JPH05300800A - Excitation controller - Google Patents

Excitation controller

Info

Publication number
JPH05300800A
JPH05300800A JP4104147A JP10414792A JPH05300800A JP H05300800 A JPH05300800 A JP H05300800A JP 4104147 A JP4104147 A JP 4104147A JP 10414792 A JP10414792 A JP 10414792A JP H05300800 A JPH05300800 A JP H05300800A
Authority
JP
Japan
Prior art keywords
signal
voltage
synchronous machine
speed
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4104147A
Other languages
Japanese (ja)
Inventor
Hitoshi Murakami
均 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4104147A priority Critical patent/JPH05300800A/en
Publication of JPH05300800A publication Critical patent/JPH05300800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prove a stable excitation control irrespective of a rotating speed change of a synchronous machine by providing a speed detector for detecting a variation in the speed of the machine, and providing means for so varying a control function of an automatic voltage regulator in response to an output of the detector as to stabilize an excitation control system. CONSTITUTION:A difference between a voltage detection signal D of a voltage detector 6 which inputs a terminal voltage of a synchronous machine 1 through a transformer 7 for an instrument and a voltage set signal R by a voltage setter 9 is obtained by a comparator 8, and its error signal E is input to a voltage controller 12. A rotating speed of the machine 1 is detected by a speed detector 14 based on a pulse signal SS generated from a speed detection generator 13, and input to the controller 12. The controller 12 amplifies the signal E, phase-improves to stabilize a control system to output a voltage control signal C, and continuously varies an amplifying function in response to a speed signal N. A thyristor rectifier 4 is controlled by the signal C through a phase controller 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、同期機の端子電圧を制
御するために用いる励磁制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excitation controller used for controlling the terminal voltage of a synchronous machine.

【0002】[0002]

【従来の技術】一般に、同期機には、その端子電圧を一
定に制御するための励磁制御装置が備えられる。この種
の励磁制御装置を図3を参照して説明すると、まず、同
期機1の界磁巻線1Aには、回転整流器2を介して交流
励磁機3から界磁電流が供給される。交流励磁機3の界
磁巻線3Aには、サイリスタ整流器4から界磁電流が供
給され、サイリスタ整流器4の交流電源は、同期機1の
出力から励磁用変圧器5を介して供給される。
2. Description of the Related Art Generally, a synchronous machine is provided with an excitation controller for controlling its terminal voltage to be constant. Explaining this type of excitation control device with reference to FIG. 3, first, a field current is supplied to the field winding 1A of the synchronous machine 1 from the AC exciter 3 via the rotary rectifier 2. A field current is supplied to the field winding 3A of the AC exciter 3 from the thyristor rectifier 4, and the AC power supply of the thyristor rectifier 4 is supplied from the output of the synchronous machine 1 via the excitation transformer 5.

【0003】ここで、同期機1は回転励磁形、交流励磁
機3は回転電機子形の同期機であり、同期機1の界磁巻
線1Aと回転整流器2と交流励磁機3の電機子が一体と
なって回転するブラシレス同期機(図示鎖線部分)の構
成となっている。
Here, the synchronous machine 1 is a rotary excitation type, and the AC exciter 3 is a rotary armature type synchronous machine. The field winding 1A of the synchronous machine 1, the rotary rectifier 2, and the armature of the AC exciter 3 are used. Is a structure of a brushless synchronous machine (indicated by a broken line in the figure) that rotates integrally.

【0004】一方、電圧検出部6は、同期機1の端子電
圧を計器用変成器7を介して入力し、この入力に比例し
た電圧検出信号Dを比較部8へ出力する。比較部8で
は、電圧設定部9が出力する電圧設定信号Rと電圧検出
信号Dとの差を誤差信号Eとして出力する。電圧制御部
10は、誤差信号Eを増幅すると共に、制御系を安定化
するための位相補償を行って電圧制御信号Cを出力す
る。位相制御部11は電圧制御信号Cに応じた位相のゲ
ートパルスPLをサイリスタ整流器4に出力する。
On the other hand, the voltage detector 6 inputs the terminal voltage of the synchronous machine 1 through the instrument transformer 7, and outputs a voltage detection signal D proportional to this input to the comparator 8. The comparison unit 8 outputs the difference between the voltage setting signal R output by the voltage setting unit 9 and the voltage detection signal D as an error signal E. The voltage control unit 10 amplifies the error signal E, performs phase compensation for stabilizing the control system, and outputs the voltage control signal C. The phase controller 11 outputs a gate pulse PL having a phase corresponding to the voltage control signal C to the thyristor rectifier 4.

【0005】以上の構成による励磁制御装置では、同期
機1の端子電圧が電圧検出信号Dとして検出され、電圧
設定信号Rとの差としての誤差信号Eが増幅および位相
補償されてサイリスタ整流器4のゲートパルスPLの位
相が制御されるから、同期機1の端子電圧が電圧設定信
号Rと一致するように制御される。
In the excitation control device having the above-mentioned configuration, the terminal voltage of the synchronous machine 1 is detected as the voltage detection signal D, the error signal E as a difference from the voltage setting signal R is amplified and phase compensated, and the thyristor rectifier 4 is supplied with the error signal E. Since the phase of the gate pulse PL is controlled, the terminal voltage of the synchronous machine 1 is controlled so as to match the voltage setting signal R.

【0006】また、同期機1の端子電圧に変化が起こる
ような外乱、例えば、同期機1の負荷変化や、電圧設定
部9が操作されて電圧設定信号Rの値が変化された場合
には、同期機1の端子電圧が迅速に、かつ、安定に電圧
設定信号Rと一致するように電圧制御部10の増幅と位
相補償の関数が調整されている。
Further, in the case of a disturbance such as a change in the terminal voltage of the synchronous machine 1, for example, when the load of the synchronous machine 1 is changed or the voltage setting section 9 is operated to change the value of the voltage setting signal R. The functions of amplification and phase compensation of the voltage controller 10 are adjusted so that the terminal voltage of the synchronous machine 1 quickly and stably coincides with the voltage setting signal R.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の励磁制御装置においては、同期機1の回転速
度が変化したときの動作に問題が発生する場合がある。
However, in such a conventional excitation control device, there may be a problem in the operation when the rotational speed of the synchronous machine 1 changes.

【0008】一般に、同期機1は電力系統と並列して運
転され、そのとき定格同期速度で運転されるが、特殊な
運転状態として定格の同期速度以外の回転速度で運転さ
れることがある。例えば、同期機1が電力系統と並列し
ていて負荷運転を行っているときに、電力系統の事故な
どによって負荷遮断が生じると同期機1の回転速度は一
時的に上昇する。
Generally, the synchronous machine 1 is operated in parallel with the electric power system and is operated at the rated synchronous speed at that time, but it may be operated at a rotational speed other than the rated synchronous speed as a special operating state. For example, when the synchronous machine 1 is in parallel with the electric power system and is performing load operation, if the load is cut off due to an accident in the electric power system, the rotational speed of the synchronous machine 1 temporarily increases.

【0009】また、同期機1が電力系統と並列せずに単
独の負荷系統で運転しているときにも負荷の変動や回転
速度を制御する装置の異常などの要因によって回転速度
が変化することがある。
Further, even when the synchronous machine 1 is operated in a single load system without being connected in parallel with the power system, the rotational speed may change due to factors such as load fluctuations and abnormalities in the device for controlling the rotational speed. There is.

【0010】ところで、同期機1の端子電圧は、界磁巻
線1Aに流れる界磁電流と同期機1の回転速度にそれぞ
れ比例し、同様に交流励磁機3の出力電圧は界磁巻線3
Aに流れる界磁電流と交流励磁機3の回転速度、すなわ
ち、同期機1の回転速度にそれぞれ比例する。従って、
上記のように同期機1の回転速度が変化すると、励磁制
御装置の動作に大きく影響を及ぼすことになる。
The terminal voltage of the synchronous machine 1 is proportional to the field current flowing in the field winding 1A and the rotation speed of the synchronous machine 1, respectively. Similarly, the output voltage of the AC exciter 3 is the field winding 3
It is proportional to the field current flowing in A and the rotation speed of the AC exciter 3, that is, the rotation speed of the synchronous machine 1. Therefore,
When the rotation speed of the synchronous machine 1 changes as described above, it greatly affects the operation of the excitation control device.

【0011】例えば、同期機1の回転速度が上昇すれ
ば、界磁巻線1Aに流れる界磁電流と同期機1の端子電
圧との比率が回転速度の上昇に比例して大きくなる。同
様に、交流励磁機3の界磁巻線3Aに流れる界磁電流と
交流励磁機3の出力電圧との比率が回転速度の上昇に比
例して大きくなるから、結果的に界磁巻線3Aと同期機
1の端子電圧の比率は、回転速度の上昇の2乗に比例し
て大きくなる。
For example, when the rotation speed of the synchronous machine 1 increases, the ratio of the field current flowing through the field winding 1A to the terminal voltage of the synchronous machine 1 increases in proportion to the increase in the rotation speed. Similarly, the ratio of the field current flowing in the field winding 3A of the AC exciter 3 to the output voltage of the AC exciter 3 increases in proportion to the increase in the rotation speed, and as a result, the field winding 3A. And the ratio of the terminal voltage of the synchronous machine 1 increase in proportion to the square of the increase of the rotation speed.

【0012】その結果、励磁制御系の一巡伝達関数の増
幅率が回転速度の上昇の2乗に比例して大きくなるの
で、回転速度の上昇の程度によって制御系の動作が不安
定になるという問題がある。
As a result, the amplification factor of the open loop transfer function of the excitation control system increases in proportion to the square of the increase of the rotation speed, so that the operation of the control system becomes unstable depending on the degree of increase of the rotation speed. There is.

【0013】そこで、本発明は、同期機の回転速度が変
化しても安定に同期機の端子電圧を制御することのでき
る励磁制御装置を提供することを目的とする。
Therefore, an object of the present invention is to provide an excitation control device capable of stably controlling the terminal voltage of a synchronous machine even if the rotation speed of the synchronous machine changes.

【0014】[0014]

【課題を解決するための手段】本発明は、同期機と、こ
の同期機の端子電圧を一定に制御するための自動電圧調
整部と、この自動電圧調整部の出力する制御信号に基づ
いて同期機の界磁巻線に界磁電流を供給して励磁制御系
を形成する励磁制御装置において、同期機から出力され
る端子電圧と設定端子電圧とを減算し、偏差電圧を出力
する減算手段と、同期機の回転速度を検出し、この回転
速度に応じて速度信号を出力する速度検出部と、速度信
号に応じて前記自動電圧調整部の制御関数を変化させ、
この制御関数の従い前記偏差電圧を演算処理し、前記制
御信号を出力する手段とを設けるようにしたものであ
る。
SUMMARY OF THE INVENTION The present invention is based on a synchronous machine, an automatic voltage adjusting section for controlling the terminal voltage of the synchronous machine to be constant, and a synchronous signal based on a control signal output from the automatic voltage adjusting section. In the excitation control device that supplies a field current to the field winding of the machine to form an excitation control system, a subtraction unit that subtracts a terminal voltage output from the synchronous machine and a set terminal voltage, and outputs a deviation voltage, , Detecting the rotation speed of the synchronous machine, changing the control function of the automatic voltage adjusting unit according to the speed detection unit that outputs a speed signal according to the rotation speed, and the speed signal,
A means for calculating the deviation voltage according to the control function and outputting the control signal is provided.

【0015】[0015]

【作用】上記構成により、同期機の速度信号に応じて制
御系が安定するように自動電圧調整部の制御関数が変化
する。従って、同期機の回転速度が変化し、同期機およ
び励磁機の伝達特性が変化した場合にも、励磁制御系の
一巡伝達関数が著しく変化しないから安定に同期機の端
子電圧を制御することができる。
With the above construction, the control function of the automatic voltage adjusting unit changes so that the control system becomes stable according to the speed signal of the synchronous machine. Therefore, even if the rotational speed of the synchronous machine changes and the transfer characteristics of the synchronous machine and the exciter change, the open loop transfer function of the excitation control system does not change significantly, so that the terminal voltage of the synchronous machine can be controlled stably. it can.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の一実施例を示す励磁制御
装置の構成図である。図1において、図3に示した従来
例と同一部分には、同一符号を付してその説明を省略す
る。図1が図3と異なる点は、電圧制御部10を構成の
異なる電圧制御部12とし、その上、速度検出発生器1
3と速度検出部14を追設したことである。
FIG. 1 is a block diagram of an excitation controller showing an embodiment of the present invention. In FIG. 1, the same parts as those of the conventional example shown in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted. 1 is different from FIG. 3 in that the voltage control unit 10 is a voltage control unit 12 having a different configuration, and in addition, the speed detection generator 1
3 and the speed detection unit 14 are additionally provided.

【0018】速度検出発生器13は、同期機1の回転軸
上に設けられた図示しない歯車に近接して設置され、同
期機1の回転速度と比例した周波数のパルス信号SSを
発生するものである。速度検出部14はパルス信号SS
を入力とし、同期機1の回転速度と比例した速度信号N
を出力するものである。なお、速度信号Nの信号レベル
は同期機1の回転速度が定格の同期速度のときは1.0
を出力する。
The speed detection generator 13 is installed close to a gear (not shown) provided on the rotary shaft of the synchronous machine 1, and generates a pulse signal SS having a frequency proportional to the rotational speed of the synchronous machine 1. is there. The speed detection unit 14 uses the pulse signal SS
Is input and the speed signal N proportional to the rotation speed of the synchronous machine 1
Is output. The signal level of the speed signal N is 1.0 when the rotational speed of the synchronous machine 1 is the rated synchronous speed.
Is output.

【0019】電圧制御部12は、誤差信号Eを増幅する
と共に、制御系を安定化するための位相補償を行って電
圧制御信号Cを出力すると共に、速度信号Nを入力し
て、その値に応じて上記増幅の関数を連続的に変化させ
るものである。
The voltage control unit 12 amplifies the error signal E, performs phase compensation for stabilizing the control system and outputs the voltage control signal C, and also inputs the speed signal N to obtain its value. Accordingly, the amplification function is continuously changed.

【0020】ここで、上記電圧制御部12は、図2に示
すように増幅部12aと二乗演算部12bと除算部12
cと位相補償部12dとから構成される。増幅部12a
は誤差信号Eを次の式(1)により比例増幅して信号X
を出力する。
Here, the voltage control section 12 has an amplifying section 12a, a square calculating section 12b and a dividing section 12 as shown in FIG.
c and the phase compensator 12d. Amplifier 12a
Is a signal X obtained by proportionally amplifying the error signal E by the following equation (1).
Is output.

【0021】[0021]

【数1】X=KE…………(1)[Equation 1] X = KE ………… (1)

【0022】ここで、K=比例定数Where K = proportional constant

【0023】二乗演算部12bは速度信号Nを次の式
(2)により演算した信号Yを出力する。
The squaring unit 12b outputs a signal Y obtained by computing the speed signal N by the following equation (2).

【0024】[0024]

【数2】Y=N2 …………(2)[Equation 2] Y = N 2 ………… (2)

【0025】除算部12cは、次の式(3)により信号
Xを信号Yで除算した結果を信号Zとして出力する。
The division section 12c outputs the result of dividing the signal X by the signal Y as the signal Z by the following equation (3).

【0026】[0026]

【数3】Z=X/Y=KE/N2 ……………(3)(3) Z = X / Y = KE / N 2 …………… (3)

【0027】位相補償部12dは、信号Zを位相補償し
て電圧制御信号Cを出力する。
The phase compensator 12d phase-compensates the signal Z and outputs a voltage control signal C.

【0028】上記構成で、同期機1の同期速度が速度検
出発生器13によりパルス信号SSに変換され、速度検
出部14に入力され、速度検出部14から速度信号Nが
電圧制御部12の二乗演算部12bへ入力される。この
場合に、速度信号Nは同期機1の回転速度が定格のとき
1.0が二乗演算部12bへ出力され、前記の式(1)
により二乗演算部12bからの信号Yが1.0として除
算部12cに入力される。これによって、増幅部12a
の信号Xと二乗演算部12bの信号Yとが前記の式
(3)により除算され、信号Xと信号Zとが同一の値が
位相補償部12dに入力される。従って、同期機1が定
格の同期速度で運転しているときは従来例と同一の作用
をする。
In the above structure, the synchronous speed of the synchronous machine 1 is converted into the pulse signal SS by the speed detection generator 13 and input to the speed detection unit 14, and the speed detection unit 14 outputs the speed signal N to the square of the voltage control unit 12. It is input to the calculation unit 12b. In this case, when the rotational speed of the synchronous machine 1 is rated, 1.0 is output to the squaring calculation unit 12b as the speed signal N, and the above equation (1) is used.
Thus, the signal Y from the squaring unit 12b is input to the dividing unit 12c as 1.0. As a result, the amplifier 12a
Signal X and the signal Y of the square calculation unit 12b are divided by the above equation (3), and the same values of the signal X and the signal Z are input to the phase compensation unit 12d. Therefore, when the synchronous machine 1 is operating at the rated synchronous speed, the same operation as the conventional example is performed.

【0029】次に、同期機1の回転速度が上昇したとき
は、速度検出部14の速度信号Nは1.0以上となり、
この値が二乗演算部12bに入力されて二乗される。こ
のとき同期機1の電圧も上昇して速度信号Nの二乗に比
例した信号Yが電圧制御部12の増幅部12aに入力さ
れる。除算部12cでは、前記の式(3)により増幅部
12aの信号Xを二乗演算部12bの信号Yで除算され
た信号Zが出力される。この結果、信号Zの値は、前記
した同期機1の回転速度が定格の同期速度のときと同じ
値となり位相制御部11がゲートパルスPLをサイリス
タ整流器4に出力される。
Next, when the rotation speed of the synchronous machine 1 rises, the speed signal N of the speed detecting section 14 becomes 1.0 or more,
This value is input to the square calculation unit 12b and squared. At this time, the voltage of the synchronous machine 1 also rises and the signal Y proportional to the square of the speed signal N is input to the amplification unit 12a of the voltage control unit 12. The division unit 12c outputs the signal Z obtained by dividing the signal X of the amplification unit 12a by the signal Y of the square calculation unit 12b according to the equation (3). As a result, the value of the signal Z becomes the same value as when the rotational speed of the synchronous machine 1 is the rated synchronous speed, and the phase control unit 11 outputs the gate pulse PL to the thyristor rectifier 4.

【0030】このように、同期機1の回転速度が上昇し
たとき、界磁巻線3Aと同期機1の端子電圧の比率が回
転速度の上昇の二乗に比例して大きくなるが、電圧制御
部12の増幅率が同期機1の回転速度の二乗に反比例す
るから、励磁制御系の一巡伝達関数の増幅率は同期機1
の回転速度が上昇しても変化しない。従って、制御系の
動作は同期機1の回転速度の変化の影響を受けることな
く安定な制御を継続することができる。
As described above, when the rotational speed of the synchronous machine 1 increases, the ratio of the terminal voltage of the field winding 3A to the terminal voltage of the synchronous machine 1 increases in proportion to the square of the increase in the rotational speed. Since the amplification factor of 12 is inversely proportional to the square of the rotation speed of the synchronous machine 1, the amplification factor of the open loop transfer function of the excitation control system is 1
It does not change even if the rotation speed of increases. Therefore, the operation of the control system can continue stable control without being affected by the change in the rotation speed of the synchronous machine 1.

【0031】なお、上記実施例では、電圧制御部12の
増幅率を同期機1の回転速度の二乗に反比例して連続的
に変化させているが、これに限ることなく装置の簡素化
を図るために増幅率を段階的に切替えてもよい。また、
上記実施例では、同期機1の回転速度の変化に応じて電
圧制御部12の増幅率だけを変化させているが、増幅率
だけでなく位相補償関数を変化させても同様の効果が得
られる。
In the above embodiment, the amplification factor of the voltage control unit 12 is continuously changed in inverse proportion to the square of the rotation speed of the synchronous machine 1. However, the present invention is not limited to this and simplification of the device is achieved. Therefore, the amplification factor may be switched stepwise. Also,
In the above embodiment, only the amplification factor of the voltage control unit 12 is changed according to the change of the rotation speed of the synchronous machine 1, but the same effect can be obtained by changing not only the amplification factor but also the phase compensation function. ..

【0032】上記実施例は、同期機1の回転速度の変化
による影響が大きいブラシレス励磁方式に対して本発明
を適用したものであるが、交流励磁機を持たずにサイリ
スタ整流器の出力で同期機1の界磁巻線1Aに界磁電流
を供給するサイリスタ励磁方式に対しても適用できる。
この場合、電圧制御部12の増幅率を同期機1の回転速
度に反比例させればよく、二乗演算部12bを削除する
ことで簡単に対応することができる。
In the above-mentioned embodiment, the present invention is applied to the brushless excitation system, which is greatly affected by the change in the rotation speed of the synchronous machine 1. However, the synchronous machine is not provided with an AC exciter and the output of the thyristor rectifier is used. It can also be applied to a thyristor excitation system that supplies a field current to the first field winding 1A.
In this case, it suffices if the amplification factor of the voltage control unit 12 is made inversely proportional to the rotation speed of the synchronous machine 1, and it is possible to easily cope with it by deleting the square calculation unit 12b.

【0033】また、近年多く用いられるマイクロプロセ
ッサを応用したディジタル式制御装置では、本実施例に
示した制御関数の変化は比較的容易に実現することがで
きる。このディジタル式制御装置では、サンプリングに
よる信号の検出時間遅れや演算時間遅れによって制御系
の安定化の裕度が少なくなる傾向があるが、本実施例に
よって安定化を維持する効果が得られるので、ディジタ
ル式制御装置の採用が容易となるという効果も得られ
る。
Further, in the digital type control device to which the microprocessor which is widely used in recent years is applied, the change of the control function shown in this embodiment can be realized relatively easily. In this digital control device, the stability margin of the control system tends to decrease due to the signal detection time delay and the calculation time delay due to sampling, but since the effect of maintaining the stabilization is obtained by this embodiment, It is also possible to obtain the effect of facilitating the adoption of the digital control device.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、同
期機の回転速度の変化を検出する速度検出部を設け、そ
の出力に応じて自動電圧調整器の制御関数が励磁制御系
を安定するように変化させる手段を設けたことによっ
て、同期機の回転速度が変化しても安定な励磁制御がさ
れる。
As described above, according to the present invention, the speed detecting unit for detecting the change in the rotational speed of the synchronous machine is provided, and the control function of the automatic voltage regulator stabilizes the excitation control system according to the output thereof. By providing the means for changing the rotation speed of the synchronous machine, stable excitation control is performed even if the rotation speed of the synchronous machine changes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す励磁制御装置の構成図
である。
FIG. 1 is a configuration diagram of an excitation control device showing an embodiment of the present invention.

【図2】図1の電圧制御部を示す構成図である。FIG. 2 is a configuration diagram showing a voltage control unit of FIG.

【図3】従来例を示す図1に対応する励磁制御装置の構
成図である。
FIG. 3 is a configuration diagram of an excitation control device corresponding to FIG. 1 showing a conventional example.

【符号の説明】[Explanation of symbols]

1 同期機 2 回転整流器 3 交流励磁機 4 サイリスタ整流器 6 電圧検出部 8 比較部 9 電圧設定部 11 位相制御部 12 電圧制御部 13 速度検出発生器 14 速度検出部 DESCRIPTION OF SYMBOLS 1 Synchronous machine 2 Rotary rectifier 3 AC exciter 4 Thyristor rectifier 6 Voltage detection unit 8 Comparison unit 9 Voltage setting unit 11 Phase control unit 12 Voltage control unit 13 Speed detection generator 14 Speed detection unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同期機と、この同期機の端子電圧を一定
に制御するための自動電圧調整部と、この自動電圧調整
部の出力する制御信号に基づいて同期機の界磁巻線に界
磁電流を供給して励磁制御系を形成する励磁制御装置に
おいて、 前記同期機から出力される端子電圧と設定端子電圧とを
減算し、偏差電圧を出力する減算手段と、 前記同期機の回転速度を検出し、この回転速度に応じて
速度信号を出力する速度検出部と、 前記速度信号に応じて前記自動電圧調整部の制御関数を
変化させ、この制御関数の従い前記偏差電圧を演算処理
し、前記制御信号を出力する手段を備えたことを特徴と
する励磁制御装置。
1. A synchronous machine, an automatic voltage adjusting section for controlling a terminal voltage of the synchronous machine to be constant, and a field winding of the synchronous machine based on a control signal output from the automatic voltage adjusting section. In an excitation control device that supplies a magnetic current to form an excitation control system, a subtraction unit that subtracts a terminal voltage output from the synchronous machine and a set terminal voltage, and outputs a deviation voltage, and a rotation speed of the synchronous machine. And a speed detection unit that outputs a speed signal according to the rotation speed, and a control function of the automatic voltage adjustment unit is changed according to the speed signal, and the deviation voltage is calculated according to the control function. An excitation control device comprising means for outputting the control signal.
JP4104147A 1992-04-23 1992-04-23 Excitation controller Pending JPH05300800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104147A JPH05300800A (en) 1992-04-23 1992-04-23 Excitation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104147A JPH05300800A (en) 1992-04-23 1992-04-23 Excitation controller

Publications (1)

Publication Number Publication Date
JPH05300800A true JPH05300800A (en) 1993-11-12

Family

ID=14372975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104147A Pending JPH05300800A (en) 1992-04-23 1992-04-23 Excitation controller

Country Status (1)

Country Link
JP (1) JPH05300800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781419A (en) * 2020-07-08 2020-10-16 上海马拉松·革新电气有限公司 Integrated voltage detection and signal acquisition system for medium and high voltage generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781419A (en) * 2020-07-08 2020-10-16 上海马拉松·革新电气有限公司 Integrated voltage detection and signal acquisition system for medium and high voltage generator
CN111781419B (en) * 2020-07-08 2022-10-28 上海马拉松·革新电气有限公司 Integrated voltage detection and signal acquisition system for medium and high voltage generator

Similar Documents

Publication Publication Date Title
JPH08163782A (en) Power system stabilizer
JPH11113289A (en) Controller for position control motor
JPH05300800A (en) Excitation controller
JP2001190093A (en) Control device of print magnet type synchronous motor
JPH06121570A (en) Ac motor control system
JPH08223920A (en) Method and apparatus for control of comparator, and correction method of converter ac current used for them
JPH06335279A (en) Synchronous motor current control method
JP2749728B2 (en) Excitation controller for synchronous machine
JP2535210B2 (en) Synchronous generator automatic voltage regulator
JP2690217B2 (en) Excitation controller for synchronous machine
JPH0697880B2 (en) Excitation control device for synchronous machine
JPH06225576A (en) Method and equipment for compensating slip of induction machine
JP2617428B2 (en) Automatic voltage regulator for synchronous generator
JP2010119248A (en) Power generating system
JP3494677B2 (en) Voltage type inverter device
JP3770286B2 (en) Vector control method for induction motor
JPH0345632B2 (en)
JPS622899A (en) Hunting and stepout preventing method for synchronous machine
JPS6256757B2 (en)
JP2540203B2 (en) Control system of generator excitation system
JPH061988B2 (en) Current control method for current source thyristor inverter
JPH1080199A (en) Automatic voltage regulator of synchronous generator
JPH0413954B2 (en)
JPH06315300A (en) Power system stabilizing equipment
JPS63144798A (en) Excitation controller for synchronous machine