JPH0458799A - Exciter for synchronous machine - Google Patents

Exciter for synchronous machine

Info

Publication number
JPH0458799A
JPH0458799A JP2168209A JP16820990A JPH0458799A JP H0458799 A JPH0458799 A JP H0458799A JP 2168209 A JP2168209 A JP 2168209A JP 16820990 A JP16820990 A JP 16820990A JP H0458799 A JPH0458799 A JP H0458799A
Authority
JP
Japan
Prior art keywords
power
signal
circuit
synchronous machine
phase compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2168209A
Other languages
Japanese (ja)
Inventor
Toshinobu Yamamoto
山本 俊伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2168209A priority Critical patent/JPH0458799A/en
Publication of JPH0458799A publication Critical patent/JPH0458799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To make a contribution to the stability of power system by providing a system stabilizing unit with first and second power detecting circuits, an adder, first and second phase compensating circuits and a signal amplifying circuit thereby controlling the exciting amount of a field winding with the exciting power as one component of a stabilizing signal. CONSTITUTION:A power detecting circuit 10b receives an exciting current detected through an instrument current transformer CT2b disposed on the primary of an exciting power supplt transformer 7 and a terminal voltage detected through an instrument potential transformer PT3 and detects power flowing into the exciting power supply transformer 7. A power detecting circuit 10a receives current and voltage, respectively, from an instrument current transformer CT2a and instrument potential transformer PT3 and detects output current of a synchronous machine 1. An adder circuit 15 receives power signals from the power detecting circuits 10a, 10b and produces a differential signal which is then fed to a phase compensation circuit 11a. Furthermore, the power detection circuit 10b outputs a power signal to a phase compensation circuit 10b. A signal amplifying circuit 12a combines and amplifies outputs from the phase compensation circuits 11a, 11b and thus amplified output is fed, as a stabilizing signal, to an AVR 13.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電力系統に並列して運転される同期機を励磁
制御する電力系統安定化のための同期機の励磁装置に関
する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides an excitation device for a synchronous machine for stabilizing a power system, which controls the excitation of a synchronous machine operated in parallel with the power system. Regarding.

(従来の技術) 同期機の励磁装置は一般に同期発電機、同期電動機等に
使用されており、同期機の端子電圧を所定値に保つ制御
を行う。自動電圧調整装置(以下、AVRと言う。)を
用いて、系統に並列運転される同期機の端子電圧を一定
に制御しても、同期機を含めた電力系統の電気機械的な
動揺に対する制動力があまり得られず、系統の安定度が
あまり良くならない。そのため、近年、電力系統安定度
向上対策として、同期機の回転子速度、同期機の端子電
圧の周波数、同期機の入出力などの電力変化量に基づい
た安定化信号を作成し、この安定化信号をAVHに入力
することで電力系統動揺に対する制動力を向上させる系
統安定化装置(以下PSSと言う。)が用いられるよう
になっている。
(Prior Art) An excitation device for a synchronous machine is generally used in a synchronous generator, a synchronous motor, etc., and performs control to maintain the terminal voltage of the synchronous machine at a predetermined value. Even if an automatic voltage regulator (hereinafter referred to as AVR) is used to control the terminal voltage of a synchronous machine that is operated in parallel to the power grid to a constant level, there is no control over the electromechanical fluctuations of the power system, including the synchronous machine. Not much power can be obtained and the stability of the system will not be very good. Therefore, in recent years, as a measure to improve power system stability, a stabilization signal has been created based on the amount of power change such as the rotor speed of the synchronous machine, the frequency of the terminal voltage of the synchronous machine, and the input/output of the synchronous machine. A system stabilizing device (hereinafter referred to as PSS) is now being used, which improves the braking force against power system fluctuations by inputting a signal to the AVH.

第2図はAVRとPSSを備える従来の同期機励磁装置
の構成図である。
FIG. 2 is a configuration diagram of a conventional synchronous machine exciter including an AVR and a PSS.

同期機1は遮断器4、主変圧器5を介し電力系統6に接
続され、この同期機1の出力が遮断器4の閉路のとき主
変圧器5により昇圧され電力系統6に供給される。同期
機1の界磁者#!14に同期機1の出力端子より励磁用
電源変圧器7を介して供給される電圧をサイリスタ整流
器8で制御整流し供給し、同期機1の出力制御を行って
いる。このサイリスタ整流器8の出力による界磁巻線1
4の励磁量の制御は、計器用電圧変成器(以下、PTと
言う。)3より検出する端子電圧信号を被制御信号とし
PSS9からの出力信号に基づいてAVR13が行う。
The synchronous machine 1 is connected to a power system 6 via a circuit breaker 4 and a main transformer 5, and when the circuit breaker 4 is closed, the output of the synchronous machine 1 is boosted by the main transformer 5 and supplied to the power system 6. Synchronous machine 1 fielder #! The voltage supplied from the output terminal of the synchronous machine 1 via the excitation power transformer 7 is controlled and rectified by the thyristor rectifier 8 and supplied to the synchronous machine 14, thereby controlling the output of the synchronous machine 1. Field winding 1 due to the output of this thyristor rectifier 8
The excitation amount of 4 is controlled by the AVR 13 based on the output signal from the PSS 9 using the terminal voltage signal detected from the instrument voltage transformer (hereinafter referred to as PT) 3 as the controlled signal.

ここで、PSS9は電力検出回路10a、位相補償回路
1.1.aおよび信号増幅回路12からなり、PT3か
らの端子電圧信号と計器用電流変成器(以下、CTと言
う。) 2aから電力検出回路10aが出力電力Peを
検出し、位相補償回路11aで安定化信号として位相補
償され、信号増幅回路12により増幅された出力信号が
AVR13へ出力される。これにより、同期機1の端子
電圧が基準値からずれると、PSS9が位相補償した出
力信号に基づきAVR13がサイリスタ整流器8を制御
し、界磁巻線14への界磁電流を制御することで同期機
1の端子電圧を基準値に保つことができ系統の安定化を
図っている。
Here, PSS9 includes power detection circuit 10a, phase compensation circuit 1.1. A power detection circuit 10a detects the output power Pe from the terminal voltage signal from the PT3 and the instrument current transformer (hereinafter referred to as CT) 2a, and stabilizes it in the phase compensation circuit 11a. The output signal is phase compensated as a signal and amplified by the signal amplification circuit 12, and is output to the AVR 13. As a result, when the terminal voltage of the synchronous machine 1 deviates from the reference value, the AVR 13 controls the thyristor rectifier 8 based on the output signal whose phase has been compensated by the PSS 9, and synchronizes by controlling the field current to the field winding 14. The terminal voltage of machine 1 can be maintained at the standard value, thereby stabilizing the system.

上記に示した複雑な電力系統も、]台の同期機と1つの
りアクタンスと無限大母線とで代表されてしまう(−機
対無限大母線系)と、その動作が比較的簡単なブロック
図で表現でき、そのような手法により電力系統の動作を
扱うことが普及している。
Even the complicated power system shown above is represented by a synchronous machine, one actance, and an infinite bus (-machine-to-infinite bus system), and its operation can be explained in a relatively simple block diagram. It is common to treat the operation of power systems using such methods.

第2図の発電系統の構成を電力系統としての動作が分る
ように、−機対無限大母線系で線形化した安定度ブロッ
ク図で示すと第3図のようになる。
The configuration of the power generation system shown in FIG. 2 is shown in FIG. 3 as a linearized stability block diagram in a -machine-to-infinite bus system so that the operation as a power system can be understood.

第3図において、変数P1は原動機の機械的な入力、P
eは同期機の電気的出力、ωは同期機の回転速度(=同
期機端子電圧の周波数)、δは同期機のd軸と無限大母
線電圧との位相差(位差角)、etは同期機の端子電圧
、Efdは同期機の界磁電圧、e q lは過渡d軸電
圧、etrefはAVRの電圧設定値である。
In Figure 3, variable P1 is the mechanical input of the prime mover, P
e is the electrical output of the synchronous machine, ω is the rotational speed of the synchronous machine (=frequency of the synchronous machine terminal voltage), δ is the phase difference (phase difference angle) between the d-axis of the synchronous machine and the infinite bus voltage, and et is Efd is the terminal voltage of the synchronous machine, Efd is the field voltage of the synchronous machine, eql is the transient d-axis voltage, and etref is the voltage setting value of the AVR.

このブロック図は、線形化したもので変数の定常値から
の変化分に対してのみ成立するので、変数には変化分を
意味する符号Δを付している。K1−に6は同期機と系
統定数と運転状態により決まる定数。
This block diagram is linearized and is valid only for the amount of change from the steady value of the variable, so the symbol Δ, which means the amount of change, is attached to the variable. K1- and 6 are constants determined by the synchronous machine, system constants, and operating conditions.

Mは同期機と原動機の回転子慣性定数で、Dは同期機の
制動巻線等による機械固有の制動係数で、ω0は単位変
換の係数で、 Sはラプラス演算子である。又、Gex
(s)は励磁装置の伝達関数であり、Idp(s)はP
SSの伝達関数でその入力信号は同期機の電気的出力P
eである。
M is the rotor inertia constant of the synchronous machine and prime mover, D is the machine-specific damping coefficient due to the damping winding of the synchronous machine, ω0 is the unit conversion coefficient, and S is the Laplace operator. Also, Gex
(s) is the transfer function of the exciter, and Idp(s) is P
SS transfer function whose input signal is the electrical output P of the synchronous machine
It is e.

第3図のブロック図上で系統安定化装置9の動作目的を
説明すると励磁制御により固有の制動係数りが増加した
のと同じ効果を出すことである。
The purpose of operation of the system stabilizing device 9 will be explained with reference to the block diagram of FIG. 3. It is to produce the same effect as when the unique braking coefficient is increased by excitation control.

更に具体的な表現をすると電気的出力変化分△Peをp
ss関数−ρ(s)を通して、伝達関数Gex(s)に
入力して△Efdの動きを修正し、よって△Peに△ω
と同相の成分をより多く発生させることである。
To express it more concretely, the electrical output change △Pe is expressed as p
Through the ss function −ρ(s), input into the transfer function Gex(s) to correct the movement of △Efd, thus changing △ω to △Pe.
The goal is to generate more components that are in phase with .

(発明が解決しようとする課題) ところで、第2図の構成で電力検出回路3Aが検出され
る電力信号Peは、電力系統7に送出される電力Pso
と励磁用電源変圧器2人へ分流して、励磁電力として使
用される電力Pexとの和である。
(Problem to be Solved by the Invention) By the way, the power signal Pe detected by the power detection circuit 3A with the configuration shown in FIG.
It is the sum of the power Pex which is divided into two excitation power transformers and used as excitation power.

そして、それらの励磁制御による動きは大幅に異なる。The movements caused by their excitation control are significantly different.

しかし、従来は、安定度が問題となるような同期機の甚
出力状態では、電力Pexは電力Psoに比較して小さ
いため電力Pexの影響は全く無視していた。しかし、
最近の安定度向上に寄与させるべく設定された高速応励
磁装置では、定常状態で必要とする界磁電圧に比較して
数倍の界磁電圧を発生することができるようにしている
。その結果、過渡的な励磁電力Pexの変化が相当大き
くなってきている。 このため、励磁電力Pexを無視
した制御は好ましくない。
However, conventionally, when the synchronous machine is in a high output state where stability is a problem, the influence of the power Pex has been completely ignored because the power Pex is smaller than the power Pso. but,
Recent high-speed dynamic excitation devices designed to contribute to improved stability are capable of generating a field voltage several times higher than the field voltage required in a steady state. As a result, the transient change in excitation power Pex has become considerably large. For this reason, control that ignores the excitation power Pex is not preferable.

以下に、 その励磁電力Pexの性質と大きさを検討し
てみる。励磁電力Pexは、界磁電流と界磁電圧の積で
あるから、その定常状態からの変化分PeXは、次式で
表現できる。
Below, we will examine the nature and magnitude of the excitation power Pex. Since the excitation power Pex is the product of the field current and the field voltage, the change from the steady state PeX can be expressed by the following equation.

△pax4Kex1X△eq’+Kex2X△Efd但
し、Kex、とKex2は同期機の特性と運転状態で決
まる定数である。この△Pexの第1項(以下、△Pe
x、とする)は、第3図で求められる△Pe(=に2X
△eq’ +に、 X△δ)の−成分(K2+△eq’
)と類似の応答であるが、第2項(以下、△Pex2と
する)は、第2図で求められる△Peのどの成分とも異
なる応答である。
△pax4Kex1X△eq'+Kex2X△Efd However, Kex and Kex2 are constants determined by the characteristics and operating conditions of the synchronous machine. The first term of this △Pex (hereinafter, △Pe
△Pe (= to 2X
To △eq' +, - component (K2+△eq'
), but the second term (hereinafter referred to as ΔPex2) is a response different from any component of ΔPe determined in FIG.

最近の蒸気タービン発電機の代表的な定数を使用してリ
アクタンスXe = 0.4puとして、定格運転状態
の定数に1〜に6を計算すると、次のようになる。
Using typical constants of recent steam turbine generators and assuming reactance Xe = 0.4 pu, the following is calculated as a constant of 1 to 6 in the rated operating state.

K1=1.46、 K2=1.7、 K3=0.29、
 K、=2.47、 K、=−0,0234、K6二0
.37また、発電機の界磁時定数Tdo’は8秒程度で
ある。そしてKex、は、0.0025程度である。
K1=1.46, K2=1.7, K3=0.29,
K, = 2.47, K, = -0,0234, K620
.. 37 Furthermore, the field time constant Tdo' of the generator is about 8 seconds. And Kex is about 0.0025.

今、△Peの振幅が0.01puで、その動揺周波数が
1t(zの系統動揺が継続している状態を考えてみる。
Now, consider a situation where the amplitude of ΔPe is 0.01 pu and the oscillation frequency is 1t (z) where the system oscillation continues.

IHz程度の動揺では、励磁装置のゲインは十分に高い
ので、界磁電圧△Efdは、 はぼ励磁装置の正の最大
出力電圧(正側頂上電圧と言う)と負の最大出力電圧(
負側頂上電圧と言う)の間で動揺する。励磁装置の最大
出力電圧を定格運転状態の3倍に設計しているとすると
、△Efdの動揺幅は10.8pu (1,,8[定格
時Efd]X3X2[:正、負同じと仮定コ)となる。
For vibrations of about IHz, the gain of the exciter is sufficiently high, so the field voltage △Efd is the sum of the maximum positive output voltage (referred to as the positive side peak voltage) and the maximum negative output voltage (referred to as the positive side peak voltage) of the exciter.
(referred to as negative peak voltage). Assuming that the maximum output voltage of the exciter is designed to be three times the rated operating state, the fluctuation width of △Efd is 10.8 pu (1,,8[Efd at rated time]X3X2[: positive and negative are assumed to be the same) ).

これだけ△Efdが変動しても、それによる△e q 
Iの変動は、界磁時定数Tdo’の遅れにより、約0.
21ρUになる。従って、この様な動揺が継続している
とき、励磁制御によるΔPeの変化分(以下、△Pe1
とする)は、ΔPe1= 0.357pu (Δeq’
 X K2= 0.21 Xl、7)である。一方、Δ
Pex、 = Kex2XΔEfd=0.0025 X
 10.8 = 0.027である。よって、ΔPex
、はΔPe1より約90度位相の進んだ信号である。 
この位相差のため、ΔPe□に対する八Pex、の比は
、7.6%となる。そして、ΔPeX、とΔPex、と
では関数Gex(s)に入力するための理想的な位相補
償値は異なるものとなる。
Even if △Efd fluctuates this much, the resulting △e q
The variation in I is approximately 0.0% due to the delay in the field time constant Tdo'.
It becomes 21ρU. Therefore, when such oscillation continues, the change in ΔPe due to excitation control (hereinafter, ΔPe1
) is ΔPe1 = 0.357pu (Δeq'
X K2 = 0.21 Xl, 7). On the other hand, Δ
Pex, = Kex2XΔEfd=0.0025X
10.8 = 0.027. Therefore, ΔPex
, is a signal whose phase is approximately 90 degrees ahead of ΔPe1.
Because of this phase difference, the ratio of 8Pex to ΔPe□ is 7.6%. The ideal phase compensation value to be input to the function Gex(s) is different between ΔPeX and ΔPex.

上記数値例は、代表的な系統動揺周波数111zの動揺
が継続した場合について示したが、多くの同期機が並列
された実際の複雑な電力系統では、種々な固有振動が存
在する。そして、より高い動揺周波数に対しては、ΔP
e、に対する△Pex、の比は、更に大きくなる。
Although the above numerical example shows a case where the oscillation at the typical system oscillation frequency 111z continues, various natural oscillations exist in an actual complex power system in which many synchronous machines are connected in parallel. And for higher perturbation frequencies, ΔP
The ratio of ΔPex to e becomes even larger.

また、運転状態によってもΔPe、と△Pex2 の比
は変化する。
The ratio between ΔPe and ΔPex2 also changes depending on the operating state.

よって、本発明は前記励磁電力を系統化安定装置の安定
化信号の一成分とし界磁巻線に生じる励磁量を制御する
ことで、電力系統上の安定度に寄与する同期機の励磁装
置を提供することを目的とする。
Therefore, the present invention provides an excitation device for a synchronous machine that contributes to stability on the power system by using the excitation power as a component of the stabilization signal of the system stabilization device and controlling the amount of excitation generated in the field winding. The purpose is to provide.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の同期機の励磁装置を第1図を参照し説明する。 (Means for solving problems) An excitation device for a synchronous machine according to the present invention will be explained with reference to FIG.

本発明の励磁装置の系統安定化装置9aは、第1および
第2の電力検出回路10aおよび10b、加算回路15
、第1および第2の位相補償回路11aおよび11b、
信号増幅回路12aを備える。第1の電力検出回路10
aは、同期機1の端子電圧および端子電流から端子電力
信号を得る。第2の電力検出回路10bは、同期機1の
端子電圧および励磁用電源変圧器に流れる電流から励磁
電力信号を得る。加算回路ゴ5は、 第1および第2の
電力検出回路10aおよび10bの出力の偏差信号を得
る。第1および第2の位相補償回路11aおよびllb
は、それぞれ加算回路15からの偏差信号および第2の
電力検出回路1、Obからの励磁電力信号を位相補償す
る。そして、信号増幅回路12aは、第1および第2の
位相補償回路11aおよびllbの出力の両方もしくは
いずれか一方を合成増幅し安定化信号として出力する。
The system stabilizing device 9a of the excitation device of the present invention includes first and second power detection circuits 10a and 10b, and an adder circuit 15.
, first and second phase compensation circuits 11a and 11b,
A signal amplification circuit 12a is provided. First power detection circuit 10
a obtains a terminal power signal from the terminal voltage and terminal current of the synchronous machine 1. The second power detection circuit 10b obtains an excitation power signal from the terminal voltage of the synchronous machine 1 and the current flowing through the excitation power supply transformer. The adder circuit 5 obtains deviation signals of the outputs of the first and second power detection circuits 10a and 10b. First and second phase compensation circuits 11a and llb
compensate the phase of the deviation signal from the adder circuit 15 and the excitation power signal from the second power detection circuit 1, Ob, respectively. Then, the signal amplification circuit 12a synthesizes and amplifies both or either one of the outputs of the first and second phase compensation circuits 11a and llb, and outputs it as a stabilizing signal.

(作用) 同期機の高出力運転時に界磁巻線14で消費される励磁
電力の割合が同期機の端子電力に対し無視できなくなっ
ても、端子電力信号と励磁電力信号の偏差信号から位相
補償し安定化信号とすることで電力系統の安定度が向上
する。
(Function) Even if the ratio of excitation power consumed by the field winding 14 to the terminal power of the synchronous machine cannot be ignored during high-output operation of the synchronous machine, phase compensation is performed from the deviation signal between the terminal power signal and the excitation power signal. By using this signal as a stabilizing signal, the stability of the power system will be improved.

同期機出力から励磁電力を差引いた信号と励磁電力信号
とには、大きな位相差があるので、各々に異なる位相補
償を行うことでより理想的な安定化信号(制御結果とし
てΔωと同相の電力成分を増加できる信号)をAVHに
入力できる。よって、同じ容量の励磁装置でより系統安
定度に寄与する励磁装置を実現できる。
Since there is a large phase difference between the signal obtained by subtracting the excitation power from the synchronous machine output and the excitation power signal, by performing different phase compensation for each, a more ideal stabilization signal (the control result is a power in phase with Δω). (signal whose component can be increased) can be input to AVH. Therefore, it is possible to realize an excitation device that contributes more to system stability using an excitation device with the same capacity.

(実施例) 以下、本発明の実施例を第1図を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to FIG.

第1図は、本発明の実施例である同期機の励磁装置構成
図を示している。第1図において第2図、第3図と同一
部分または相当部分には同一符号を付ける。
FIG. 1 shows a configuration diagram of an excitation device for a synchronous machine according to an embodiment of the present invention. In FIG. 1, the same or equivalent parts as in FIGS. 2 and 3 are given the same reference numerals.

本発明の実施例の系統安定化装置9aは電力検出回路]
、Oa、 10b、加算回路15、位相補償回路11a
The system stabilizing device 9a of the embodiment of the present invention is a power detection circuit]
, Oa, 10b, addition circuit 15, phase compensation circuit 11a
.

11bおよび信号増幅回路12から構成される。11b and a signal amplification circuit 12.

電力検出回路10bは、励磁用電源変圧器7の一次側に
設けたCT2bにより検出される励磁電流とPT3によ
り検出される端子電圧とを入力し、励磁用電源変圧器7
に流入する電力を検出する。
The power detection circuit 10b inputs the excitation current detected by the CT2b provided on the primary side of the excitation power transformer 7 and the terminal voltage detected by the PT3, and outputs the excitation power transformer 7.
detect the power flowing into the

電力検出回路10aは、 CT2aおよびPT3からの
電流および電圧を入力し、同期機1の出力電流を検出す
る。
The power detection circuit 10a receives current and voltage from the CT2a and PT3, and detects the output current of the synchronous machine 1.

そして、 加算回路15が電力検出回路Joaと電力検
出回路]Obで検出した電力信号から偏差信号を得て位
相補償回路11aに出力する。また、電力検出回路10
bは電力信号を位相補償回路+1.bに出力する。信号
増幅回路12aは位相補償回路11aとIlbの出力を
合成増幅し、AVR13に安定化信号として出力する。
Then, the adder circuit 15 obtains a deviation signal from the power signals detected by the power detection circuit Joa and the power detection circuit Ob, and outputs it to the phase compensation circuit 11a. In addition, the power detection circuit 10
b converts the power signal into a phase compensation circuit +1. Output to b. The signal amplification circuit 12a synthesizes and amplifies the outputs of the phase compensation circuits 11a and Ilb, and outputs it to the AVR 13 as a stabilizing signal.

位相補償回路用a、 ]]bとに必要な特性は、適用す
る同期機1の特性と励磁装置頂上電圧の大きさ(定格状
態との比率)により異なるが、前述の従来技術の説明に
引用した発電機と励磁装置頂上電圧の場合には、位相補
償回路11aは従来の特性とほぼ同じとなり、 位相補
償回路11bは、対象動揺周波数帯域での特性が位相補
償回路]、1aより約90度遅れに設定可能なものとす
る。
The characteristics required for the phase compensation circuit a, ]]b vary depending on the characteristics of the applied synchronous machine 1 and the magnitude of the exciter top voltage (ratio to the rated state), but are as cited in the explanation of the prior art described above. In the case of a generator and an excitation device top voltage of It shall be possible to set the delay.

次に、上記に示した本発明の実施例である同期機の励磁
装置の動作について説明する。
Next, the operation of the excitation device for a synchronous machine which is an embodiment of the present invention shown above will be explained.

電力検出回路10aの出力信号から電力検出回路10b
の出力信号を差引く極性に構成することで、加算回路1
5の出力には同期機1の出力電力から励磁電力を差引い
た信号(Pso’と呼ぶことにする)が得られる。そし
て、信号Pso’専用の位相補償回路]、1aにより、
それに適した位相補償ができる。
Power detection circuit 10b from the output signal of power detection circuit 10a
By configuring the polarity to subtract the output signal of the adder circuit 1,
5, a signal (referred to as Pso') obtained by subtracting the excitation power from the output power of the synchronous machine 1 is obtained. Then, by the phase compensation circuit dedicated to the signal Pso'], 1a,
Phase compensation suitable for this can be performed.

電力検出回路10bの出力信号(Pex’と呼ぶことに
する)は、励磁用電源変圧器7を介して同期機]の界磁
巻線14に供給される励磁電力である。信号Pex専用
の位相補償回路11bにより、それに適した位相補償が
できる。信号Pex’の成分には、既に説明した通り、
電力系統動揺に対して応答位相の異なる△Pex1と・
△Fez2とを含むが、ΔPex2の方を重視して位相
補償を行う。
The output signal (referred to as Pex') of the power detection circuit 10b is excitation power supplied to the field winding 14 of the synchronous machine via the excitation power transformer 7. The phase compensation circuit 11b dedicated to the signal Pex can perform phase compensation suitable for it. As already explained, the components of the signal Pex' include
△Pex1 with different response phases to power system fluctuations.
ΔFez2 is included, but phase compensation is performed with emphasis placed on ΔPex2.

そして、この様に信号Pso−と信号Pex’に別々の
位相補償を行ってAVR13に入力する。
In this way, the signal Pso- and the signal Pex' are subjected to separate phase compensation and input to the AVR 13.

よって、位相の異なる信号に別々の適切な位相補償を行
い系統安定化信号とするため、運転状態の変化により位
相の異なる2つの信号の割合いが変化しても、各々がほ
ぼ理想的な安定化信号として励磁制御を行うので、より
安定度に寄与する励磁装置が実現できる。
Therefore, since signals with different phases are subjected to separate and appropriate phase compensation to obtain a system stabilization signal, even if the ratio of two signals with different phases changes due to changes in operating conditions, each signal is maintained at an almost ideal level of stability. Since excitation control is performed as a signal, an excitation device that contributes to greater stability can be realized.

以上説明した様に、本発明の実施例では同期機1から出
力される端子電力と励磁電力の差を加算回路15で求め
る構成としているが、それに限定せず種々の構成で検出
できる。
As explained above, in the embodiment of the present invention, the difference between the terminal power and the excitation power output from the synchronous machine 1 is determined by the adding circuit 15, but the difference is not limited to this and can be detected in various configurations.

例えば、計器用電圧変成器3の設置場所を変えて、電力
検出回路10aの電流入力を励磁用電源変圧器7に流れ
る電流を除いたものとする。あるいは、計器用電圧変成
器3の設置場所はそのままで。
For example, assume that the installation location of the instrument voltage transformer 3 is changed so that the current flowing through the excitation power transformer 7 is removed from the current input to the power detection circuit 10a. Alternatively, the instrument voltage transformer 3 can be installed in the same location.

計器用電流変成器2bの2次電流と計器用電圧変成器の
2次電流とを合成してから電力検出回路10bの電流入
力とする。
The secondary current of the instrument current transformer 2b and the secondary current of the instrument voltage transformer are combined and then used as a current input to the power detection circuit 10b.

励磁電力の検出も、前記実施例に限定することなく種々
の構成で実施できる。
Detection of excitation power is also not limited to the embodiments described above, and can be implemented in various configurations.

例えば、励磁電圧と電磁電流の積で検出してもよい。あ
るいは、励磁用電源変圧器7の2次側の励磁電流と励磁
電圧より検出することができる。
For example, detection may be performed using the product of excitation voltage and electromagnetic current. Alternatively, it can be detected from the excitation current and excitation voltage on the secondary side of the excitation power transformer 7.

また、前記実施例では、完全に別々の位相補償回路を設
けたが、部分的に共用するような構成をしてもよい。あ
るいは、片方の信号に対しては、特別に位相補償回路を
設けず電力検出回路等に附随する位相特性で代用するこ
ともできる。
Further, in the above embodiment, completely separate phase compensation circuits are provided, but a configuration may be adopted in which they are partially shared. Alternatively, for one of the signals, a phase characteristic associated with a power detection circuit or the like may be used instead of providing a special phase compensation circuit.

また、前記実施例では、同期機から出力される端子電力
と励磁電力の差と励磁電力とを安定化信号に使用してい
るが、それらに従来より行われている同期機から出力さ
れる端子電力以外の信号、例えば、同期機の回転速度や
同期機の端子電圧の周波数等を組合わせて使用して、更
に系統安定化効果を向上できることは明白であり、それ
は本発明の主旨を応用したものである。
Further, in the above embodiment, the difference between the terminal power and the excitation power output from the synchronous machine and the excitation power are used as stabilizing signals, but in addition to these, the terminal output from the synchronous machine It is clear that the system stabilization effect can be further improved by using a combination of signals other than electric power, such as the rotational speed of the synchronous machine and the frequency of the terminal voltage of the synchronous machine, and this can be achieved by applying the gist of the present invention. It is something.

また、前記実施例では、同期機から出力される端子電力
と励磁電力の差と励磁電力の両方を安定化信号に使用し
ているが、同期機の特性によってはそのいずれかのみを
使用するだけでも、従来の同期機から出力される端子電
力を使用するよりも効果的となる場合も存在する。
Further, in the above embodiment, both the difference between the terminal power and the excitation power output from the synchronous machine and the excitation power are used as the stabilization signal, but depending on the characteristics of the synchronous machine, only one of them may be used. However, there are cases where it is more effective than using the terminal power output from a conventional synchronous machine.

その例は、界磁巻線を超電導体で構成した超電導発電機
に高速励磁制御を適用する場合である。
An example of this is when high-speed excitation control is applied to a superconducting generator whose field winding is made of a superconductor.

超電導発電機では、界磁巻線の時定数が極端に大きく、
それに流す励磁電流を高速制御するには、定常状態の励
磁電力は非常に少ない(常電導部分の損失のみ)が、過
渡的には非常に大きな励磁電力を必要とする。 このた
め、励磁電力Pexの変化電力△Pexの一成分である
△Pex2の8力電力Psoに対する割合いが大きくな
り、前記△Pex2を無視した界磁巻線に生じる励磁の
制御は電力系統安定度上好ましくない。
In superconducting generators, the time constant of the field winding is extremely large;
In order to control the excitation current flowing through it at high speed, the excitation power in the steady state is very small (only the loss in the normal conduction part), but in the transient state, a very large excitation power is required. Therefore, the ratio of △Pex2, which is one component of the changing power △Pex of the excitation power Pex, to the 8-force power Pso becomes large, and the control of excitation generated in the field winding ignoring the △Pex2 increases the power system stability. Not good.

また、以上の説明では同期機が同期発電機の場合を想定
した用語と構成を使用したが本発明は、同期電動機の励
磁装置にも適用できることは明白である。
Furthermore, although the above description uses terms and configurations assuming that the synchronous machine is a synchronous generator, it is clear that the present invention can also be applied to an excitation device for a synchronous motor.

〔発明の効果〕〔Effect of the invention〕

したがって、本発明によれば同期機の端子電圧を励磁電
源とする励磁装置の系統安定化信号として、同期機高力
から励磁電力を差引いた信号に適切な位相補償を行った
信号と励磁電力に適切な位相補償を行った信号とを使用
することにより、各々の位相補償もより理想的に行うこ
とができ、より理想的な安定化信号が得られるので、系
統安定化により大きく寄与する励磁装置が実現できる。
Therefore, according to the present invention, as a system stabilization signal for an excitation device that uses the terminal voltage of a synchronous machine as an excitation power source, a signal obtained by appropriately phase-compensating a signal obtained by subtracting the excitation power from the high power of the synchronous machine and the excitation power. By using a signal that has undergone appropriate phase compensation, each phase compensation can be performed more ideally, and a more ideal stabilization signal can be obtained, so the excitation device can greatly contribute to system stabilization. can be realized.

また、特に過渡的に大きな励磁電力を必要とする同期機
と励磁装置の組合わせに於いて、より顕著な効果を奏す
る。
In addition, a more remarkable effect is produced especially in a combination of a synchronous machine and an excitation device that require a large transient excitation power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の同期機の励磁装置を示す構
成図、第2図は従来の同期機の励磁装置を示す構成図、
第3図は同期機の励磁装置の動作機能を示す特性ブロッ
ク図である。 1・・・同期機 2a、 2b・・・計器用電流変成W (CT)3・・
・計器用電圧変成器(PT) 4・・しゃ断器     5・・・主要変圧器6・・・
電力系統     7・・・励磁用電源変圧器8・・・
サイリスタ整流器 9.9a・・系統安定化装置(pss)10a、 I(
lb・・・電力検出回路11a、 ]、]、b・・・位
相補償回路12、12a・・・信号増幅回路 13・・・自動電圧調整装置(AVR)14・界磁巻線 代理人 弁理士 則 近 憲 佑
FIG. 1 is a configuration diagram showing an excitation device for a synchronous machine according to an embodiment of the present invention, and FIG. 2 is a configuration diagram showing an excitation device for a conventional synchronous machine.
FIG. 3 is a characteristic block diagram showing the operating functions of the excitation device of the synchronous machine. 1...Synchronous machine 2a, 2b...Instrument current transformer W (CT)3...
・Instrument voltage transformer (PT) 4... Breaker 5... Main transformer 6...
Power system 7...Excitation power transformer 8...
Thyristor rectifier 9.9a... System stabilizer (PSS) 10a, I (
lb...Power detection circuit 11a, ], ], b...Phase compensation circuit 12, 12a...Signal amplification circuit 13...Automatic voltage regulator (AVR) 14/field winding agent Patent attorney Kensuke Noriyuki

Claims (2)

【特許請求の範囲】[Claims] (1)同期機の端子電圧と系統安定化装置からの安定化
信号とを入力する自動電圧調整装置により、前記同期機
の端子電圧が励磁用電源変圧器を介し入力されるサイリ
スタ整流器を制御し界磁巻線へ励磁電流を供給する同期
機の励磁装置において、 前記同期機の端子電圧および端子電流から電力値を検出
する第1の電力検出回路と、前記同期機の端子電圧およ
び前記励磁用電源変圧器に流れる電流から電力値から電
力値を検出する第2の電力検出回路と、この第1および
第2の電力検出回路からの信号から偏差信号を出力する
加算回路と、この加算回路からの偏差信号をもとに位相
補償する第1の位相補償回路と、この第1の位相補償回
路の出力を信号増幅し安定化信号として前記自動電圧調
整装置に出力する信号増幅回路とを備えた系統安定化装
置を具備することを特徴とする同期機の励磁装置。
(1) An automatic voltage regulator that inputs the terminal voltage of the synchronous machine and a stabilization signal from the system stabilization device controls a thyristor rectifier to which the terminal voltage of the synchronous machine is inputted via the excitation power transformer. An excitation device for a synchronous machine that supplies excitation current to a field winding, comprising: a first power detection circuit that detects a power value from a terminal voltage and a terminal current of the synchronous machine; a second power detection circuit that detects a power value from a power value of the current flowing through the power transformer; an addition circuit that outputs a deviation signal from the signals from the first and second power detection circuits; a first phase compensation circuit that performs phase compensation based on the deviation signal of the first phase compensation circuit; and a signal amplification circuit that amplifies the output of the first phase compensation circuit and outputs it as a stabilization signal to the automatic voltage regulator. An excitation device for a synchronous machine characterized by comprising a system stabilizing device.
(2)前記第2の電力検出回路からの出力信号をもとに
位相補償する第2の位相補償回路を備え、前記第1およ
び第2の位相補償回路の出力を信号増幅し安定化信号と
して前記自動電圧調整装置に出力する信号増幅回路とを
備えた系統安定化装置を具備することを特徴とする請求
項第1項記載の同期機の励磁装置。
(2) A second phase compensation circuit that performs phase compensation based on the output signal from the second power detection circuit, the outputs of the first and second phase compensation circuits being amplified and used as stabilizing signals. 2. The excitation device for a synchronous machine according to claim 1, further comprising a system stabilizing device including a signal amplifying circuit that outputs to the automatic voltage regulator.
JP2168209A 1990-06-28 1990-06-28 Exciter for synchronous machine Pending JPH0458799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2168209A JPH0458799A (en) 1990-06-28 1990-06-28 Exciter for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2168209A JPH0458799A (en) 1990-06-28 1990-06-28 Exciter for synchronous machine

Publications (1)

Publication Number Publication Date
JPH0458799A true JPH0458799A (en) 1992-02-25

Family

ID=15863813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168209A Pending JPH0458799A (en) 1990-06-28 1990-06-28 Exciter for synchronous machine

Country Status (1)

Country Link
JP (1) JPH0458799A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056580A1 (en) * 2006-11-08 2008-05-15 National University Corporation Tokyo University Of Marine Science And Technology Superconductive rotating electric machine drive control system and superconductive rotating electric machine drive control method
WO2009033912A1 (en) * 2007-09-11 2009-03-19 Abb Schweiz Ag Method and apparatus for determining a field current in brushless electrical machines
US8631848B2 (en) 2009-09-14 2014-01-21 Michael B. Hladilek Apparatus and method for producing waterproof structural corrugated paperboard
JP2019165581A (en) * 2018-03-20 2019-09-26 三菱電機エンジニアリング株式会社 Electromagnet generator device and method for controlling electromagnet generator device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056580A1 (en) * 2006-11-08 2008-05-15 National University Corporation Tokyo University Of Marine Science And Technology Superconductive rotating electric machine drive control system and superconductive rotating electric machine drive control method
JP2008125155A (en) * 2006-11-08 2008-05-29 Technova:Kk Superconductive rotary electric machine drive control system
US8076894B2 (en) 2006-11-08 2011-12-13 National University Corporation Tokyo University Of Marine Science And Technology Superconductive rotating electric machine drive control system and superconductive rotating electric machine drive control method
WO2009033912A1 (en) * 2007-09-11 2009-03-19 Abb Schweiz Ag Method and apparatus for determining a field current in brushless electrical machines
JP2010539869A (en) * 2007-09-11 2010-12-16 アーベーベー・シュバイツ・アーゲー Method and apparatus for determining field current in a brushless electric machine
US8164296B2 (en) 2007-09-11 2012-04-24 Abb Schweiz Ag Method and apparatus for determining a field current in brushless electrical machines
KR101530731B1 (en) * 2007-09-11 2015-06-22 에이비비 슈바이쯔 아게 Method and apparatus for determining a field current in brushless electrical machines
US8631848B2 (en) 2009-09-14 2014-01-21 Michael B. Hladilek Apparatus and method for producing waterproof structural corrugated paperboard
JP2019165581A (en) * 2018-03-20 2019-09-26 三菱電機エンジニアリング株式会社 Electromagnet generator device and method for controlling electromagnet generator device

Similar Documents

Publication Publication Date Title
Kahrobaeian et al. Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads
AU697816B2 (en) Series compensator inserting real and reactive impedance into electric power system for damping power oscillations
JP2846261B2 (en) Power system stabilizer
US10263550B2 (en) Gas turbine power generation system and control system used in the same
US6838860B2 (en) Power generating system including permanent magnet generator and shunt AC regulator
Iravani et al. Damping subsynchronous oscillations in power systems using a static phase-shifter
Wang et al. Active power oscillation suppression based on decentralized transient damping control for parallel virtual synchronous generators
González et al. A control strategy for DFIG-based systems operating under unbalanced grid voltage conditions
Bhattacharya et al. Optimization and performance analysis of conventional power system stabilizers
Choi et al. Coordinated design of under-excitation limiters and power system stabilizers
JPH0458799A (en) Exciter for synchronous machine
Carpanen et al. An improved SSSC-based power flow controller design method and its impact on torsional interaction
JP6831565B2 (en) Single-phase pseudo-synchronization power inverter and its controller
Zhang et al. Cable overcurrent control strategy of stand-alone brushless doubly-fed power generation system
Nazib et al. Dynamic grid frequency support using a self-synchronising grid-following inverter
JP3187257B2 (en) Operation control device for AC excitation synchronous machine
Abdessemad et al. A novel control scheme implementation for a self-excited asynchronous generator
US3167702A (en) Vibration damping arrangement for rotary field system of excitation regulation synchronous machines
JP3242814B2 (en) Power system compensation controller
Ishiguro et al. Coordinated stabilizing control of exciter, turbine and braking resistor
Messerle Relative dynamic stability of large synchronous generators
Acharya et al. Small signal stability improvement of multi machine power system using power system stabilizer
JPH0697880B2 (en) Excitation control device for synchronous machine
Abdalla et al. Application of optimization algorithms for the improvement of the transient stability of SMIB integrated with SSSC controller
Kumar et al. Enhancement of Power System Dynamics through STATCOM