JPH06315300A - Power system stabilizing equipment - Google Patents

Power system stabilizing equipment

Info

Publication number
JPH06315300A
JPH06315300A JP5123410A JP12341093A JPH06315300A JP H06315300 A JPH06315300 A JP H06315300A JP 5123410 A JP5123410 A JP 5123410A JP 12341093 A JP12341093 A JP 12341093A JP H06315300 A JPH06315300 A JP H06315300A
Authority
JP
Japan
Prior art keywords
synchronous machine
signal
axis current
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5123410A
Other languages
Japanese (ja)
Inventor
Ichiro Kanbara
一朗 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5123410A priority Critical patent/JPH06315300A/en
Publication of JPH06315300A publication Critical patent/JPH06315300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To improve the stability of a power system, by deriving the q-axis current of a synchronous machine from its terminal voltage and its output current, and by making the q-axis current a stablized signal. CONSTITUTION:The terminal voltage and output current of a synchronous machine 1 obtained respectively from a voltage transformer 2 and a current transformer 3 are converted by a transducer 41 for a power into the effective power, reactive power and terminal voltage of the synchronous machine 1, and these are inputted to a q-axis current transducer 42. In the q-axis current transducer 42, first, effective and reactive currents are calculated, and then, the q-axis current of the synchronous machine 1 is calculated. In a stabilizing circuit 43, the output signals of the transducer 42 are converted from their stationary values into their deviation signals, and after their delaying, leading, and gain compensations, an automatic voltage regulator 5 is controlled by their stabilized signals. Thereby, the stability of a power system is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は同期機の自動電圧調整装
置(以下、AVRと呼ぶ)に付加する電力系統安定化装
置(以下、PSSと呼ぶ)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power system stabilizer (hereinafter referred to as PSS) added to an automatic voltage regulator (hereinafter referred to as AVR) of a synchronous machine.

【0002】[0002]

【従来の技術】図3は従来の電力系統安定化装置を示し
たものである。PSSは系統に接続された同期機が系統
との間で持つ電力動揺に対して、制動力を付加すること
により安定度を向上させる機能を有し、近年の大容量長
距離送電の傾向に伴なってよく適用されるようになった
装置である。このPSSの制御信号(これを安定化信号
と呼ぶ)としては現在次の3種類が実用化されている。 (1) 同期機の回転子速度偏差信号(Δω信号と略す) (2) 電力偏差信号(ΔPと略す) (3) 周波数偏差信号(Δfと略す) 制動力は回転子の速度偏差Δω(定常値からの変化分)
に比例したトルク成分であるため、Δω信号を使う場合
はこれに比例したトルクを発生するように励磁制御をし
てやればよい。又、ΔP信号を使う場合は同期機の運動
方程式より、Δω信号との間に(1) 式に示すような等価
性が成立することを利用するものである。
2. Description of the Related Art FIG. 3 shows a conventional power system stabilizing device. The PSS has the function of improving stability by adding a braking force to the power fluctuations that the synchronous machine connected to the grid has with the grid. It is a device that has come to be applied well. The following three types of PSS control signals (which are called stabilizing signals) are currently in practical use. (1) Rotor speed deviation signal (abbreviated as Δω signal) of synchronous machine (2) Power deviation signal (abbreviated as ΔP) (3) Frequency deviation signal (abbreviated as Δf) Braking force is rotor speed deviation Δω (steady) Change from value)
Since the torque component is proportional to, when the Δω signal is used, the excitation control may be performed so as to generate a torque proportional to this. When the ΔP signal is used, the fact that the equivalence as shown in equation (1) is established between the ΔP signal and the Δω signal is used from the equation of motion of the synchronous machine.

【数1】 Δω=(ΔPm −ΔP)/(MS+D) …………(1) Δω=同期機の回転子速度偏差(PU) ΔPm =機械入出力変化(PU) ΔP=電気入出力(電力)変化(PU) M=単位慣性定数(SEC) D=固有制動トルク係数(PU) 正確にはこの関係を使って、Δωと同相成分のトルクを
発生するように制御すべきであるが、機械入出力ΔPm
の精度良い検出が困難であるところから、これを近似的
に0と考えて、電力信号のみで制御している。
[Equation 1] Δω = (ΔP m −ΔP) / (MS + D) (1) Δω = rotor speed deviation of the synchronous machine (PU) ΔP m = change of mechanical input / output (PU) ΔP = electric input / output (Power) Change (PU) M = Unit Inertia Constant (SEC) D = Inherent Braking Torque Coefficient (PU) To be precise, this relationship should be used to control to generate a torque in phase with Δω. , Mechanical input / output ΔP m
Since it is difficult to detect with a high degree of accuracy, this is considered to be approximately 0 and is controlled only by the power signal.

【0003】一般にPSSの安定化回路10にはシグナル
リセット回路11と呼ばれる不完全微分回路が設けられて
おり、何らかの方法で検出された安定化信号は先ずこの
回路を通るのが普通である。この回路の伝達関数は(2)
式で示され、
Generally, the stabilization circuit 10 of the PSS is provided with an incomplete differentiation circuit called a signal reset circuit 11, and a stabilization signal detected by some method usually first passes through this circuit. The transfer function of this circuit is (2)
Shown by the formula,

【数2】 その役割は安定化信号を定常値からの変化分の信号に変
えるもので、電力動揺の周波数成分(通常は0.5〜2
Hz)は良く通すが、それ以下のゆっくりとした周波数
成分は除くように、時定数Tsrを適当に選んでいる。シ
グナルリセット回路11を通った信号は位相補償及び利得
補償回路12を通って、最後にリミッタ回路13を通ってA
VRへの入力信号となる。
[Equation 2] Its role is to change the stabilization signal into a signal corresponding to the change from the steady value. The frequency component of power fluctuation (usually 0.5 to 2).
Hz) is passed through well, but the time constant Tsr is appropriately selected so as to exclude slow frequency components below that. The signal passed through the signal reset circuit 11 passes through the phase compensation and gain compensation circuit 12, and finally passes through the limiter circuit 13
It becomes an input signal to VR.

【0004】[0004]

【発明が解決しようとする課題】一般に広く使用されて
いる従来のΔP信号を使う方式では、機械入力の変化が
電力動揺の周波数に較べ比較的遅く、かつ小さいときは
何ら問題はないが、変化が比較的早くかつ大幅に起こる
ときはPSS出力は電力動揺と直接関係のない信号を出
し、これがAVRの出力を大きく振ることになる。その
結果、同期機の端子電圧を大幅に振り、過大な無効電力
の流出入が行なわれ、ハード上も又安定度上も好ましく
ない。機械トルクがこのように変化する場合の一例とし
ては、揚水機の揚水起動時やポンプ起動時にみられる。
従来方法でこれを防ごうとすると、シグナルリセット回
路11の時定数Tsrを小さくするか、リミッタ回路13の制
限値を低くするかの2通りしかない。しかし、いずれの
方法も本来問題とする電力動揺に対して影響を有し、そ
の制動効果を弱めてしまう。
In the method using the conventional .DELTA.P signal which is generally widely used, there is no problem when the change of the mechanical input is relatively slow and small compared with the frequency of the power fluctuation, but the change does not occur. When occurs relatively quickly and significantly, the PSS output produces a signal that is not directly related to power swings, which causes the AVR output to swing significantly. As a result, the terminal voltage of the synchronous machine is greatly changed, and excessive reactive power flows in and out, which is not preferable in terms of hardware and stability. An example of such a change in the mechanical torque is seen when the pump is started and when the pump is started.
In order to prevent this by the conventional method, there are only two methods: to reduce the time constant Tsr of the signal reset circuit 11 or to lower the limit value of the limiter circuit 13. However, any of the methods has an influence on the power fluctuation which is originally a problem, and weakens the braking effect.

【0005】一方、Δω信号を安定化信号に用いる場
合、負荷需要に伴なう機械トルク変化があっても、回転
速度は系統の周波数に対して殆んどずれることなく一定
であるため、機械トルク変化があっても同期機電圧を増
加,減少させることはないが、同期機本体に回転数を検
出する装置が必要となって、同期機本体の構造が複雑と
なり、保守性を低下させる問題があった。又、Δf信号
は同期機の端子電圧の周波数を使用するもので、同期機
の回転速度の変化に対してΔω信号と等価な動きを示す
が、負荷側の変化に対して等価な動きとならないため
に、良好な結果を期待できなかった。本発明は上記事情
に鑑みてなされたものであり、負荷需要に伴なう機械ト
ルクの変動においても、AVR出力を大きく振ることの
ない電力系統安定化装置を提供することを目的としてい
る。
On the other hand, when the Δω signal is used as the stabilization signal, the rotation speed is constant with almost no deviation from the frequency of the system even if there is a change in the mechanical torque due to load demand. Even if there is a torque change, it does not increase or decrease the voltage of the synchronous machine, but it requires a device for detecting the number of rotations in the synchronous machine body, which complicates the structure of the synchronous machine body and reduces maintainability. was there. Further, the Δf signal uses the frequency of the terminal voltage of the synchronous machine, and shows a movement equivalent to the Δω signal with respect to the change in the rotation speed of the synchronous machine, but does not have an equivalent movement with respect to the change on the load side. Therefore, good results could not be expected. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a power system stabilizing device that does not greatly fluctuate the AVR output even when the mechanical torque varies with load demand.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電力系統安定化装置は端子電圧,有効電
力,無効電力を検出する電力用トランスジューサと、そ
の出力より同期機q軸電流を出力するq軸電流トランス
ジューサと、同期機q軸電流を安定化信号とし、適切な
位相進み補償と利得補償を行なう安定化回路とから構成
した。
In order to achieve the above object, a power system stabilizing device of the present invention uses a power transducer for detecting terminal voltage, active power, and reactive power, and a synchronous machine q-axis current from its output. The q-axis current transducer that outputs the signal and a stabilizing circuit that uses the q-axis current of the synchronous machine as a stabilizing signal and performs appropriate phase lead compensation and gain compensation.

【作用】上記の構成より同期機の出力端子に接続した電
力用トランスジューサの端子電圧出力,有効電力出力,
無効電力出力を用いてq軸電流トランスジューサにより
同期機のq軸電流を算出し、そのq軸電流を安定化信号
とすることにより、電力系統の安定度を向上させること
ができる。ここで、同期機q軸電流,安定化信号の物理
的な意味について補足すると、一機対無限大系統におけ
る同期機q軸電流iq は、(3) 式となり、これを線形近
似化すると(4) 式となり、更に一定の動揺周波数をωと
すると(5) 式となる。
With the above structure, the terminal voltage output of the power transducer connected to the output terminal of the synchronous machine, the active power output,
The stability of the power system can be improved by calculating the q-axis current of the synchronous machine by the q-axis current transducer using the reactive power output and using the q-axis current as the stabilization signal. Here, supplementing the physical meanings of the synchronous machine q-axis current and the stabilization signal, the synchronous machine q-axis current i q in the one machine-to-infinity system is given by equation (3), which is linearly approximated ( Equation (4) is obtained, and equation (5) is obtained when ω is a constant oscillation frequency.

【数3】 Δiq 信号はΔω信号より90度位相が遅れた信号とな
るが、位相進み補償を大きくすることでΔωと同様の取
扱いができる。又、q軸電流トランスジューサは、電力
用トランスジューサの有効電力出力,無効電力出力,同
期機端子電圧出力より、有効電流ip と無効電流iQ
算出し、q軸同期リアクタンスXq より、(6) 式を用い
てiq を出力する。
[Equation 3] The Δi q signal is a signal whose phase is delayed by 90 degrees from the Δω signal, but can be handled in the same manner as Δω by increasing the phase lead compensation. Moreover, the q-axis current transducer, the effective power output of a power transducer, reactive power output, from the synchronous machine terminal voltage output, calculates the effective current i p and reactive current i Q, from the q-axis synchronous reactance X q, (6 ) Is used to output i q .

【数4】 ここで、上述の同期機q軸電流iq の式は図2の同期機
ベクトル図より、下式より求められる。
[Equation 4] Here, the equation of the above-mentioned synchronous machine q-axis current i q is obtained from the following equation from the synchronous machine vector diagram of FIG.

【数5】 ここで、〜:複素数を表わし、〜* は共役複素数を表わ
す。 j:複素記号 Pg :有効電力 Qg :無効電力 id :同期機d軸電流 Eq :q軸同期リアクタンス背後電圧 Xq :q軸同期リアクタンス ip :有効電流 iq :無効電流 et :同期機端子電圧
[Equation 5] Here, ~: represents a complex number, and ~ * represents a complex complex number. j: complex symbol P g: active power Q g: reactive power i d: synchronous machine d-axis current E q: q-axis synchronous reactance behind voltage X q: q-axis synchronous reactance i p: active current i q: reactive current e t : Synchronous machine terminal voltage

【0007】[0007]

【実施例】以下図面を参照して実施例を説明する。図1
は本発明による電力系統安定化装置の一実施例の構成図
である。図1において、1は同期機、2は電圧変成器
(PT)、3は電流変成器(CT)であり、前記各変成
器を介して電力系統安定化装置4に電気量を取り込む構
成を有している。5は自動電圧調整装置(AVR)でサ
イリスタ6のゲートに接続され、前記サイリスタは励磁
用変圧器7を介して励磁巻線8を励磁する接続構成を有
している。なお、41は電力用トランスジューサ、42はq
軸電流トランスジューサ、43は安定化回路である。した
がって、全体的な作用を説明すると、PT2,CT3か
ら得られた同期機端子電圧と出力電流は電力用トランス
ジューサ41によって有効電力と無効電力及び同期機端子
電圧に変換され、これらはq軸電流トランスジューサ42
に入力される。q軸電流トランスジューサ42はまず有効
電力と無効電力を除算器を用いて同期機端子電圧で割る
ことにより有効電流と無効電流を算出し、次に有効電力
と有効電流と無効電流及び設定値として入力したq軸同
期リアクタンスXq を、除算器,乗算器,平方根器を用
いて(6) 式にて示す同期機q軸電流iq を算出する。安
定化回路43ではその信号を定常値からの偏差信号(Δi
q 信号)に変換し、遅れ,進み補償,利得補償をかけ
て、PSS4の出力信号としてAVR5を制御する。A
VR5は同期機端子電圧とPSS4の出力信号に基づい
て、励磁用変圧器7を電源とするサイリスタ整流器6を
制御し、同期機1の励磁巻線8に流れる電流を制御して
いる。
Embodiments will be described below with reference to the drawings. Figure 1
FIG. 1 is a configuration diagram of an embodiment of a power system stabilizing device according to the present invention. In FIG. 1, 1 is a synchronous machine, 2 is a voltage transformer (PT), 3 is a current transformer (CT), and has a configuration in which an electric quantity is taken into the power system stabilizing device 4 via each of the transformers. is doing. An automatic voltage regulator (AVR) 5 is connected to the gate of the thyristor 6, and the thyristor has a connection structure for exciting the exciting winding 8 through the exciting transformer 7. 41 is a power transducer, 42 is q
The axis current transducer 43 is a stabilizing circuit. Therefore, to explain the overall operation, the synchronous machine terminal voltage and output current obtained from PT2 and CT3 are converted into active power, reactive power and synchronous machine terminal voltage by the power transducer 41, which are q-axis current transducers. 42
Entered in. The q-axis current transducer 42 first calculates the active current and the reactive current by dividing the active power and the reactive power by the synchronous machine terminal voltage using a divider, and then inputs the active power, the active current, the reactive current and the set value. was the q-axis synchronous reactance X q, divider, multiplier, and calculates the synchronous machine q-axis current i q indicated by using the square root unit (6). In the stabilization circuit 43, the signal is a deviation signal (Δi
(q signal), and delay, lead compensation and gain compensation are applied to control AVR5 as an output signal of PSS4. A
The VR 5 controls the thyristor rectifier 6 using the exciting transformer 7 as a power source based on the synchronous machine terminal voltage and the output signal of the PSS 4 to control the current flowing through the exciting winding 8 of the synchronous machine 1.

【0008】今、何らかの原因で電力動揺が発生する
と、q軸トランスジューサ42にて検出された同期機1の
q軸電流は、回転速度の動揺と位相が90度遅れの信号
として検出される。安定化回路43はこの同期機q軸電流
信号に同期機1を含むAVR5の制御遅れと回転速度の
動揺信号に対する同期機q軸電流検出信号の位相遅れを
考慮して、位相進み補償を加え、更に適切な利得補償を
加えている。そしてAVR5を通して同期機1の界磁電
流の増減制御を行なう。前述した通り、同期機のq軸電
流信号は位相進み補償を加えることによって、回転速度
信号と等価であることから、Δω信号によるPSSと同
様な制御で電力動揺を速やかに抑制することになる。上
記実施例によれば、発電プラントに標準的に設置される
PT,CTによる電気的な入力のみで、回転数検出器を
設置せずにΔω信号と同等な制御信号であるΔiq 信号
を得ることができる。そして、Δiq 信号を制御信号に
用いることにより、負荷の需要に伴なうランプ状の機械
トルク変化に対しても、AVR出力を不要に増加,減少
させずに同期機の電力動揺を抑えることができる。な
お、本発明の同期機q軸電流の検出はディジタル計算機
を使用することによって容易に実現できるものである
が、アナログ回路でも、乗算器,除算器及び平方根器を
使用して実現できるものである。要は同期機の端子電圧
と出力電流により、Δiq 信号を検出することで実現す
るものである。
When power fluctuation occurs for some reason, the q-axis current of the synchronous machine 1 detected by the q-axis transducer 42 is detected as a signal whose phase is 90 degrees delayed from the fluctuation of the rotation speed. The stabilizing circuit 43 adds phase lead compensation to the synchronous machine q-axis current signal in consideration of the control delay of the AVR 5 including the synchronous machine 1 and the phase delay of the synchronous machine q-axis current detection signal with respect to the fluctuation signal of the rotation speed. Furthermore, appropriate gain compensation is added. Then, the increase / decrease control of the field current of the synchronous machine 1 is performed through the AVR 5. As described above, since the q-axis current signal of the synchronous machine is equivalent to the rotation speed signal by adding the phase lead compensation, the power fluctuation can be quickly suppressed by the control similar to the PSS by the Δω signal. According to the above-described embodiment, the Δi q signal, which is a control signal equivalent to the Δω signal, is obtained without installing the rotation speed detector, only by electrical input by the PT and CT that are normally installed in the power plant. be able to. Further, by using the Δi q signal as the control signal, it is possible to suppress the power fluctuation of the synchronous machine without unnecessarily increasing or decreasing the AVR output even when the ramp-shaped mechanical torque changes with the demand of the load. You can Although the detection of the q-axis current of the synchronous machine of the present invention can be easily realized by using a digital computer, it can also be realized by using a multiplier, a divider and a square root even in an analog circuit. . The point is that it is realized by detecting the Δi q signal based on the terminal voltage and output current of the synchronous machine.

【0009】[0009]

【発明の効果】以上説明したように、本発明によれば同
期機本体に回転数検出装置を付加することなしに、保守
性の良好な電気的な入力信号のみで安定化制御信号であ
るΔiq 信号を得ることができる。そして、付加の需要
に伴なうランプ状の機械トルク変化においても、同期機
の端子電圧を増加,減少させずに、同期機出力を安定に
することができる。
As described above, according to the present invention, the stabilizing control signal Δi can be obtained only by an electric input signal having good maintainability without adding a rotation speed detecting device to the main body of the synchronous machine. q signal can be obtained. Further, even when the ramp-shaped mechanical torque changes due to additional demand, the synchronous machine output can be stabilized without increasing or decreasing the terminal voltage of the synchronous machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電力系統安定化装置の一実施例の
構成図。
FIG. 1 is a configuration diagram of an embodiment of a power system stabilizing device according to the present invention.

【図2】q軸電流を計算するためのベクトル図。FIG. 2 is a vector diagram for calculating a q-axis current.

【図3】従来の安定化回路を示す図。FIG. 3 is a diagram showing a conventional stabilizing circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 安定化回路からの出力を自動電圧調整装
置に入力し、励磁調整して同期機の安定化をはかる電力
系統安定化装置において、同期機の端子電圧と出力電流
とから同期機のq軸電流を導出するq軸電流トランスジ
ューサと、前記q軸電流を入力して安定化信号とする安
定化回路とを備えたことを特徴とする電力系統安定化装
置。
1. A power system stabilizing device, wherein an output from a stabilizing circuit is input to an automatic voltage adjusting device, and excitation is adjusted to stabilize the synchronous machine. In the power system stabilizing apparatus, the synchronous machine is calculated from the terminal voltage and the output current of the synchronous machine. The q-axis current transducer for deriving the q-axis current and the stabilization circuit for inputting the q-axis current to generate a stabilization signal.
JP5123410A 1993-04-27 1993-04-27 Power system stabilizing equipment Pending JPH06315300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123410A JPH06315300A (en) 1993-04-27 1993-04-27 Power system stabilizing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123410A JPH06315300A (en) 1993-04-27 1993-04-27 Power system stabilizing equipment

Publications (1)

Publication Number Publication Date
JPH06315300A true JPH06315300A (en) 1994-11-08

Family

ID=14859873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123410A Pending JPH06315300A (en) 1993-04-27 1993-04-27 Power system stabilizing equipment

Country Status (1)

Country Link
JP (1) JPH06315300A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045513A2 (en) * 1999-04-14 2000-10-18 Mitsubishi Denki Kabushiki Kaisha Excitation controller and excitation control method for stabilizing voltage in electric power system
WO2001099268A1 (en) * 2000-06-19 2001-12-27 Mitsubishi Denki Kabushiki Kaisha Excitation control device and excitation control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045513A2 (en) * 1999-04-14 2000-10-18 Mitsubishi Denki Kabushiki Kaisha Excitation controller and excitation control method for stabilizing voltage in electric power system
EP1045513A3 (en) * 1999-04-14 2003-04-09 Mitsubishi Denki Kabushiki Kaisha Excitation controller and excitation control method for stabilizing voltage in electric power system
WO2001099268A1 (en) * 2000-06-19 2001-12-27 Mitsubishi Denki Kabushiki Kaisha Excitation control device and excitation control method
US6919712B1 (en) 2000-06-19 2005-07-19 Mitsubishi Denki Kabushiki Kaisha Excitation control device and excitation control method

Similar Documents

Publication Publication Date Title
JP3668870B2 (en) Synchronous motor drive system
US4158163A (en) Inverter circuit
US4967129A (en) Power system stabilizer
US6518722B1 (en) Control system, observer, and control method for a speed-sensorless induction motor drive
JP2846261B2 (en) Power system stabilizer
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JPH0334313B2 (en)
US6528966B2 (en) Sensorless vector control apparatus and method thereof
JP3183516B2 (en) A method for determining stator flux estimates for asynchronous machines.
Holtz Sensorless control of induction motors-performance and limitations
JP3656944B2 (en) Control method of synchronous motor
JPH06315300A (en) Power system stabilizing equipment
JP3707251B2 (en) Control device for synchronous motor
US5172041A (en) Method and device for asynchronous electric motor control by magnetic flux regulation
JPH08223920A (en) Method and apparatus for control of comparator, and correction method of converter ac current used for them
JP2835645B2 (en) Power fluctuation suppression control method and device
CN116134723A (en) Motor core loss calculation device and motor control device having the same
JP3463158B2 (en) Exciter for synchronous machine
JPH0697880B2 (en) Excitation control device for synchronous machine
JPH1080198A (en) Generator excitation control equipment
JP4005510B2 (en) Synchronous motor drive system
JPH04322191A (en) Controller for synchronous motor
JPH0344509B2 (en)
JPH0570394B2 (en)
JPH0345632B2 (en)