JPH01308198A - Excitation controller for synchronous machine - Google Patents

Excitation controller for synchronous machine

Info

Publication number
JPH01308198A
JPH01308198A JP63135208A JP13520888A JPH01308198A JP H01308198 A JPH01308198 A JP H01308198A JP 63135208 A JP63135208 A JP 63135208A JP 13520888 A JP13520888 A JP 13520888A JP H01308198 A JPH01308198 A JP H01308198A
Authority
JP
Japan
Prior art keywords
synchronous machine
active power
target value
terminal voltage
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63135208A
Other languages
Japanese (ja)
Other versions
JPH0638718B2 (en
Inventor
Minoru Manjo
萬城 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63135208A priority Critical patent/JPH0638718B2/en
Publication of JPH01308198A publication Critical patent/JPH01308198A/en
Publication of JPH0638718B2 publication Critical patent/JPH0638718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To control an effective stabilization for all various fluctuated frequency components by generating the control target value of ideal effective power in a state stability from a power system fluctuation signal, and closed loop feedback-controlling to follow the effective power to the target value. CONSTITUTION:A deviation epsilon1 between the terminal voltage Vg of a synchronous machine 1 and a set voltage value Vref is calculated. Further, a deviation P between an effective power target value Pref generated by an effective power target value generator 15 on the basis of the terminal voltage and output current of the machine 1 and an effective power P is calculated. The deviations epsilon1 and AP are added, and applied to an automatic pulse phase unit 14. Here, the generator 15 detects the inner phase angle delta of an inner induced voltage with the terminal voltage and the output current, and generates an ideal control target value of the effective power on the basis of the angle delta. Thus, a stable control can be always conducted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期機の励磁制御装置に係り、特に多機の電力
系統の定態安定度向上に好適な同期機用励磁制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an excitation control device for a synchronous machine, and more particularly to an excitation control device for a synchronous machine suitable for improving the steady-state stability of a multi-machine power system.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭61−1.5599号に記載のよ
うに、系統構成及び負荷状態に応してブロックを選択す
ることにより最適な特性を実現しようとするものである
が、パラメータがステップ状に変化するため必すしも最
適な制御特性を得られないこと、また系統構成又は運用
状態か予想を越えた場合には、制御か不安定になるなど
の問題点を有していた。
Conventional devices attempt to achieve optimal characteristics by selecting blocks according to the system configuration and load condition, as described in Japanese Patent Application Laid-Open No. 61-1.5599, but the parameters Since the change occurs in a stepwise manner, it is not always possible to obtain optimal control characteristics, and if the system configuration or operational status exceeds expectations, there are problems such as unstable control.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

」1記従来技術は、あらかじめ想定した系統構成に対し
て設定した固定のゲイン・位相定数を用いたオープンル
ープ制御による定態安定度の向」、シか行っていないた
め、時々刻々変化する実系統の運用状態に対する最適な
制御を行うことかできず、実系統の運用状態が想定系統
状態から人きくずれが生した場合には、定態安定度を失
い制御が不安定となること、及び実多機系統の有する異
なる種々の周波数成分全てに有効な安定化制御ができな
い問題点があった。
1. The conventional technology only achieves steady-state stability by open-loop control using fixed gain and phase constants set for a pre-assumed system configuration. Optimum control of the system operation status cannot be performed, and if the actual system operation status deviates from the assumed system status, steady-state stability may be lost and control may become unstable; There was a problem in that effective stabilization control could not be performed for all the various frequency components of a real multi-machine system.

本発明の目的は、系統状態の変化に応じて常に最適な安
定度向」二を行うために、定態安定度向」二に理想的な
有効電力Pの制御目標値P refを生成する回路を設
うけ、この制御目標値P refに有効電力Pを追従さ
せる閉ループフィードバック制御を行なうことにより、
実系統の運用状態に依存することなく種々の動揺周波数
成分全てに有効な定態安定度向」二を行う励磁制御装置
を提供することにある。
An object of the present invention is to provide a circuit that generates an ideal control target value P ref of active power P for steady state stability in order to always achieve optimal stability in response to changes in system conditions. By setting the control target value P ref and performing closed loop feedback control to make the active power P follow this control target value P ref,
The object of the present invention is to provide an excitation control device that achieves steady-state stability that is effective for all various oscillation frequency components without depending on the operational status of an actual system.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明による同期機励磁制
御装置においては、前記同期機の端子電圧と設定端子電
圧との偏差信号に対応して前記同期機の界磁量を定め前
記端子電圧を制御する端子電圧一定制御装置を備えたも
のに、前記同期機に接続した電力系統の動揺状態に示す
電力系統動揺信号を検出する電力系統動揺信号検出手段
と、該電力系統動揺信号から前記同期機の出力する有効
電力目標値を生成する有効電力目標値生成手段と、前記
同期機が出力する有効電力を検出する有効電力検出手段
と、前記有効電力目標値と前記有効電力との偏差に対応
する補正信号を生成する補正手段とを備えて該補正信号
を前記偏差信号に加える。
In order to achieve the above object, in the synchronous machine excitation control device according to the present invention, the field amount of the synchronous machine is determined in response to a deviation signal between the terminal voltage of the synchronous machine and the set terminal voltage, and the terminal voltage is adjusted. The terminal voltage constant control device is provided with a power system oscillation signal detection means for detecting a power system oscillation signal indicating an oscillation state of the power system connected to the synchronous machine; active power target value generating means for generating an active power target value output by the synchronous machine; active power detecting means for detecting the active power output by the synchronous machine; and a correction means for generating a correction signal, and adds the correction signal to the deviation signal.

また電力系統動揺信号検出手段の検出する電力系統動揺
信号は、同期機の端子電圧と電機子電流と界磁電圧と界
磁電流と周波数とロータ軸位置と軸速度とのうち少なく
とも1つであるとよい。
Further, the power system fluctuation signal detected by the power system fluctuation signal detection means is at least one of the terminal voltage of the synchronous machine, the armature current, the field voltage, the field current, the frequency, the rotor shaft position, and the shaft speed. Good.

さらに有効電力目標値生成手段の生成する有効電力目標
値は、同期機の内部相差角成分と該内部相差角成分の時
間微分値成分との重みづき加算とから成るのが好ましい
Furthermore, it is preferable that the active power target value generated by the active power target value generation means is composed of a weighted addition of an internal phase difference angle component of the synchronous machine and a time differential value component of the internal phase difference angle component.

そして補正手段は、有効電力検出手段の検出する有効電
力を同期機の内部相差角成分と該内部相差角成分の時間
微分値成分とに分離しそれぞれの成分と有効電力目標値
の有する前記それぞれの成分との偏差に対応した補正信
号を生成することが好ましい。
The correction means separates the active power detected by the active power detection means into an internal phase difference angle component of the synchronous machine and a time differential value component of the internal phase difference angle component, and separates the active power detected by the active power detection means into an internal phase difference angle component of the synchronous machine and a time differential value component of the internal phase difference angle component. It is preferable to generate a correction signal corresponding to the deviation from the component.

〔作用〕[Effect]

上記のように構成された同期機励磁装置において、電力
系統動揺信号検出手段は同期機が接続された電力系統の
動揺状態を示す電力系統動揺信号を検出し、有効電力目
標値生成手段は前記電力系統動揺信号から前記電力系統
の定態安定度向」二を計るに好適な同期機が出力する有
効電力目標値を生成し、有効電力検出手段は該同期機の
出力する有効電力を検出し、補正手段は前記有効電力目
標値と前記有効電力の偏差に対応した補正信号を生成し
て、該補正信号を前記同期機の端子電圧と設定端子電圧
との偏差信号に対応して同期機の界磁量を定め端子電圧
を制御する端子電圧一定制御装置の前記偏差信号に加え
前記電力系統の定態安定度を向上させるように働く。
In the synchronous machine excitation device configured as described above, the power system oscillation signal detection means detects the power system oscillation signal indicating the oscillation state of the power system to which the synchronous machine is connected, and the active power target value generation means Generating an active power target value output by a synchronous machine suitable for measuring the steady-state stability of the power system from the system oscillation signal, and an active power detection means detecting the active power output from the synchronous machine, The correction means generates a correction signal corresponding to the deviation between the active power target value and the active power, and applies the correction signal to the field of the synchronous machine in accordance with the deviation signal between the terminal voltage of the synchronous machine and the set terminal voltage. In addition to the deviation signal of the terminal voltage constant control device which determines the amount of magnetism and controls the terminal voltage, it works to improve the steady state stability of the power system.

そして、電力系統動揺信号検出手段は、電力系統動揺信
号として同期機の端子電圧と電機子電流と界磁電圧と界
磁電流と周波数とローラ軸位置と軸速度のうち少なくと
も1つを検出する。
The power system oscillation signal detection means detects at least one of the terminal voltage, armature current, field voltage, field current, frequency, roller shaft position, and shaft speed of the synchronous machine as the power system oscillation signal.

また、有効電力目標値生成手段は、有効電力目標値とし
て同期機の内部相差角成分と該内部相差角成分の時間微
分値成分との重みづき加算演算をする。
Further, the active power target value generation means performs a weighted addition operation of the internal phase difference angle component of the synchronous machine and the time differential value component of the internal phase difference angle component as the active power target value.

さらに、補正手段は、有効電力検出手段が検出した有効
電力を同期機の内部相差角成分と内部相差角成分の時間
微分値とに分離し、それぞれの成分と有効電力目標値の
有するそれぞれの成分との偏差に対応する補正信号を生
成出力する。
Furthermore, the correction means separates the active power detected by the active power detection means into an internal phase difference angle component of the synchronous machine and a time differential value of the internal phase difference angle component, and separates each component and each component of the active power target value. A correction signal corresponding to the deviation between the two is generated and output.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図〜第5図を用いて説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図は、本発明の一実施例でサイリスタを用いた静止
形励磁装置の全体構成を示す図である。
FIG. 1 is a diagram showing the overall configuration of a static excitation device using a thyristor according to an embodiment of the present invention.

第1図において、静止形励磁装置は、同期機1−の端子
電圧を計器用変成器PT6にて降圧した電圧Vgと自動
電圧調整装置(端子電圧一定制御装置)の電圧設定器(
9OR)12からの電圧設定値Vrefとの偏差F0を
検出して偏差ε1を増幅器13にて増幅し、さらに自動
パルス位相器A、pps14にてサイリスタ制御用パル
スを発生させ、これにより励磁電源用変圧器E X、 
T R2を介して得られる励磁用電源をサイリスタ2Q
により制御し、同期機1の界磁電圧Vf及び同期機器端
子電圧Vgを一定に制御する装置である。
In FIG. 1, the static excitation device has a voltage Vg obtained by stepping down the terminal voltage of the synchronous machine 1- by an instrument transformer PT6, and a voltage setting device (
The deviation F0 from the voltage setting value Vref from 9OR) 12 is detected, and the deviation ε1 is amplified by the amplifier 13, and the automatic pulse phase shifter A and pps 14 generate pulses for controlling the thyristor, thereby controlling the excitation power source. Transformer EX,
The excitation power obtained through T R2 is connected to thyristor 2Q.
This is a device that controls the field voltage Vf of the synchronous machine 1 and the synchronous equipment terminal voltage Vg to be constant.

さらに系統安定度向」二のために、同期機1の出力電圧
と電流を計器用変成器PT6と計器用変流器CT5を介
して入力する有効電力目標値生成回路(有効電力目標生
成手段)15、有効電力検出回路(有効電力検出手段)
19にて有効電力目標値Pref、有効電力Pを検出す
る。この信号を適正にゲイン・位相補正し、電力偏差Δ
P = P ref−Pを零とするようにゲイン・位相
調整した出力V pssを自動電圧調整装置への信号加
算回路へ補助信号として与えている。
Furthermore, in order to improve system stability, an active power target value generation circuit (active power target generation means) inputs the output voltage and current of the synchronous machine 1 via the instrument transformer PT6 and the instrument current transformer CT5. 15. Active power detection circuit (active power detection means)
At step 19, the active power target value Pref and the active power P are detected. This signal is properly gain and phase corrected, and the power deviation Δ
The output V pss, which has been gain- and phase-adjusted so that P = P ref - P becomes zero, is given as an auxiliary signal to a signal addition circuit for an automatic voltage regulator.

同期機1は、主変圧器7、主遮断器8、系統遮断器9を
介して、送電線10に接続している。
The synchronous machine 1 is connected to a power transmission line 10 via a main transformer 7 , a main breaker 8 , and a system breaker 9 .

同様に複数の同期機から成る電力系統ネットワーク11
が接続され多機系の電力系統が構成されている。
Similarly, a power system network 11 consisting of a plurality of synchronous machines
are connected to form a multi-system power system.

ます、有効電力目標値生成回路J5は計器用変流器CT
5、計器用変成器PT6から電流と電圧を入力し内部誘
起電圧Eqの内部相差角δを検出する内部誘起電圧検出
回路16と5この内部相差角δに同期化力係数にδに設
定する同期化力係数設定回路17と、内部相差角δを時
間微分し、この時間微分信号ω=δに制動力係数に、を
設定する制動力係数設定回路18とから成りそれぞれの
出力を加算した下式の重みづけ加算により、有効電力P
の有効電力目標値P refを生成する。
First, the active power target value generation circuit J5 is an instrument current transformer CT.
5. Internal induced voltage detection circuit 16 which inputs current and voltage from instrument transformer PT6 and detects internal phase difference angle δ of internal induced voltage Eq; It consists of a braking force coefficient setting circuit 17 and a braking force coefficient setting circuit 18 which differentiates the internal phase difference angle δ with respect to time and sets the braking force coefficient to this time differentiated signal ω=δ. By weighted addition of , the effective power P
The active power target value P ref is generated.

P ref ’= K aδ十に、ω−・(1)有効電
力目標値P refのうち、内部相差角δに比例する成
分が同期化力成分、時間微分信号ωに比例する成分が制
動力成分となる。これらの成分比率は同期化力係数に、
と制動力係数に、のゲインを変えることで任意に設定で
きるので、プラン1〜に要求される系統安定化上からの
仕様に応じた有効電力目標値P ref 、即ち有効電
力Pの理想的な制御目標値を容易に決定できる。
P ref '= Ka δ + ω- (1) Of the active power target value P ref, the component proportional to the internal phase difference angle δ is the synchronization force component, and the component proportional to the time differential signal ω is the braking force component. becomes. The ratio of these components is the synchronization force coefficient,
and the braking force coefficient can be arbitrarily set by changing the gain of , so the active power target value P ref , that is, the ideal value of the active power P according to the specifications from the system stabilization required for Plan 1 to Control target values can be easily determined.

このようにして決定した有効電力目標値P rcfは、
同期機」及びこれに連けいする電力系統11間に動揺が
発生した場合に、これを制御する最適な信号となってい
る。
The active power target value P rcf determined in this way is
This is the optimal signal to control when oscillation occurs between the "synchronous machine" and the power system 11 connected thereto.

次にこの有効電力目標値P refを基準信号として、
有効電力出力Pとの偏差ΔP−Pref−P求める。こ
のΔPを位相調整回路20にて、ΔPを零とするように
ゲイン・位相調整して得た信号■pssを自動電圧調整
装置の信号加算回路へ与える。
Next, using this active power target value P ref as a reference signal,
Determine the deviation ΔP-Pref-P from the active power output P. The gain and phase of this ΔP are adjusted in the phase adjustment circuit 20 so that ΔP becomes zero, and the obtained signal pss is applied to the signal addition circuit of the automatic voltage regulator.

出力V pssは、増幅器13、自動パルス位相器14
、サイリスタ3、界磁遮断器4を介して同期機界磁電圧
Vf及び端子電圧Vgを変化させ、同期機有効電力Pが
、有効電力目標値P refに一致するように閉ループ
制御を行う。有効電力Pを有効電力目標値P refに
一致させることにより、有効電力Pに含まれる同期化成
分、制動力成分を設計目標値のに1、K4に一致するよ
う制御できるため、常に設計目標通りの系統安定化向」
二を実現できる。
The output V pss is the amplifier 13, automatic pulse phaser 14
, thyristor 3, and field circuit breaker 4 to change the synchronous machine field voltage Vf and terminal voltage Vg, and perform closed-loop control so that the synchronous machine active power P matches the active power target value P ref. By matching the active power P with the active power target value P ref, the synchronization component and braking force component included in the active power P can be controlled to match the design target value of 1, K4, so that the design target is always met. towards grid stabilization”
You can achieve the second.

次に第2図を用いて、本実施例の動作を説明する。第2
図は第1図の詳細ブロック図である。
Next, the operation of this embodiment will be explained using FIG. 2. Second
The figure is a detailed block diagram of FIG. 1.

第2図において、有効電力目標値生成回路15は、同期
機1の端子電圧Vg及び電流Icより内部誘起電圧検出
回路16aにおいて、内部誘起電圧Eqを演算検出する
In FIG. 2, the active power target value generation circuit 15 calculates and detects the internal induced voltage Eq from the terminal voltage Vg and current Ic of the synchronous machine 1 in the internal induced voltage detection circuit 16a.

ここで内部誘起電圧Eqは E q =Va+ j  x q Ia3ラ :複素数 Xq:同期機q軸同期リアクタンス であり、内部誘起電圧Egの位相が同期機1の内部相差
角δに相当する。
Here, the internal induced voltage Eq is Eq = Va+ j x q Ia3: complex number Xq: synchronous machine q-axis synchronous reactance, and the phase of the internal induced voltage Eg corresponds to the internal phase difference angle δ of the synchronous machine 1.

次に内部誘起電圧Eqの内部相差角δを位相検出回路1
6bにて検出し、さらに内部相差角δの出する。これら
のδ、ωをそれぞれ係数設定回路17及び18bにてゲ
イン調整した値を加算しこれを有効電力目標値P re
fとする。また同期機]−の有効電力Pを端子電圧Vg
及び電流Igを用いて電力変換器19にて検出する。有
効電力目標値P refと有効電力Pの偏差信号Δを求
め、このΔPを位相調整回路(補正手段)20により励
磁装置伝達関数GAVR(S) 27及び同期機〕の界
磁回路時間遅れを補正した出力Vpssを励磁装置信号
加算回路へ与える。ここで位相調整回路20は直流分除
去回路24、ゲイン、位相調整回路25、出力リミッタ
回路26にて構成する。まず直流分除去回路24は、系
統安定化に必要な信号はΔPの時間的な変化分であり直
流分は不要であるためこれを除去するために設ける。次
にゲイン・位相調整回路25は、励磁装置及び同期機界
磁回路の時間遅れを補正し、有効電力目標値生成回路1
s及び有効電力検出回路19、ゲイン位相調整回路25
、励磁装置伝達関数G AVII (S) 27、同期
機1からなる閉ループ制御系の安定化を計るためのもの
である。
Next, the internal phase difference angle δ of the internal induced voltage Eq is determined by the phase detection circuit 1.
6b, and further calculates the internal phase difference angle δ. These δ and ω are added with the gain-adjusted values in the coefficient setting circuits 17 and 18b, respectively, and this is calculated as the active power target value P re
Let it be f. Also, the active power P of the synchronous machine] is the terminal voltage Vg
and the current Ig is detected by the power converter 19. A deviation signal Δ between the active power target value P ref and the active power P is determined, and this ΔP is used to correct the excitation device transfer function GAVR(S) 27 and the field circuit time delay of the synchronous machine using the phase adjustment circuit (correction means) 20. The output Vpss is given to the exciter signal addition circuit. Here, the phase adjustment circuit 20 includes a DC component removal circuit 24, a gain/phase adjustment circuit 25, and an output limiter circuit 26. First, the DC component removal circuit 24 is provided to remove the DC component since the signal necessary for system stabilization is the temporal change in ΔP and the DC component is unnecessary. Next, the gain/phase adjustment circuit 25 corrects the time delay of the excitation device and the synchronous machine field circuit, and the active power target value generation circuit 1
s and active power detection circuit 19, gain phase adjustment circuit 25
, exciter transfer function G AVII (S) 27, and the purpose of stabilizing the closed loop control system consisting of the synchronous machine 1.

位相調整回路20の出力V pssは、励磁装置の信号
加算回路を介して、同期機界磁電圧Vf及び端子電圧V
g雷電流gを変化させ、有効電力Pを有効電力目標値P
 refに一致するよう閉ループ追従制御を行う。この
結果有効電力Pに含まれる同期化力及び制動力を指定値
のKi、に、になるよう制御できることになり、同期機
1の動揺を速やかに収束させることができ系統安定度の
向上を実現できる。
The output V pss of the phase adjustment circuit 20 is connected to the synchronous machine field voltage Vf and the terminal voltage V through the signal addition circuit of the excitation device.
By changing the lightning current g, the active power P is set to the active power target value P.
Closed loop tracking control is performed to match ref. As a result, the synchronization force and braking force included in the active power P can be controlled to the specified value Ki, and the oscillation of the synchronous machine 1 can be quickly brought to an end, improving system stability. can.

第3図は、有効電力検出回路19で検出した有動電力P
に含まれる内部相差角成分δpと該内部相差角成分の時
間微分値成分ωpとを検出する回路21.22により分
離検出し、有効電力目標値生成回路15で生成したそれ
ぞれの成分に対する偏差に対してゲイン、位相調整する
回路20a。
FIG. 3 shows the active power P detected by the active power detection circuit 19.
The internal phase difference angle component δp contained in A circuit 20a for adjusting gain and phase.

20bを設けた、位相調整回路2oのブロック図である
20b is a block diagram of a phase adjustment circuit 2o.

位相調整回路20の出力Vpssは前記と同様に、励磁
装置の信号加算回路を介して、同期機界磁電圧Vf及び
端子電圧Vg、電流■gを変化させ、有効電力Pに含ま
れる同期化力、制動力を有効電力目標値P refに含
むものと一致するよう閉ループ追従制御を行なうことに
より、より一層の系統安定度向上を実現できる。
Similarly to the above, the output Vpss of the phase adjustment circuit 20 changes the synchronous machine field voltage Vf, the terminal voltage Vg, and the current g through the signal addition circuit of the excitation device, and changes the synchronization power contained in the active power P. By performing closed-loop follow-up control so that the braking force matches what is included in the active power target value P ref, it is possible to further improve system stability.

次に有効電力PをPmに、δ十に、ωと制御した場合の
効果は次の様になる。同期機1の運動方程式は 但し M:貫性定数 Pm:ターモノ出力 と2次振動系で表わすことができるから、これにを代入
すると となる。この式の固有値αを求めると とすることができ、常に安定とすることができる。
Next, when the effective power P is controlled to Pm, δ0, and ω, the effect is as follows. The equation of motion of the synchronous machine 1 can be expressed by M: permeability constant Pm: motor output and a secondary oscillation system, so by substituting this into. The eigenvalue α of this equation can be determined, and it can always be made stable.

また同期化力に、を一定とすることで系の固有振動数を
常に一定とすることができる。
Furthermore, by keeping the synchronization force constant, the natural frequency of the system can be kept constant.

第4図、第5図に以上の働きをブロック図にて示した。The above functions are shown in block diagrams in FIGS. 4 and 5.

第4図は、実系統の簡略ブロック図を示す。ここで示し
た有効電力Pは、電力系統・同期機・励磁装置などの複
雑な伝達関数Ge(s)を介して出力となり、同期化力
・制動力は制御された値ではないため、運転状態によっ
ては不安定となる。これに対して本実施例を適用した第
5図によれば有効電力PをPmに、・δ+に、ωとなる
よう制御した値となるため、同期機の運転状態・系統構
成などに依存せず、常に一定のに、、に、どすることが
でき、系統安定度を向−1ニすることができる。
FIG. 4 shows a simplified block diagram of the actual system. The active power P shown here becomes the output via the complex transfer function Ge(s) of the power system, synchronous machine, excitation device, etc., and the synchronization force and braking force are not controlled values, so the operating state In some cases, it becomes unstable. On the other hand, according to FIG. 5 to which this embodiment is applied, the effective power P is controlled to be Pm, δ+, and ω, so it does not depend on the operating state of the synchronous machine, the system configuration, etc. However, it is possible to always maintain a constant value, thereby improving system stability.

本実施例では、内部相差角δを内部誘起電圧Eqより求
めているが、この他実際のロータ軸位置、軸速度と直接
同期機の運動状態を示す信号を用いても良い。また内部
相差角δは、この他同期機界磁電圧Vfと界磁電流If
を用いて但し Rf :同期機界磁抵抗 1”dz’:同期機負荷時界磁時定数 Xd :同期機直軸同期リアクタンス xd’  :同期機直軸過渡りアクタンスとして求める
ことができるため、これを用いても良い。
In this embodiment, the internal phase difference angle δ is determined from the internal induced voltage Eq, but other signals that directly indicate the actual rotor shaft position, shaft speed, and motion state of the synchronous machine may also be used. In addition, the internal phase difference angle δ is determined by the synchronous machine field voltage Vf and the field current If.
Rf : Synchronous machine field resistance 1"dz' : Synchronous machine load time field time constant Xd : Synchronous machine direct axis synchronous reactance xd' : Synchronous machine direct axis transient actance, so this You may also use

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

指定した制動1−ルク成分・同期化1〜ルク成分となる
よう生成した有効電力目標値P refに、同期機の実
有効電力Pを一致させるように制御できるので、同期機
の運転状態、系統構成の変化及び使用している励磁装置
の種類にかかわらず、常に指定した仕様を有する系統安
定度を確保することができる。
Since the actual active power P of the synchronous machine can be controlled to match the active power target value P ref generated to match the specified braking 1-lux component and synchronization 1-lux component, the operating status of the synchronous machine and the system Regardless of configuration changes and the type of exciter used, system stability with specified specifications can always be ensured.

さらに、有効電力目標値P refに有効電力Pを一致
させるよう閉ループ追従制御を行うため、同期機の運転
状態・系統構成変化などの外部要因の影響をほとんど受
けなくできるので、定数の設定が非常に簡単となり、試
運転時の調整が極めて容易となる。
Furthermore, since closed-loop follow-up control is performed to match the active power P to the active power target value P ref, it is almost unaffected by external factors such as the operating status of the synchronous machine and changes in the system configuration, so the constant settings are very easy. This makes it extremely easy to make adjustments during test runs.

そして有効電力目標値P ref及び有効電力Pのいず
れも、タービン出力の機械出力Pmの影響による信号を
同等に含んでいること、さらにこれらの差信号Pref
−Pを制御信号に用いているため、Pmの影響を受けな
い。従ってタービン高速バルブ制御(E V A : 
Earl、y Valve Actuatjon)のよ
うに系統事故発生時にタービン出力Pmを大きく変化さ
せる制御を併用した場合も、タービン出力Pmの影響を
受けずに常に安定な安定化制御を行うことができる。
Furthermore, both the active power target value P ref and the active power P equally contain a signal due to the influence of the mechanical output Pm of the turbine output, and furthermore, the difference signal Pref
-P is used as a control signal, so it is not affected by Pm. Therefore, turbine high speed valve control (EVA:
Even when control is used in conjunction with the control that greatly changes the turbine output Pm when a system fault occurs, such as in the case of Earl, Y Valve Actuation), stable stabilization control can always be performed without being affected by the turbine output Pm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の同期機励磁制御装置の全
体構成図、第2図は第1図の詳細ブロック図、第3図は
異なる他の実施例による位相調整回路のブロック図、第
4図は同期機を2次振動系で示したブロック図、第5図
は第4図に本発明による一実施例の制御ブロックを付加
したブロック図である。 1・・・同期機、]1・・電力系統ネッI・ワーク、1
5 ・有効電力目標値生成回路、16・・内部誘起電圧
検出回路、17・同期化力係数設定回路、18・・・制
動力係数設定回路、19 有効電力検出回路、20・・
位相調整回路。
FIG. 1 is an overall configuration diagram of a synchronous machine excitation control device according to an embodiment of the present invention, FIG. 2 is a detailed block diagram of FIG. 1, and FIG. 3 is a block diagram of a phase adjustment circuit according to another embodiment. , FIG. 4 is a block diagram showing a synchronous machine as a secondary vibration system, and FIG. 5 is a block diagram in which a control block of an embodiment according to the present invention is added to FIG. 4. 1...Synchronous machine, ]1...Power system network I network, 1
5 - Active power target value generation circuit, 16... Internal induced voltage detection circuit, 17 - Synchronization force coefficient setting circuit, 18... Braking force coefficient setting circuit, 19 Active power detection circuit, 20...
Phase adjustment circuit.

Claims (1)

【特許請求の範囲】 1、同期機の端子電圧と設定端子電圧との偏差信号に対
応して前記同期機の界磁量を定め前記端子電圧を制御す
る端子電圧一定制御装置を備えた同期機励磁制御装置に
おいて、前記同期機に接続した電力系統の動揺状態を示
す電力系統動揺信号を検出する電力系統動揺信号検出手
段と、該電力系統動揺信号から前記同期機の出力する有
効電力目標値を生成する有効電力目標値生成手段と、前
記同期機が出力する有効電力を検出する有効電力検出手
段と、前記有効電力目標値と前記有効電力との偏差に対
応する補正信号を生成する補正手段とを備えて該補正信
号を前記偏差信号に加えることを特徴とする同期機励磁
制御装置。2、電力系統動揺信号検出手段の検出する電
力系統動揺信号が、同期機の端子電圧と電機子電流と界
磁電圧と界磁電流と周波数とロータ軸位置と軸速度との
うち少なくとも1つであることを特徴とする請求項1記
載の同期機励磁制御装置。 3、有効電力目標値生成手段の生成する有効電力目標値
が、同期機の内部相差角成分と該内部相差角成分の時間
微分値成分との重みづき加算とから成ることを特徴とす
る請求項1記載の同期機励磁制御装置。 4、補正手段が、有効電力検出手段の検出する有効電力
を同期機の内部相差角成分と該内部相差角成分の時間微
分値成分とに分離しそれぞれの成分と有効電力目標値の
有する前記それぞれの成分との偏差に対応した補正信号
を生成することを特徴とする請求項1記載の同期機励磁
制御装置。
[Scope of Claims] 1. A synchronous machine comprising a terminal voltage constant control device that determines the field amount of the synchronous machine in response to a deviation signal between the terminal voltage of the synchronous machine and a set terminal voltage and controls the terminal voltage. In the excitation control device, a power system oscillation signal detection means for detecting a power system oscillation signal indicating an oscillation state of a power system connected to the synchronous machine; active power target value generation means, active power detection means for detecting the active power output by the synchronous machine, and correction means for generating a correction signal corresponding to a deviation between the active power target value and the active power. A synchronous machine excitation control device, comprising: adding the correction signal to the deviation signal. 2. The power system oscillation signal detected by the power system oscillation signal detection means is based on at least one of the terminal voltage, armature current, field voltage, field current, frequency, rotor shaft position, and shaft speed of the synchronous machine. The synchronous machine excitation control device according to claim 1, characterized in that: 3. Claim characterized in that the active power target value generated by the active power target value generation means is comprised of a weighted addition of an internal phase difference angle component of the synchronous machine and a time differential value component of the internal phase difference angle component. 1. The synchronous machine excitation control device according to 1. 4. The correction means separates the active power detected by the active power detection means into an internal phase difference angle component of the synchronous machine and a time differential value component of the internal phase difference angle component, and calculates the respective components and the active power target value. 2. The synchronous machine excitation control device according to claim 1, wherein a correction signal corresponding to a deviation from a component is generated.
JP63135208A 1988-06-01 1988-06-01 Synchronous machine excitation controller Expired - Lifetime JPH0638718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63135208A JPH0638718B2 (en) 1988-06-01 1988-06-01 Synchronous machine excitation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63135208A JPH0638718B2 (en) 1988-06-01 1988-06-01 Synchronous machine excitation controller

Publications (2)

Publication Number Publication Date
JPH01308198A true JPH01308198A (en) 1989-12-12
JPH0638718B2 JPH0638718B2 (en) 1994-05-18

Family

ID=15146380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63135208A Expired - Lifetime JPH0638718B2 (en) 1988-06-01 1988-06-01 Synchronous machine excitation controller

Country Status (1)

Country Link
JP (1) JPH0638718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676093A (en) * 2021-07-19 2021-11-19 中国长江电力股份有限公司 Generator excitation method based on open-loop control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114599A (en) * 1986-10-30 1988-05-19 Hitachi Ltd Variable speed power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676093A (en) * 2021-07-19 2021-11-19 中国长江电力股份有限公司 Generator excitation method based on open-loop control
CN113676093B (en) * 2021-07-19 2023-08-18 中国长江电力股份有限公司 Open-loop control-based generator excitation starting method

Also Published As

Publication number Publication date
JPH0638718B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US4982147A (en) Power factor motor control system
JP5307333B2 (en) Wind power facility operation method
KR940009966B1 (en) Control system for variable speed generator apparatus
US4967129A (en) Power system stabilizer
US3477014A (en) Electrical control systems with stabilizing control means
JPH01308198A (en) Excitation controller for synchronous machine
JP2001190093A (en) Control device of print magnet type synchronous motor
JPH0697880B2 (en) Excitation control device for synchronous machine
JP2535210B2 (en) Synchronous generator automatic voltage regulator
CN111201703B (en) Method for operating multiple motors
SU1534743A1 (en) Method of control of synchronous machine excitation current
JP2010119248A (en) Power generating system
JP2005261070A (en) Distributed power supply control device
JP3495140B2 (en) Voltage control device for wound induction machine
JPS63114599A (en) Variable speed power generator
Pradhan et al. Enhancement of stability of SMIB using ZN-PID and LQR-PSS as affected by excitation control
Arnaltes et al. Grid-Forming Control of Doubly Fed Induction Generators
SU1112520A1 (en) Electric drive
JPH0454832A (en) Rotary system linkage unit
JPH03261400A (en) Controller of generator
JPH09285194A (en) Pumped storage power generating system
JPS622899A (en) Hunting and stepout preventing method for synchronous machine
JPH05300800A (en) Excitation controller
JPH09121598A (en) Exciting device for synchronous generator
JPH04275087A (en) Ac excited synchronous machine