JPH0638718B2 - Synchronous machine excitation controller - Google Patents

Synchronous machine excitation controller

Info

Publication number
JPH0638718B2
JPH0638718B2 JP63135208A JP13520888A JPH0638718B2 JP H0638718 B2 JPH0638718 B2 JP H0638718B2 JP 63135208 A JP63135208 A JP 63135208A JP 13520888 A JP13520888 A JP 13520888A JP H0638718 B2 JPH0638718 B2 JP H0638718B2
Authority
JP
Japan
Prior art keywords
synchronous machine
active power
terminal voltage
phase difference
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63135208A
Other languages
Japanese (ja)
Other versions
JPH01308198A (en
Inventor
実 萬城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63135208A priority Critical patent/JPH0638718B2/en
Publication of JPH01308198A publication Critical patent/JPH01308198A/en
Publication of JPH0638718B2 publication Critical patent/JPH0638718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期機の励磁制御装置に係り、特に多機の電力
系統の定態安定度向上に好適な同期機用励磁制御装置に
関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excitation control device for a synchronous machine, and more particularly to an excitation control device for a synchronous machine suitable for improving the steady stability of a multi-machine power system.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭61−15599号に記載のよう
に、系統構成及び負荷状態に応じてブロックを選択する
ことにより最適な特性を実現しようとするものである
が、パラメータがステップ状に変化するため必ずしも最
適な制御特性を得られないこと、また系統構成又は運用
状態が予想を越えた場合には、制御が不安定になるなど
の問題点を有していた。
As described in Japanese Patent Laid-Open No. 61-15599, a conventional device attempts to realize optimum characteristics by selecting blocks according to the system configuration and load state, but the parameters are stepwise. However, there is a problem in that the optimum control characteristics cannot always be obtained because of changes, and that control becomes unstable when the system configuration or operating state exceeds expectations.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は、あらかじめ想定した系統構成に対して
設定した固定のゲイン・位相定数を用いたオープンルー
プ制御による定態安定度の向上しか行っていないため、
時々刻々変化する実系統の運用状態に対する最適な制御
を行うことができず、実系統の運用状態が想定系統状態
から大きくずれが生じた場合には、定態安定度を失い制
御が不安定となること、及び実多機系統の有する異なる
種々の周波数成分全てに有効な安定化制御ができない問
題点があった。
The above-mentioned conventional technology only improves the steady-state stability by the open loop control using the fixed gain and phase constants set for the system configuration assumed in advance.
If it is not possible to perform optimal control for the operating state of the actual system that changes moment by moment, and if the operating state of the actual system deviates significantly from the assumed system state, the steady state stability is lost and control becomes unstable. In addition, there is a problem in that effective stabilization control cannot be performed for all different frequency components of the actual multi-machine system.

本発明の目的は、系統状態の変化に応じて常に最適な安
定度向上を行うために、定態安定度向上に理想的な有効
電力Pの制御目標値Prefを生成する回路を設うけ、こ
の制御目標値Prefに有効電力Pを追従させる閉ループ
フィードバック制御を行なうことにより、実系統の運用
状態に依存することなく種々の動揺周波数成分全てに有
効な定態安定度向上を行う励磁制御装置を提供すること
にある。
An object of the present invention is to provide a circuit that generates an ideal control target value Pref of active power P for improving steady-state stability in order to always perform optimum stability improvement according to changes in the system state. Provided is an excitation control device that improves the steady-state stability effective for all various fluctuation frequency components without depending on the operating state of the actual system by performing closed-loop feedback control in which the active power P follows the control target value Pref. To do.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、本発明は電力系統に接続さ
れた同期機の端子電圧と設定端子電圧との偏差信号に対
応して前記同期機の界磁量を定め前記端子電圧を制御す
る端子電圧一定制御装置を備えた同期機励磁制御装置に
おいて、前記電力系統の動揺信号を検出する電力系統動
揺信号検出手段と、該電力系統動揺信号検出手段の出力
から内部相差角成分と該内部相差角成分の時間微分値を
演算し、前記内部相差角成分に同期化力係数を乗じた値
および該内部相差角成分の時間微分値に制動力係数を乗
じた値から前記同期機の出力する有効電力目標値を生成
する有効電力目標値生成手段と、前記同期機が出力する
有効電力を検出する有効電力検出手段と、前記有効電力
目標値と前記有効電力の検出値との偏差を求め、該偏差
に対応する補正信号を生成してその補正信号を同期機の
端子電圧と設定端子電圧との偏差信号に加える補正手段
を備えることを特徴とする同期機励磁制御装置としたの
である。
In order to achieve the above-mentioned object, the present invention determines a field amount of the synchronous machine corresponding to a deviation signal between a terminal voltage and a set terminal voltage of the synchronous machine connected to a power system, and a terminal for controlling the terminal voltage. In a synchronous machine excitation control device including a constant voltage control device, a power system fluctuation signal detecting means for detecting a fluctuation signal of the power system, an internal phase difference angle component and an internal phase difference angle from an output of the power system fluctuation signal detecting means. The effective power output from the synchronous machine from the value obtained by calculating the time differential value of the component and multiplying the internal phase difference angle component by the synchronizing force coefficient and the value obtained by multiplying the time differential value of the internal phase difference angle component by the braking force coefficient Active power target value generation means for generating a target value, active power detection means for detecting active power output by the synchronous machine, and a deviation between the active power target value and the detected value of the active power, Correction signal corresponding to It was a synchronous machine excitation control device, characterized in that it comprises a correcting means for adding product to the deviation signal between the terminal voltage and the set terminal voltage of the synchronous machine the correction signal.

また、電力系統動揺信号検出手段が検出する電力系統動
揺信号が、同期機の端子電圧と電機子電流と界磁電圧と
界磁電流と周波数とロータ軸位置と軸速度とのうち少く
とも1つでよい。
In addition, at least one of the terminal voltage of the synchronous machine, the armature current, the field voltage, the field current, the frequency, the rotor shaft position, and the shaft speed is the power system fluctuation signal detected by the power system fluctuation signal detection means. Good.

〔作用〕[Action]

このように構成することにより、本発明によれば次の作
用により上記の目的が達成される。
With this configuration, the above-described object can be achieved according to the present invention by the following actions.

上記のように構成された同期機励磁制御装置において、
まず、電力系統動揺信号検出手段で検出された信号、端
子電圧と電機子電流、界磁電圧と界磁電流、ロータ軸位
置と軸速度及び端子電圧とロータ軸位置との組合せのう
ち少くとも1組を用いれば、内部相差角成分が演算され
る。
In the synchronous machine excitation control device configured as described above,
First, at least one of the signals detected by the power system fluctuation signal detecting means, the terminal voltage and the armature current, the field voltage and the field current, the rotor shaft position and the shaft speed, and the terminal voltage and the rotor shaft position is at least 1. If the set is used, the internal phase difference angle component is calculated.

差に有効電力目標値のうち、内部相差角成分を時間微分
すれば時間微分値が得られる。内部相差角に比例する成
分が同期化力成分で、時間微分値に比例する成分が制動
力成分となるので、これらの成分比率は同期化力係数と
制動力係数のゲインを変えることで任意に設定できるの
で、同期機に要求される系統安定化上からの仕様に応じ
て決定できる。
If the internal phase difference angle component of the active power target value is differentiated with respect to time, the time differential value is obtained. The component proportional to the internal phase difference angle is the synchronizing force component, and the component proportional to the time differential value is the braking force component.The ratio of these components can be arbitrarily changed by changing the gains of the synchronizing force coefficient and the braking force coefficient. Since it can be set, it can be determined according to the specifications for system stabilization required for the synchronous machine.

補正手段により、有効電力目標値と同期機が出力する有
効電力との偏差に対応する補正信号を生成して界磁量を
制御する偏差信号に加える閉ループ追従制御を構成する
から、有効電力目標値に同期機の実有効電力を一致させ
るように制御できる。その結果、同期機に運転状態、系
統構成の変化及び励磁装置の種類にかかわらず常に指定
した仕様を有する系統安定度を確保することができるの
である。
Since the correction means forms a correction signal corresponding to the deviation between the active power target value and the active power output by the synchronous machine, the closed loop tracking control is added to the deviation signal for controlling the field amount. It can be controlled to match the actual active power of the synchronous machine. As a result, it is possible to always ensure the system stability of the synchronous machine having the specified specifications regardless of the operating state, the change of the system configuration, and the type of the exciter.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図〜第5図と用いて説明す
る。
An embodiment of the present invention will be described below with reference to FIGS.

第1図は、本発明の一実施例でサイリスタを用いた静止
形励磁装置の全体構成を示す図である。第1図におい
て、静止形励磁装置は、同期機1の端子電圧を計器用変
成器PT6にて降圧した電圧Vgと自動電圧調整装置
(端子電圧一定制御装置)の電圧設定器(90R)12
からの電圧設定値Vrefとの偏差εを検出して偏差ε
を増幅器13にて増幅し、さらに自動パルス位相器A
pps14にてサイクル制御用パルスを発生させ、これに
より励磁電源用変圧器EXTR2を介して得られる励磁
用電源をサイリスタ3により制御し、同期機1の界磁電
圧Vf及び同期機器端子電圧Vgを一定に制御する装置
である。
FIG. 1 is a diagram showing the overall configuration of a static exciter using a thyristor in an embodiment of the present invention. In FIG. 1, the static exciter includes a voltage Vg obtained by stepping down the terminal voltage of the synchronous machine 1 by an instrument transformer PT6 and a voltage setter (90R) 12 of an automatic voltage regulator (terminal voltage constant controller).
Deviation ε 1 from the voltage setting value Vref from
1 is amplified by the amplifier 13, and the automatic pulse phase shifter A
A pulse for cycle control is generated at pps14, and the exciting power source obtained through the exciting power source transformer EXTR2 is controlled by the thyristor 3 to keep the field voltage Vf of the synchronous machine 1 and the synchronous device terminal voltage Vg constant. It is a device to control.

さらに系統安定度向上のために、同期機1の出力電圧と
電流を計器用変成器PT6と計器用変流器CT5を介し
て入力する有効電力目標値生成回路(有効電力目標生成
手段)15、有効電力検出回路(有効電力検出手段)1
9にて有効電力目標値Pref、有効電力Pを検出する。
この信号を適正にゲイン・位相補正し、電力偏差ΔP=
Pref−Pを零とするようにゲイン・位相調整した出力
Vpssを自動電圧調整装置への信号加算回路へ補助信号
として与えている。
Further, in order to improve the system stability, an active power target value generation circuit (active power target generation means) 15, which inputs the output voltage and current of the synchronous machine 1 via the instrument transformer PT6 and the instrument current transformer CT5, Active power detection circuit (active power detection means) 1
At 9, the active power target value Pref and the active power P are detected.
The gain and phase of this signal are properly corrected, and the power deviation ΔP =
The output Vpss whose gain and phase are adjusted so that Pref-P becomes zero is given as an auxiliary signal to the signal adding circuit to the automatic voltage adjusting device.

同期機1は、主変圧器7、主遮断器8、系統遮断器9を
介して、送電線10に接続している。
The synchronous machine 1 is connected to a power transmission line 10 via a main transformer 7, a main circuit breaker 8, and a system circuit breaker 9.

同様に複数の同期機から成る電力系統ネットワーク11
が接続され多機系の電力系統が構成されている。
Similarly, a power system network 11 including a plurality of synchronous machines
Are connected to form a multi-machine power system.

まず、有効電力目標値生成回路15は計器用変流器CT
5、計器用変成器PT6から電流と電圧を入力し内部誘
起電圧Eqの内部相差角δを検出する内部誘起電圧検出
回路16と、この内部相差角δに同期化力係数Kδを設
定する同期化力係数設定回路17と、内部相差角δを時
間微分し、この時間微分信号ω=に制動力係数Kω
設定する制動力係数設定回路18とから成りそれぞれの
出力を加算した下式の重みづけ加算により、有効電力P
の有効電力目標値Prefを生成する。
First, the active power target value generation circuit 15 uses the current transformer CT for meters.
5. An internal induced voltage detection circuit 16 for inputting current and voltage from the instrument transformer PT6 to detect an internal phase difference angle δ of the internal induced voltage Eq, and synchronization for setting a synchronization force coefficient Kδ to the internal phase difference angle δ. The weighting factor of the following equation, which includes a force coefficient setting circuit 17 and a braking force coefficient setting circuit 18 that differentiates the internal phase difference angle δ with respect to time and sets the braking force coefficient K ω to the time differential signal ω = Active power P
The active power target value Pref is generated.

Pref=Kδδ+Kωω ……(1) 有効電力目標値Prefのうち、内部相差角δに比例する
成分が同期化力成分、時間微分信号ωに比例する成分が
制動力成分となる。これらの成分比率は同期化力係数K
δと制動力係数Kωのゲインを変えることで任意に設定
できるので、プラントに要求される系統安定化上からの
仕様に応じた有効電力目標値Pref,即ち有効電力Pの
理想的な制御目標値を容易に決定できる。
Pref = K δ δ + K ω ω (1) Of the active power target value Pref, the component proportional to the internal phase difference angle δ is the synchronizing force component, and the component proportional to the time differential signal ω is the braking force component. The ratio of these components is the synchronization force coefficient K
Since it can be set arbitrarily by changing the gains of δ and the braking force coefficient K ω , the active power target value Pref according to the specifications required for system stabilization from the plant, that is, the ideal control target of the active power P. The value can be easily determined.

このようにして決定した有効電力目標値Prefは、同期
機1及びこれに連けいする電力系統11間に動揺が発生
した場合に、これを制御する最適な信号となっている。
The active power target value Pref determined in this manner is an optimum signal for controlling the sway between the synchronous machine 1 and the power system 11 connected to the synchronous machine 1.

次にこの有効電力目標値Prefを基準信号として、有効
電力出力Pとの偏差ΔP=Pref−P求める。このΔP
を位相調整回路20にて、ΔPを零とするようにゲイン
・位相調整して得た信号Vpssを自動電圧調整装置の信
号加算回路へ与える。出力Vpssは、増幅器13、自動
パルス位相器14、サイリスタ3、界磁遮断器4を介し
て同期機界磁電圧Vf及び端子電圧Vgを変化させ、同
期機有効電力Pが、有効電力目標値Prefに一致するよ
うに閉ループ制御を行う。有効電力Pを有効電力目標値
Prefに一致させることにより、有効電力Pに含まれる
同期化成分、制動力成分を設計目標値のKδ、Kωに一
致するよう制御できるため、常に設計目標通りの系統安
定化向上を実現できる。
Next, using this active power target value Pref as a reference signal, a deviation ΔP = Pref−P from the active power output P is obtained. This ΔP
In the phase adjustment circuit 20, the signal Vpss obtained by gain / phase adjustment so that ΔP becomes zero is given to the signal addition circuit of the automatic voltage adjustment device. The output Vpss changes the synchronous machine field voltage Vf and the terminal voltage Vg via the amplifier 13, the automatic pulse phase shifter 14, the thyristor 3, and the field breaker 4, so that the synchronous machine active power P becomes the active power target value Pref. Closed loop control is performed so that By matching the active power P with the active power target value Pref, the synchronization component and the braking force component included in the active power P can be controlled so as to match the design target values K δ and K ω , so that the design target is always met. It is possible to improve system stability.

次に第2図を用いて、本実施例の働作を説明する。第2
図は第1図の詳細ブロック図である。
Next, the operation of this embodiment will be described with reference to FIG. Second
The figure is a detailed block diagram of FIG.

第2図において、有効電力目標値生成回路15は、同期
機1の端子電圧g及び電流Iより内部誘起電圧検出
回路16aにおいて、内部誘起電圧qを演算検出す
る。
In FIG. 2, the active power target value generation circuit 15 calculates and detects the internal induced voltage q in the internal induced voltage detection circuit 16a from the terminal voltage g and the current I G of the synchronous machine 1.

ここで内部誘起電圧qは q=+jxq j :複素数 xq:同期機q軸同期リアクタンス であり、内部誘起電圧gの位相が同期機1の内部相差
角δに相当する。
Here the internal induced voltage q is q = G + jxq G j: complex number xq: a synchronous machine q-axis synchronous reactance, the phase of the internal induced voltage g is equivalent to δ internal phase angle of the synchronous machine 1.

次に内部誘起電圧qの内部相差角δを位相検出回路1
6bにて検出し、さらに内部相差角δの時間微分値 を微分回路18aにて検出する。これらのδ,ωをそれ
ぞれ係数設定回路17及び18bにてゲイン調整した値
を加算しこれを有効電力目標値Prefとする。また同期
機1の有効電力Pを端子電圧g及び電流gを用いて
電力変換器19にて検出する。有効電力目標値Prefと
有効電力Pの偏差信号Δを求め、このΔP位相調整回路
(補正手段)20により励磁装置伝達関数GAVR(S)27
及び同期機1の界磁回路時間遅れを補正した出力Vpss
を励磁装置信号加算回路へ与える。ここで位相調整回路
20は直流分除去回路24、ゲイン、位相調整回路2
5、出力リミッタ回路26にて構成する。まず直流分除
去回路24は、系統安定化に必要な信号はΔPの時間的
な変化分であり直流分は不要であるためこれを除去する
ために設ける。次にゲイン・位相調整回路25は、励磁
装置及び同期機界磁回路の時間遅れを補正し、有効電力
目標値生成回路15及び有効電力検出回路19、ゲイン
位相調整回路25、励磁装置伝達関数GAVR(S)27、同
期機1からなる閉ループ制御系の安定化を計るためのも
のである。
Next, the internal phase difference angle δ of the internal induced voltage q is determined by the phase detection circuit 1
6b, and the time differential value of the internal phase difference angle δ. Is detected by the differentiating circuit 18a. These δ and ω are gain-adjusted by the coefficient setting circuits 17 and 18b, respectively, and added to obtain an active power target value Pref. Further, the active power P of the synchronous machine 1 is detected by the power converter 19 using the terminal voltage g and the current g. A deviation signal Δ between the active power target value Pref and the active power P is obtained, and the exciter transfer function G AVR (S) 27 is calculated by the ΔP phase adjusting circuit (correction means) 20.
And output Vpss corrected for the field delay of the synchronous machine 1
To the exciter signal adder circuit. Here, the phase adjustment circuit 20 includes a DC component removal circuit 24, a gain and phase adjustment circuit 2
5, output limiter circuit 26. First, the DC component removing circuit 24 is provided to remove the signal required for system stabilization because it is the time change of ΔP and the DC component is unnecessary. Next, the gain / phase adjusting circuit 25 corrects the time delay of the exciter and the synchronous machine field circuit, and the active power target value generating circuit 15, the active power detection circuit 19, the gain phase adjusting circuit 25, the exciter transfer function G. This is for stabilizing the closed loop control system including the AVR (S) 27 and the synchronous machine 1.

位相調整回路20の出力Vpssは、励磁装置の信号加算
回路を介して、同期機界磁電圧Vf及び端子電圧V電
流Iを変化させ、有効電力Pを有効電力目標値Pref
に一致するよう閉ループ追従制御を行う。この結果有効
電力Pに含まれる同期化力及び制動力を指定値のKδ
ωになるよう制御できることになり、同期機1の動揺
を速やかに収束させることができ系統安定度の向上を実
現できる。
The output Vpss of the phase adjustment circuit 20 changes the synchronous machine field voltage Vf and the terminal voltage V current I through the signal addition circuit of the exciter to change the active power P to the active power target value Pref.
Closed loop tracking control is performed so that As a result, the synchronization force and the braking force included in the active power P are designated as K δ ,
Since the control can be performed so as to become K ω , the fluctuation of the synchronous machine 1 can be quickly converged and the system stability can be improved.

第3図は、有効電力検出回路19で検出した有効電力P
に含まれる内部相差角成分δpと該内部相差角成分の時
間微分値成分ωpとを検出する回路21,22により分
離検出し、有効電力目標値生成回路15で生成したそれ
ぞれの成分に対する偏差に対してゲイン、位相調整する
回路20a,20bを設けた、位相調整回路20のブロ
ック図である。
FIG. 3 shows active power P detected by the active power detection circuit 19.
Of the internal phase difference angle component δp and the time differential value component ωp of the internal phase difference angle component, which are separately detected by the circuits 21 and 22, and the deviation with respect to each component generated by the active power target value generation circuit 15 is detected. 3 is a block diagram of a phase adjustment circuit 20 in which circuits 20a and 20b for adjusting gain and phase are provided.

位相調整回路20の出力Vpssは前記と同様に、励磁装
置の信号加算回路を介して、同期機界磁電圧Vf及び端
子電圧g、電流gを変化させ、有効電力Pに含まれ
る同期化力、制動力を有効電力目標値Prefに含むもの
と一致するよう閉ループ追従制御を行なうことにより、
より一層の系統安定度向上を実現できる。
The output Vpss of the phase adjustment circuit 20 changes the synchronous machine field voltage Vf, the terminal voltage g, and the current g through the signal adder circuit of the exciter in the same manner as described above, and the synchronization force included in the active power P, By performing the closed-loop follow-up control so that the braking force matches that included in the active power target value Pref,
It is possible to further improve system stability.

次に有効電力PをP=Kδδ+Kωωと制御した場合の
効果は次の様になる同期機1の運動方程式は 但し M:貫性定数 Pm:タービン出力 と2次振動系で表わすことができるから、これに を代入すると となる。この式の固有値αを求めると となり、固有値αの実数部は となり常に負とすることができ、常に安定とすることが
できる。また同期化力Kδを一定とすることで系の固有
振動数を常に一定とすることができる。
Next, the effect of controlling the active power P as P = K δ δ + K ω ω is as follows. The equation of motion of the synchronous machine 1 is However, M: Penetration constant Pm: Turbine output and secondary vibration system Substituting Becomes When the eigenvalue α of this equation is calculated And the real part of the eigenvalue α is Can always be negative and can always be stable. Further, the natural frequency of the system can always be made constant by keeping the synchronizing force K δ constant.

第4図、第5図に以上の働きをブロック図にて示した。
第4図は、実系統の簡略ブロック図を示す。ここで示し
た有効電力Pは、電力系統・同期機・励磁装置などの複
雑な伝達関数Ge(s)を介して出力となり、同期化力
・制動力は制御された値ではないため、運転状態によっ
て不安定となる。これに対して本実施例を適用した第5
図によれば有効電力PをP=Kδ・δ+Kωωとなるよ
う制御した値となるため同期機の運転状態・系統構成な
どに依存せず、常に一定のKδ,Kωとすることがで
き、系統安定度を向上することができる。
The above functions are shown in block diagrams in FIGS. 4 and 5.
FIG. 4 shows a simplified block diagram of the actual system. The active power P shown here becomes an output through a complicated transfer function Ge (s) of the power system, the synchronous machine, the exciter, etc., and the synchronizing force / braking force is not a controlled value. Makes it unstable. On the other hand, the fifth embodiment is applied.
According to the figure, the active power P is a value that is controlled so that P = K δ · δ + K ω ω, so it is always constant K δ and K ω regardless of the operating state and system configuration of the synchronous machine. The system stability can be improved.

本実施例では、内部相差角ωを内部誘起電力qより求
めているが、この他実際のロータ軸位置、軸速度と直接
同期機の運転状態を示す信号を用いても良い。また内部
相差角δは、この他同期機界磁電圧Vfと界磁電流If
を用いて 但し Rf :同期機界磁抵抗 Tdz′:同期機負荷時界磁時定数 xd :同期機直軸同期リアクタンス xd′:同期機直軸過渡リアクタンス として求めることができるため、これを用いても良い。
In the present embodiment, the internal phase difference angle ω is obtained from the internal electromotive force q, but other than this, signals indicating the actual rotor shaft position and shaft speed and the operating state of the direct synchronous machine may be used. In addition, the internal phase difference angle δ depends on the other factors, such as the synchronous machine field voltage Vf and the field current If.
Using However, Rf: synchronous machine field resistance Tdz ': synchronous machine load time field time constant xd: synchronous machine direct axis synchronous reactance xd': synchronous machine direct axis transient reactance, which may be used.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the effects described below.

指定した制動トルク成分・同期化トルク成分となるよう
生成した有効電力目標値Prefに、同期機の実有効電力
Pを一致させるように制御できるので、同期機の運転状
態、系統構成の変化及び使用している励磁装置の種類に
かかわらず、常に指定した仕様を有する系統安定度を確
保することができる。
Since it is possible to control the actual active power P of the synchronous machine to match the active power target value Pref generated so as to have the designated braking torque component / synchronization torque component, the operating state of the synchronous machine, the change in the system configuration, and the use Regardless of the type of exciter being used, it is possible to always ensure system stability with the specified specifications.

さらに、有効電力目標値Prefに有効電力Pを一致させ
るよう閉ループ追従制御を行うため、同期機の運転状態
・系統構成変化などの外部要因の影響をほとんど受けな
くできるので、定数の設定が非常に簡単となり、試運転
時の調整が極めて容易となる。
Furthermore, since the closed-loop follow-up control is performed so that the active power P matches the active power target value Pref, the influence of external factors such as the operating state of the synchronous machine and the change in the system configuration can be hardly affected. It becomes simple and the adjustment during the trial run becomes extremely easy.

そして有効電力目標値Pref及び有効電力Pのいずれ
も、タービン出力の機械出力Pmの影響による信号を同
等に含んでいること、さらにこれらの差信号Pref−P
を制御信号に用いているため、Pmの影響を受けない。
従ってタービン高速バルブ制御(EVA:Early Valve
Actuation)のように系統事故発生時にタービン出力P
mを大きく変化させる制御を併用した場合も、タービン
出力Pmの影響を受けずに常に安定な安定化制御を行う
ことができる。
Further, both the active power target value Pref and the active power P include the signal equivalent to the influence of the mechanical output Pm of the turbine output, and the difference signal Pref-P between them.
Is used for the control signal, it is not affected by Pm.
Therefore, turbine high speed valve control (EVA: Early Valve)
Turbine output P when a system accident occurs, such as Actuation)
Even when the control that greatly changes m is also used, stable stabilization control can always be performed without being affected by the turbine output Pm.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例の同期機励磁制御装置の全
体構成図、第2図は第1図の詳細ブロック図、第3図は
異なる他の実施例による位相調整回路のブロック図、第
4図は同期機を2次振動系で示したブロック図、第5図
は第4図に本発明による一実施例の制御ブロックを付加
したブロック図である。 1……同期機、11……電力系統ネットワーク、15…
…有効電力目標値生成回路、16……内部誘起電圧検出
回路、17……同期化力係数設定回路、18……制動力
係数設定回路、19……有効電力検出回路、20……位
相調整回路。
FIG. 1 is an overall configuration diagram of a synchronous machine excitation control device of one embodiment of the present invention, FIG. 2 is a detailed block diagram of FIG. 1, and FIG. 3 is a block diagram of a phase adjustment circuit according to another embodiment. FIG. 4 is a block diagram showing a synchronous machine as a secondary vibration system, and FIG. 5 is a block diagram in which a control block of an embodiment according to the present invention is added to FIG. 1 ... Synchronous machine, 11 ... Power system network, 15 ...
... Active power target value generation circuit, 16 ... Internal induced voltage detection circuit, 17 ... Synchronization force coefficient setting circuit, 18 ... Braking force coefficient setting circuit, 19 ... Active power detection circuit, 20 ... Phase adjustment circuit .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電力系統に接続された同期機の端子電圧と
設定端子電圧との偏差信号に対応して前記同期機の界磁
量を定め前記端子電圧を制御する端子電圧一定制御装置
を備えた同期機励磁制御装置において、前記電力系統の
動揺信号を検出する電力系統動揺信号検出手段と、該電
力系統動揺信号検出手段の出力から内部相差角成分と該
内部相差角成分の時間微分値を演算し、前記内部相差角
成分に設定された同期化力係数を乗じた値および該内部
相差角成分の時間微分値に設定された制動力係数を乗じ
た値から前記同期機の出力する有効電力目標値を生成す
る有効電力目標値生成手段と、前記同期機が出力する有
効電力を検出する有効電力検出手段と、前記有効電力目
標値と前記有効電力の検出値との偏差を求め、該偏差に
対応する補正信号を生成して前記偏差信号に加える補正
手段を備えることを特徴とする同期機励磁制御装置。
1. A terminal voltage constant control device for determining a field amount of the synchronous machine according to a deviation signal between a terminal voltage and a set terminal voltage of the synchronous machine connected to an electric power system and controlling the terminal voltage. In the synchronous machine excitation control device, a power system fluctuation signal detecting means for detecting a fluctuation signal of the power system, and an internal phase difference angle component and a time differential value of the internal phase difference angle component from the output of the power system fluctuation signal detecting means. Active power output from the synchronous machine from a value calculated by multiplying the internal phase difference angle component by the set synchronization force coefficient and a value obtained by multiplying the time differential value of the internal phase difference angle component by the set braking force coefficient Active power target value generation means for generating a target value, active power detection means for detecting active power output by the synchronous machine, and a deviation between the active power target value and the detected value of the active power, Correction signal corresponding to Generating and synchronous machine excitation control device, characterized in that it comprises a correcting means for adding the deviation signal.
【請求項2】電力系統動揺信号検出手段が検出する電力
系統動揺信号が、同期機の端子電圧と電機子電流と界磁
電圧と界磁電流と周波数とロータ軸位置と軸速度とのう
ち少くとも1つであることを特徴とする請求項1記載の
同期機励磁制御装置。
2. The power system fluctuation signal detected by the power system fluctuation signal detecting means is smaller among the terminal voltage of the synchronous machine, the armature current, the field voltage, the field current, the frequency, the rotor shaft position and the shaft speed. 2. The synchronous machine excitation control device according to claim 1, wherein the number is one.
JP63135208A 1988-06-01 1988-06-01 Synchronous machine excitation controller Expired - Lifetime JPH0638718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63135208A JPH0638718B2 (en) 1988-06-01 1988-06-01 Synchronous machine excitation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63135208A JPH0638718B2 (en) 1988-06-01 1988-06-01 Synchronous machine excitation controller

Publications (2)

Publication Number Publication Date
JPH01308198A JPH01308198A (en) 1989-12-12
JPH0638718B2 true JPH0638718B2 (en) 1994-05-18

Family

ID=15146380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63135208A Expired - Lifetime JPH0638718B2 (en) 1988-06-01 1988-06-01 Synchronous machine excitation controller

Country Status (1)

Country Link
JP (1) JPH0638718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676093B (en) * 2021-07-19 2023-08-18 中国长江电力股份有限公司 Open-loop control-based generator excitation starting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator

Also Published As

Publication number Publication date
JPH01308198A (en) 1989-12-12

Similar Documents

Publication Publication Date Title
EP0141372B1 (en) Method and apparatus for controlling variable-speed hydraulic power generaton system
JPH07114559B2 (en) Power system stabilizer
JPH05207767A (en) Motor drive controller
JPH02254987A (en) Method and apparatus for control of induction motor
US4980629A (en) AC-excited generator/motor apparatus
JPH0350492B2 (en)
US8125178B2 (en) Drive and method
JPH0638718B2 (en) Synchronous machine excitation controller
JPH0697880B2 (en) Excitation control device for synchronous machine
US3465235A (en) Control of rotating exciters for power system damping
JP2749728B2 (en) Excitation controller for synchronous machine
JP2535210B2 (en) Synchronous generator automatic voltage regulator
KR20080089661A (en) Electric motor control apparatus
JP2631373B2 (en) Operation control device of variable speed pumped storage power generation system
JP2538859B2 (en) Variable speed pumped storage system control device
JPH06315300A (en) Power system stabilizing equipment
JP3770286B2 (en) Vector control method for induction motor
JPH0632597B2 (en) Excitation control device for synchronous machine
JPH0681557B2 (en) Synchronous machine excitation controller
JPS63316687A (en) Vector controlling arithmetic device for induction motor
JP2540202B2 (en) Correction control method in multivariable control system of generator
JPS60141186A (en) Field controller of commutatorless motor
JPH0540530A (en) Number of revolution controller for turbine
JPS5986493A (en) Speed controller for dc motor
JP2680009B2 (en) Variable speed generator