる。ここでΔは変化分を示した以下同様である。
Fig. 2 is a system model called a one-machine infinite system, which shows one synchronous machine 22 connected to an infinite bus 23 via a beam axle Xe24.
This is explained by the relationship between the operating characteristics of No. 2 and the system impedance. When this operation is linearly approximated for minute power fluctuations, torque ΔT, speed Δω, phase difference angle Δδ, terminal voltage Δ
It can be expressed as Vg as shown in the block diagram shown in FIG. Here, Δ indicates the amount of change, and the same applies hereafter.

第3図においてK s = K 6であられされるτ ゲイン特性のうち、K8のみ同期機22と系統のインピ
ーダンスのみで定まるが、残りは全てインピーダンスの
他に同期機22の運転状態によって変わる。そこで同期
機22の運動を振動系として取扱い相差角δと同相の同
期化トルクΔTs及び速度Δωと同相の制動トルクΔT
dで表わせば第4図に示したブロック図となり、その振
動特性は振動周波数ω−F=フΣ制動特性ρを有し、次
式で示される。
In FIG. 3, among the τ gain characteristics given by K s = K 6, only K8 is determined by the impedance of the synchronous machine 22 and the system, but the rest all vary depending on the operating state of the synchronous machine 22 in addition to the impedance. Therefore, the motion of the synchronous machine 22 is treated as a vibration system, and the synchronization torque ΔTs is in phase with the phase difference angle δ, and the braking torque ΔT is in phase with the speed Δω.
If expressed as d, the block diagram shown in FIG. 4 will be obtained, and its vibration characteristic has vibration frequency ω-F=fΣbraking characteristic ρ, and is expressed by the following equation.

ここで S:微分演算子(d/d t)D二側動トルク
係数 Kl :同期化トルク係数 M:同期機の慣性定数 ω0 :ベース回転角速度 通常この角周波数ω、は5〜10rad/ s程度であ
り系統構成が大きく変ってもせいぜい2〜2゜rad/
s程度である。第4図においてに1はd軸鎖交磁束ΔE
(1’一定のとき相差角の変化分に対する同期機固有の
電気トルクの変化係数であり、K11は励磁制御系から
発生する電気トルク係数である。
Here, S: Differential operator (d/d t) D Two-sided dynamic torque coefficient Kl: Synchronization torque coefficient M: Inertia constant of synchronous machine ω0: Base rotational angular speed Normally, this angular frequency ω is about 5 to 10 rad/s Therefore, even if the system configuration changes significantly, the difference is at most 2~2°rad/
It is about s. In Fig. 4, 1 is the d-axis interlinkage magnetic flux ΔE
(1' is the change coefficient of the electric torque specific to the synchronous machine with respect to the change in the phase difference angle when it is constant, and K11 is the electric torque coefficient generated from the excitation control system.

−右同期化トルクと90度位相が異なり回転速度と同相
の信号としたフィードバックされる電気トルク係数には
制御係数りとして表わされる同期機固有の係数と励磁制
御による制動トルク係数D′がある。
- The electric torque coefficient fed back as a signal with a phase difference of 90 degrees from the right synchronization torque and the same phase as the rotation speed includes a coefficient specific to the synchronous machine expressed as a control coefficient and a braking torque coefficient D' due to excitation control.

このうちKl’は通常の機器定数の範囲ではに1の10
〜20%以下であり、これが負値となっても余り問題と
ならないが、D′はDと同じ大きさの負値となり得るの
でD+D’ <Oとなるとその振動は発散系となり動態
安定度が失われることが考えられる。そこで動態安定度
の確保のためには、負の制動トルクを補償するように正
の制動トルクを加えることが必要であり、このためには
同期機の相差角Δδの動揺信号を検出し、ゲイン及び位
相を調整し電圧制御系へ補正信号として与え、励磁系の
制動トルクを増加させる制御を行なえば良く、これを行
なうのがPssである。
Of these, Kl' is 1 to 10 in the range of normal equipment constants.
~20% or less, and even if it becomes a negative value, it is not much of a problem, but D' can be a negative value of the same magnitude as D, so if D+D'< O, the vibration becomes a divergent system and the dynamic stability is reduced. It is possible that it will be lost. Therefore, in order to ensure dynamic stability, it is necessary to add positive braking torque to compensate for the negative braking torque. To do this, the oscillation signal of the phase difference angle Δδ of the synchronous machine is detected, and the gain It is sufficient to adjust the phase and the phase and provide it to the voltage control system as a correction signal to increase the braking torque of the excitation system, and Pss performs this.

第4図に戻り以上の考えを整理すると、動態安定度の向
上を行なうためには相差角動揺Δδに対する励磁系トル
クΔTexが角周波数Δωに同相のほぼ90度進み又は
−Δδに対して90度遅れとなる電圧一定制御系AVH
の制御を行なえば良いことがわかる。次に第3図から同
期機の界磁電圧ΔVfと励磁系トルクΔTexとの関係
を求めるととなる。ここで電機子反作用による効果に4
・ΔδはΔVfと比較し小さな値であるので無視してい
る。(1)式においてに3・Tdo’は通常数秒のオー
ダであり及び通常の電力動揺角周波数が2〜20red
/Sの範囲内であることを考えると励磁系トルクΔTe
xは界磁電圧ΔVfに対しほぼ90度遅れることがわが
る。
Returning to Figure 4 and organizing the above ideas, in order to improve the dynamic stability, the excitation system torque ΔTex for the phase difference angular fluctuation Δδ must advance approximately 90 degrees in phase with the angular frequency Δω or 90 degrees with respect to -Δδ. Constant voltage control system AVH with delay
It can be seen that it is better to control the Next, from FIG. 3, the relationship between the field voltage ΔVf of the synchronous machine and the excitation system torque ΔTex is determined as follows. Here, the effect due to armature reaction is 4
- Δδ is a small value compared to ΔVf, so it is ignored. In equation (1), 3·Tdo' is usually on the order of several seconds, and the normal power swing angular frequency is 2 to 20red.
Considering that it is within the range of /S, the excitation system torque ΔTe
It can be seen that x lags behind the field voltage ΔVf by approximately 90 degrees.

以上の位相関係を相差角Δδとともにベクトル表示する
と第5図と第6図の関係を得る。励磁系トルクΔTex
は軸回転速度Δωにほぼ同相か遅れ気味となるように、
即ち斜線領域になるように制御を行なえば良いことにな
る。図中ΔTax’はΔωに対するΔTexの許容最大
位相遅れを示している。さらに(1)式からΔVfはΔ
Texより90度進みの位置にあるので、最適な制動ト
ルクを得るためにはΔVfがΔδと180度あるいはΔ
Vfと(−Δδ)がほぼ同相となるよう制御を行なえば
良いことがわかる。
When the above phase relationship is expressed as a vector together with the phase difference angle Δδ, the relationships shown in FIGS. 5 and 6 are obtained. Excitation system torque ΔTex
is almost in phase with or slightly behind the shaft rotational speed Δω,
In other words, it is sufficient to perform control so that the area falls within the shaded area. In the figure, ΔTax' indicates the maximum allowable phase delay of ΔTex with respect to Δω. Furthermore, from equation (1), ΔVf is Δ
Since it is at a position 90 degrees ahead of Tex, in order to obtain the optimum braking torque, ΔVf must be 180 degrees or Δδ
It can be seen that control should be performed so that Vf and (-Δδ) are approximately in phase.

以上がPssの動作原理についての説明である。The above is an explanation of the operating principle of Pss.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、電力系統安定化装置の制御定数を所定
の系統構成に合せ固定的定数として設定するものであり
、又特開昭61−15599号公報に記載のように系統
構成及び負荷状態に応じブロックを選択することで最適
な特性を実現しようとするものがあるが、パラメータが
ステップ状に変化するため必ずしも最適ではないこと、
又系統構成がプラント計画時点における机上検討を越え
るケースの場合、不安定な制御となるなどの問題点を有
していた。
In the above conventional technology, the control constant of the power system stabilizing device is set as a fixed constant according to the predetermined system configuration, and as described in Japanese Patent Application Laid-open No. 15599/1983, the control constant is set according to the system configuration and load condition. Some attempts are made to achieve optimal characteristics by selecting blocks accordingly, but this is not necessarily optimal because the parameters change in a stepwise manner.
In addition, in cases where the system configuration exceeds the theoretical consideration at the time of plant planning, there are problems such as unstable control.

本発明の目的は、電力系統の状態に応じて常に最適な動
態安定度向上を行なうために、ゲイン制御を行なうゲイ
ン制御信号を電力系統の状態に応じ最適に自動調整を行
ない、更に位相制御における位相制御信号も電力系統の
状態に応じ最適に自動調整する同期機の励磁制御装置を
提供することにある。
An object of the present invention is to optimally automatically adjust a gain control signal that performs gain control according to the state of the power system, and furthermore, to improve dynamic stability optimally according to the state of the power system. The object of the present invention is to provide an excitation control device for a synchronous machine that automatically adjusts a phase control signal optimally depending on the state of the power system.

C問題点を解決するための手段〕 上記目的は、同期機の端子電圧と設定端子電圧との偏差
信号に対応して前記同期機の界磁量を定め前記端子電圧
を制御する端子電圧一定制御手段を備える同期機の励磁
制御装置において、前記同期機の有効電力値を検出し該
有効電力値に所定のゲイン制御と位相制御を施した電力
系統安定化信号を出力する電力系統安定化手段と、該電
力系統安定化信号と前記偏差信号との比率を所定の値と
するゲイン制御信号を演算し前記ゲイン制御の制御信号
として出力する出力比率制御手段と、を備え前記偏差信
号に前記電力系統安定化信号を加えた同期機の励磁制御
装置、又は電力系統安定化手段と出力比率制御手段とを
備えた該同期機の励磁制御装置に前記同期機の界磁電圧
と前記偏差信号と前記有効電力値とを入力し該界磁電圧
と前記偏差信号とから前記電力系統安定化信号が寄与し
た界磁電圧成分を演算し該界磁電圧成分と前記有効電力
値との位相差を所定の値とする位相制御信号を演算し前
記位相制御の制御信号として出力する位相差制御手段を
付加することで達成される。
Means for Solving Problem C] The above object is a terminal voltage constant control that determines the field amount of the synchronous machine in response to a deviation signal between the terminal voltage of the synchronous machine and the set terminal voltage, and controls the terminal voltage. In the excitation control device for a synchronous machine, the power system stabilization means detects an active power value of the synchronous machine and outputs a power system stabilization signal obtained by subjecting the active power value to predetermined gain control and phase control. and output ratio control means for calculating a gain control signal that sets a ratio of the power system stabilization signal and the deviation signal to a predetermined value and outputting it as a control signal for the gain control. The field voltage of the synchronous machine, the deviation signal, and the valid signal are sent to an excitation control device for a synchronous machine to which a stabilization signal is added, or an excitation control device for the synchronous machine that includes power system stabilization means and output ratio control means. A field voltage component to which the power system stabilization signal contributes is calculated from the field voltage and the deviation signal, and a phase difference between the field voltage component and the active power value is set to a predetermined value. This is achieved by adding a phase difference control means that calculates a phase control signal and outputs it as a control signal for the phase control.

〔作用〕[Effect]

前記構成において、電力系統安定化手段は同期機の有効
電力値を検出して所定のゲイン制御と位相制御を施した
電力系統安定化信号を出力し、前記同期機の端子電圧と
設定端子電圧との偏差信号に加え、その補正された偏差
信号に対応して端子電圧一定制御手段は界磁量を定め前
記端子電圧の制御をし、出力比率制御手段は前記電力系
統安定化信号と補正前の前記偏差信号との比率を所定の
値とする前記ゲイン制御を行なうゲイン制御信号を演算
出力し、更に位相差制御手段は前記同期機の界磁電圧と
補正前の前記偏差信号とから前記電力系統安定化信号が
寄与した界磁電圧成分を演算して前記位相制御が該界磁
電圧成分と前記有効電力値との位相差を所定の値とする
位相差制御信号を演算出力する。
In the above configuration, the power system stabilization means detects the active power value of the synchronous machine, outputs a power system stabilization signal subjected to predetermined gain control and phase control, and compares the terminal voltage of the synchronous machine with the set terminal voltage. In addition to the deviation signal of , the terminal voltage constant control means determines the field amount in response to the corrected deviation signal and controls the terminal voltage. A gain control signal for performing the gain control is calculated and outputted so that the ratio with the deviation signal is a predetermined value, and the phase difference control means calculates and outputs a gain control signal for controlling the gain to a predetermined value. The phase control calculates the field voltage component to which the stabilization signal contributes, and calculates and outputs a phase difference control signal that makes the phase difference between the field voltage component and the active power value a predetermined value.

〔実施例〕〔Example〕

以下、本発明による一実施例を第1図により説明する。 An embodiment according to the present invention will be described below with reference to FIG.

第1図はサイリスタ20を用いた静止形励磁装置の構成
を示す図である。
FIG. 1 is a diagram showing the configuration of a static excitation device using a thyristor 20.

同期機22の端子電圧v101を計器用変成器PT25
で降圧した端子電圧vg102と自11i11ffi圧
調整装置AVR(端子電圧一定制御手段)26の電圧設
定値V ref (設定端子電圧)103との偏差信号
ε1104を検出する。偏差信号ε1104を増幅器A
MPIにて増幅し、さらに自動パルス位相器APPS2
にてサイリスタゲート制御用パルスを発生させ、これに
よりサイリスタ20の出力電圧すなわち同期機22の界
磁電圧Vf(界磁量) v109を制御し同期機22の
端子電圧を−定に制御する。また、電力系統の動態安定
度向上を計るため有効電力Pglllを計器変成器PT
25と計器用変流器CT27を介し電力変換器3にて検
出し、これに適正なゲイン・位相制御を施したPss出
力信号V pss (電力系統安定化信号)105をA
VR26の信号加算回路28へ補助信号として与える電
力系統安定化装置Pss(11力系統安定化手段)30
を有している。
The terminal voltage v101 of the synchronous machine 22 is transferred to the instrument transformer PT25.
A deviation signal ε1104 between the terminal voltage vg102 stepped down and the voltage setting value V ref (set terminal voltage) 103 of the own 11i11ffi pressure regulator AVR (terminal voltage constant control means) 26 is detected. The deviation signal ε1104 is sent to amplifier A.
Amplify with MPI and further add automatic pulse phaser APPS2
A thyristor gate control pulse is generated, thereby controlling the output voltage of the thyristor 20, that is, the field voltage Vf (field amount) v109 of the synchronous machine 22, and controlling the terminal voltage of the synchronous machine 22 to be constant. In addition, in order to improve the dynamic stability of the power system, the active power Pgll is transferred to the instrument transformer PT.
The Pss output signal V pss (power system stabilization signal) 105 is detected by the power converter 3 through the current transformer CT 25 and the instrument current transformer CT 27, and is subjected to appropriate gain and phase control.
Power system stabilizing device Pss (11 power system stabilizing means) 30 that provides as an auxiliary signal to the signal addition circuit 28 of VR 26
have.

まず、ゲイン制御について説明する。AVR26の偏差
信号ε1104にPss30の出力信号Vpss105
を加えた補正後の偏差信号ε2106とVpss105
とをそれぞれ絶対値検出回路10a。
First, gain control will be explained. The deviation signal ε1104 of AVR26 is the output signal Vpss105 of Pss30.
Deviation signal ε2106 and Vpss105 after correction by adding
and an absolute value detection circuit 10a, respectively.

10bとピーク値検出回路11a、llbとを介し絶対
値のピーク値を検出しさらに1し1ピーク値には演算器
12でに1倍した値を得る。1ε2・Kzlピーク値と
l Vpss lピーク値との偏差を一次遅れ回路13
でリップル分を除去し不感帯回路17aを介してPss
30のゲイン制御回路K pss4のゲイン制御信号′
107として与える。ゲイン制御信号107が正のとき
はPss30のゲインを上げ、負のときはPss30の
ゲインを下げる自動調整を行なうことにより、補正後の
偏差信号E2106に含まれるPss30の成分、Vp
ss 105を常に一定比率とすることができる。この
ように絶対値検出回路10a、10bとピーク値検出回
路11a、llbと演算器12と一次遅れ回路13と不
感帯回路17aとを備えた出力比率制御回路(出力比率
制御手段)32で、系統条件の変化、潮流条件の変化な
どにより電圧変動ΔVgが大きくなっても常にこれを土
建るPss30の出力信号Vpss105を確保するこ
とができる。ここにΔは変化分を示し以下同様とする。
10b and peak value detection circuits 11a and llb, the peak value of the absolute value is detected, and the value obtained by multiplying the peak value by 1 is obtained by the arithmetic unit 12. The deviation between the 1ε2·Kzl peak value and the l Vpss l peak value is calculated by the first-order lag circuit 13.
Pss is removed via the dead band circuit 17a.
30 gain control circuit K pss4 gain control signal'
Give as 107. By performing automatic adjustment to increase the gain of Pss30 when the gain control signal 107 is positive and to decrease the gain of Pss30 when it is negative, the component of Pss30 included in the corrected deviation signal E2106, Vp
ss 105 can always be a constant ratio. In this way, the output ratio control circuit (output ratio control means) 32, which includes the absolute value detection circuits 10a, 10b, the peak value detection circuits 11a, llb, the arithmetic unit 12, the first-order lag circuit 13, and the dead band circuit 17a, determines the system condition. Even if the voltage fluctuation ΔVg becomes large due to a change in the voltage, a change in the power flow condition, etc., the output signal Vpss 105 of the Pss 30 can always be maintained to compensate for the voltage fluctuation ΔVg. Here, Δ indicates the amount of change, and the same applies hereinafter.

また補正後の偏差信号ε2106に含まれるPss30
の出力信号Vpss105の比率を一定とすることがで
き、以上の制御を行なうことで、電力動揺に対する最適
なPssゲインの自動チューニングができる。
Also, Pss30 included in the deviation signal ε2106 after correction
The ratio of the output signal Vpss 105 can be kept constant, and by performing the above control, automatic tuning of the optimal Pss gain for power fluctuations can be performed.

次に、位相制御について説明する。従来技術のPss3
0の動作原理の説明にもあるように、最適な制動トルク
を得るためには界磁電圧ΔVf108が相差角動揺Δδ
と180度あるいはΔVf108と(−Δδ)がほぼ同
相となるような制御を行なえば良い。しかしながらΔV
f108には第3図のブロック図からあきらかなように
電圧制御系の電圧振動モードも含むため、Pss出力信
号V pss105による電力動揺モードと混合した複
合信号となる。このため上記の位相制御を行なうために
は、ΔVf108Lニー含まれるVpss105の動揺
成分(電力系統安定化信号寄与界゛磁電圧成分以下ΔV
fpssl 10と呼ぶ)、即ち系統動揺信号成分ΔV
fpssl 10のみを検出し、このΔVfpssll
OとΔδとの位相を約180度となるよう制御する必要
がある。
Next, phase control will be explained. Conventional technology Pss3
As explained in the explanation of the operating principle of 0, in order to obtain the optimum braking torque, the field voltage ΔVf108 must be
What is necessary is to perform control such that 180 degrees or ΔVf108 and (−Δδ) are approximately in phase. However, ΔV
As is clear from the block diagram of FIG. 3, f108 also includes the voltage oscillation mode of the voltage control system, so it becomes a composite signal mixed with the power oscillation mode by the Pss output signal V pss105. Therefore, in order to perform the above phase control, it is necessary to control the oscillation component of Vpss105 (power system stabilization signal contribution field) which includes ΔVf108L knee (below the magnetic voltage component ΔV
fpssl 10), that is, the system perturbation signal component ΔV
Detect only fpssl 10, and this ΔVfpssll
It is necessary to control the phase between O and Δδ to be about 180 degrees.

有効電力Pgl 11を電力変換器3にて検出し、これ
を不完全微分回路14aを介して有効電力Pglllの
変化分ΔPg112を得る。同様にして同期機22の界
磁電圧Vf109から不完全微分回路14bを介して界
磁電圧変動ΔVf108を得る。このΔVf108と同
期機22の端子電圧を一定に制御するAVR26の偏差
信号ε1104をAVRモデル15に入力し、Pss出
力信号Vpss105を面接合まない同期機22の界磁
電圧シミユレーション値ΔVfε1113を検出する。
The active power Pgl 11 is detected by the power converter 3, and the change amount ΔPg112 of the active power Pgll is obtained via the incomplete differentiation circuit 14a. Similarly, a field voltage fluctuation ΔVf108 is obtained from the field voltage Vf109 of the synchronous machine 22 via the incomplete differentiation circuit 14b. Input this ΔVf108 and the deviation signal ε1104 of the AVR 26 that controls the terminal voltage of the synchronous machine 22 to a constant value to the AVR model 15, and detect the field voltage simulation value ΔVfε1113 of the synchronous machine 22 that does not match the Pss output signal Vpss105. do.

このΔVf108とΔVfε1113との偏差をとるこ
とによりPss30による同期機22の界磁電圧成分Δ
Vfpssl 10を検出する。次に位相差検出回路1
6で系統の電力動揺信号のひつでであるΔPgl12と
ΔVfpssl 10との位相差を検出する。この位相
差を位相差設定値0refl14と比較し、この位相偏
差Δθ115を不感帯回路17bを介してΔθ115の
絶対値が一定以上のとき、Δθ114の符号に従ってP
ss30の位相制御回路θpss 5の位相制御信号1
16として与えられPss30の位相を増減し、Δθ1
14が零となるような制御をする。ここで位相検出回路
16は有効電力ΔPgl12及びΔVfpssl 10
の絶対値が一定以下のときは0FFL、−室以上でON
する補助リレーを有している。即ちΔPg112及びΔ
Vfpss 110の絶対値が小さいとき、つまり電力
動揺が発生していないときには位相制御信号を切雛すも
のである。このようにAVRモデル15と不完全微分回
路14a、14bと位相差検出回路16と不感帯回路1
7bとを備えた位相差制御回路(位相差制御手段)33
によって。
By taking the deviation between ΔVf108 and ΔVfε1113, the field voltage component Δ of the synchronous machine 22 due to Pss30 is calculated.
Detect Vfpssl 10. Next, phase difference detection circuit 1
6, the phase difference between ΔPgl12 and ΔVfpssl 10, which are one of the power fluctuation signals of the grid, is detected. This phase difference is compared with the phase difference setting value 0refl14, and this phase deviation Δθ115 is sent to the PSD according to the sign of Δθ114 when the absolute value of Δθ115 is a certain value or more.
Phase control signal 1 of phase control circuit θpss 5 of ss30
16 and increase or decrease the phase of Pss30, Δθ1
14 becomes zero. Here, the phase detection circuit 16 has active power ΔPgl12 and ΔVfpssl 10
0FFL when the absolute value of is below a certain level, ON when it is above - room
It has an auxiliary relay to That is, ΔPg112 and Δ
When the absolute value of Vfpss 110 is small, that is, when no power fluctuation occurs, the phase control signal is cut off. In this way, the AVR model 15, the incomplete differentiating circuits 14a and 14b, the phase difference detection circuit 16, and the dead zone circuit 1
7b and a phase difference control circuit (phase difference control means) 33
By.

電力動揺に対する最適な位相制御定数を自動チ装置のゲ
インと位相制御の定数の設定を行なう試運転時の調整が
、電圧制御系のステップ状変化あるいは2回線送電系統
であれば、これらの1回線の入切をし過渡的な電力動揺
を発生させることでその系統における最適なPss定数
を自動設定できるため従来に比べ調整が簡略できる。又
系統構成など外部条件が変化しても定数の再設定をしな
くとも良い自動チューニングができるといった効果があ
る。
If the adjustment during the trial run, which sets the gain and phase control constants of the automatic switching device, is to determine the optimal phase control constant for power fluctuations, it is necessary to adjust the step change of the voltage control system or for a two-line power transmission system. By turning the power on and off and generating transient power fluctuations, the optimal Pss constant for the system can be automatically set, making adjustment simpler than in the past. Furthermore, even if external conditions such as system configuration change, automatic tuning can be performed without having to reset constants.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同期機の励磁制御装置において電力系
統の動態安定向上を計る電力系統安定化装置を付加し、
該電力系統安定化装置のゲイン制御と位相制御にそれぞ
れの制御の定数を自動的に調整する手段を設けたことに
より、同期機の運転状態、系統構成の変化及び励磁装置
の種類にかかわらず常に最適な動態安定度を確保するよ
うに前記電力系統安定化装置の制御定数を自動調整する
自動チューニングができるため、試運転時の試験調整を
簡略化し、系統構成、電力潮流などの外部条件が変化し
ても定数の再設定を省略でき、電力系統の振動周期に応
じた最適制御定数に自動調整するため0.2 Hz〜2
Hzの広範囲な周波数帯域の動態安定度を確保すること
ができるといった優れた効果がある。
According to the present invention, a power system stabilizing device for improving the dynamic stability of the power system is added to the excitation control device of the synchronous machine,
By providing a means to automatically adjust the gain control and phase control constants of the power system stabilization device, it is possible to always adjust the constants of each control, regardless of the operating status of the synchronous machine, changes in the system configuration, or the type of excitation device. Automatic tuning is possible to automatically adjust the control constants of the power system stabilization device to ensure optimal dynamic stability, which simplifies test adjustments during trial runs and eliminates changes in external conditions such as system configuration and power flow. 0.2 Hz to 2.0
This has an excellent effect of ensuring dynamic stability in a wide frequency band of Hz.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の祷成図、第2図は一機
無限大系統のモデル図、第3図は第2図に示したモデル
を電力動揺に関し線形近似したブロック線図、第4図は
第3図を等価2似振動系で置き換えた図、第5図、ΔP
とΔωとΔVfの理想的なベクトル関係を示すベクトル
図、第6図は第5図を波形表現した波形図である。 4・・・ゲイン制御回路Kpss 、5・・・位相制御
回路θpss、26・・・自動電圧調整装置AVR13
0・・・電力系統安定化装置Pss、32・・・出力比
率制御回路、33・・・位相差制御回路、102・・・
端子電圧Vg、103・・・電圧設定値V ref、1
04・・・偏差信号ε1.105− Pss出力信号V
 pss、107−・・ゲイン制御信号、109・・・
界磁電圧Vf、110・・・系統動揺信号成分ΔV f
pss、111・・・有効電力Pg、116・・・位相
制御信号。
FIG. 1 is a construction diagram of an embodiment of the present invention, FIG. 2 is a model diagram of a one-machine infinite system, and FIG. 3 is a block diagram obtained by linearly approximating the model shown in FIG. 2 with regard to power fluctuations. Figure 4 is a diagram in which Figure 3 is replaced with an equivalent two-quasi-oscillation system, Figure 5, ΔP
FIG. 6 is a waveform diagram representing the waveform of FIG. 5. 4... Gain control circuit Kpss, 5... Phase control circuit θpss, 26... Automatic voltage regulator AVR13
0... Power system stabilizer Pss, 32... Output ratio control circuit, 33... Phase difference control circuit, 102...
Terminal voltage Vg, 103... Voltage setting value V ref, 1
04... Deviation signal ε1.105- Pss output signal V
pss, 107--gain control signal, 109...
Field voltage Vf, 110... System oscillation signal component ΔV f
pss, 111...active power Pg, 116...phase control signal.

Claims (1)

【特許請求の範囲】 1、同期機の端子電圧と設定端子電圧との偏差信号に対
応して前記同期機の界磁量を定め前記端子電圧を制御す
る端子電圧一定制御手段を備える同期機の励磁制御装置
において、前記同期機の有効電力値を検出し該有効電力
値に所定のゲイン制御と位相制御を施した電力系統安定
化信号を出力する電力系統安定化手段と、該電力系統安
定化信号と前記偏差信号との比率を所定の値とするゲイ
ン制御信号を演算し前記ゲイン制御の制御信号として出
力する出力比率制御手段と、を備え前記偏差信号に前記
電力系統安定化信号を加えたことを特徴とする同期機の
励磁制御装置。 2、同期機の端子電圧と設定端子電圧との偏差信号に対
応して前記同期機の界磁量を定め前記端子電圧を制御す
る端子電圧一定制御手段を備える同期機の励磁制御装置
において、前記同期機の有効電力値を検出し該有効電力
値に所定のゲイン制御と位相制御を施した電力系統安定
化信号を出力する電力系統安定化手段と、該電力系統安
定化信号と前記偏差信号との比率を所定の値とするゲイ
ン制御信号を演算し前記ゲイン制御の制御信号として出
力する出力比率制御手段と、前記同期機の界磁電圧と前
記偏差信号と前記有効電力値とを入力し該界磁電圧と前
記偏差信号とから前記電力系統安定化信号が寄与した界
磁電圧成分を演算し該界磁電圧成分と前記有効電力値と
の位相差を所定の値とする位相制御信号を演算し前記位
相制御の制御信号として出力する位相差制御手段と、を
備え前記偏差信号に電力系統安定化信号を加えたことを
特徴とする同期機の励磁制御装置。
[Scope of Claims] 1. A synchronous machine comprising terminal voltage constant control means for determining the field amount of the synchronous machine in response to a deviation signal between the terminal voltage of the synchronous machine and a set terminal voltage and controlling the terminal voltage. In the excitation control device, a power system stabilizing means detects an active power value of the synchronous machine and outputs a power system stabilization signal obtained by subjecting the active power value to predetermined gain control and phase control; output ratio control means for calculating a gain control signal that sets a ratio between the signal and the deviation signal to a predetermined value and outputting it as a control signal for the gain control, the power system stabilization signal being added to the deviation signal. An excitation control device for a synchronous machine characterized by the following. 2. An excitation control device for a synchronous machine comprising a terminal voltage constant control means for determining a field amount of the synchronous machine in response to a deviation signal between a terminal voltage of the synchronous machine and a set terminal voltage and controlling the terminal voltage. a power system stabilizing means for detecting an active power value of the synchronous machine and outputting a power system stabilizing signal obtained by subjecting the active power value to predetermined gain control and phase control; an output ratio control means for calculating a gain control signal that sets a ratio of 1 to a predetermined value and outputting it as a control signal for the gain control; Calculates a field voltage component to which the power system stabilization signal contributes from the field voltage and the deviation signal, and calculates a phase control signal that sets a phase difference between the field voltage component and the active power value to a predetermined value. and a phase difference control means for outputting as a control signal for the phase control, and a power system stabilization signal is added to the deviation signal.
JP62286167A 1987-11-12 1987-11-12 Excitation control device for synchronous machine Expired - Lifetime JPH0697880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286167A JPH0697880B2 (en) 1987-11-12 1987-11-12 Excitation control device for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286167A JPH0697880B2 (en) 1987-11-12 1987-11-12 Excitation control device for synchronous machine

Publications (2)

Publication Number Publication Date
JPH01129800A true JPH01129800A (en) 1989-05-23
JPH0697880B2 JPH0697880B2 (en) 1994-11-30

Family

ID=17700811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286167A Expired - Lifetime JPH0697880B2 (en) 1987-11-12 1987-11-12 Excitation control device for synchronous machine

Country Status (1)

Country Link
JP (1) JPH0697880B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228297A (en) * 1989-03-01 1990-09-11 Fuji Electric Co Ltd Correction controller for multi-variable control system of generator
JPH02269499A (en) * 1989-04-11 1990-11-02 Fuji Electric Co Ltd Control system for generator exciter
EP0713287A1 (en) * 1994-11-15 1996-05-22 Kabushiki Kaisha Toshiba Power system stabilizer for generator
JPH08182394A (en) * 1994-07-29 1996-07-12 Kumamoto Univ Power-system stabilizing apparatus
JP2019079282A (en) * 2017-10-25 2019-05-23 三菱電機株式会社 Tuning device of power system stabilizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103199A (en) * 1987-10-13 1989-04-20 Mitsubishi Electric Corp Power system stabilizing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103199A (en) * 1987-10-13 1989-04-20 Mitsubishi Electric Corp Power system stabilizing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228297A (en) * 1989-03-01 1990-09-11 Fuji Electric Co Ltd Correction controller for multi-variable control system of generator
JPH02269499A (en) * 1989-04-11 1990-11-02 Fuji Electric Co Ltd Control system for generator exciter
JPH08182394A (en) * 1994-07-29 1996-07-12 Kumamoto Univ Power-system stabilizing apparatus
EP0713287A1 (en) * 1994-11-15 1996-05-22 Kabushiki Kaisha Toshiba Power system stabilizer for generator
JP2019079282A (en) * 2017-10-25 2019-05-23 三菱電機株式会社 Tuning device of power system stabilizer

Also Published As

Publication number Publication date
JPH0697880B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JPH07114559B2 (en) Power system stabilizer
JPH02131329A (en) Reactive power compensator for power system
US4721861A (en) Turbine helper drive apparatus
JPH01129800A (en) Excitation controller for synchronous machine
JP2678991B2 (en) Inverter parallel operation method
JPH1080198A (en) Generator excitation control equipment
JP2749728B2 (en) Excitation controller for synchronous machine
JPH0998600A (en) Excitation controller for generator
JPH04289728A (en) Higher harmonic compensator
JPH0522864A (en) Control circuit of inverter
JP2535210B2 (en) Synchronous generator automatic voltage regulator
JPH08126204A (en) System stabilizer
JPH0458799A (en) Exciter for synchronous machine
JPH10262399A (en) Induction motor controller
JPH0638718B2 (en) Synchronous machine excitation controller
JPH0847298A (en) Regulator of elevator motor
JPS622899A (en) Hunting and stepout preventing method for synchronous machine
JPH0585471B2 (en)
SU1453555A1 (en) Method of controlling stabilized rectifier
JPH01104902A (en) Electrical speed governor
JPS63144798A (en) Excitation controller for synchronous machine
JPH08289597A (en) Device for restricting operation of generator
JP2001103668A (en) System-stabilizing device
JP2613379B2 (en) Current limiter for synchronous generator
JPH0433583A (en) Induction motor controller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees