JPH0348734B2 - - Google Patents

Info

Publication number
JPH0348734B2
JPH0348734B2 JP58102321A JP10232183A JPH0348734B2 JP H0348734 B2 JPH0348734 B2 JP H0348734B2 JP 58102321 A JP58102321 A JP 58102321A JP 10232183 A JP10232183 A JP 10232183A JP H0348734 B2 JPH0348734 B2 JP H0348734B2
Authority
JP
Japan
Prior art keywords
phase correction
amplification
synchronous generator
power
stabilizing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58102321A
Other languages
Japanese (ja)
Other versions
JPS59230428A (en
Inventor
Tetsuyuki Mitani
Hiroshi Sugimoto
Kunio Matsushita
Tatsumi Maeda
Masaru Shimomura
Seiichi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58102321A priority Critical patent/JPS59230428A/en
Publication of JPS59230428A publication Critical patent/JPS59230428A/en
Publication of JPH0348734B2 publication Critical patent/JPH0348734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 この発明は、電力系統の安定度向上に寄与する
系統安定化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system stabilizing device that contributes to improving the stability of a power system.

従来この種の系統安定化装置として、同期発電
機から自端情報として有効電力を検出する方式
(通常ΔP方式と呼ばれる)、同期機の端子電圧よ
り周波数を検出する方式(通常ΔF方式と呼ばれ
る)、及び同期機の回転速度を検出する方式(通
常Δω方式と呼ばれる)とがあるが、ここでは一
例としてΔP方式を例にして説明する。
Conventionally, this type of system stabilization device uses a method to detect active power as self-end information from a synchronous generator (usually called the ΔP method), and a method to detect frequency from the terminal voltage of the synchronous generator (usually called the ΔF method). , and a method for detecting the rotational speed of a synchronous machine (usually called the Δω method).Here, the ΔP method will be explained as an example.

第1図は従来の系統安定化装置の構成図を示
す。第1図において、1は有効電力変換器、2は
系統安定化装置の位相補正要素、3は系統安定化
装置の増幅要素、4は自動電圧調整装置(以下
AVRと呼ぶ)、5は同期発電機、6は界磁しや断
器、7は変流器(以下CTと呼ぶ)及び8は変圧
器(以下PTと呼ぶ)を示している。
FIG. 1 shows a configuration diagram of a conventional system stabilizing device. In Fig. 1, 1 is an active power converter, 2 is a phase correction element of a grid stabilization device, 3 is an amplification element of a grid stabilization device, and 4 is an automatic voltage regulator (hereinafter referred to as
5 is a synchronous generator, 6 is a field switch, 7 is a current transformer (hereinafter referred to as CT), and 8 is a transformer (hereinafter referred to as PT).

次に従来の系統安定化装置の動作について説明
する。系統に配設したCT7及びPT8を経て有効
電力変換器1によつて検出された同期発電機5か
らの有効電力を、位相補正要素2及び増幅要素3
を通してAVR4に供給する。ここで位相補正要
素2及び増幅要素3は、通常下記の式(1)のような
伝達関数G(s)で表わされる。すなわち、 G(s)=TRS/1+TRS・1+TLD1S/1+TLG1S ・1/1+TLG2SK …(1) 但し、ここでK…増幅率(ゲイン定数) TR…第1時定数 TLD1…第2時定数 TLG1…第3時定数 TLG2…第4時定数 この伝達函数G(S)の右項の各時定数により
第1、第2及び第3位相補正値が決定され、全位
相補正値及び増幅率が適当な値であれば有効電力
の変動に対して位相補正要素2、増幅要素3の出
力信号が自動電圧調整装置4を通して同期発電機
5の励磁量を変化させることによつて電力系統の
安定化を計ることが可能である。
Next, the operation of the conventional system stabilizing device will be explained. The active power from the synchronous generator 5 detected by the active power converter 1 via the CT 7 and PT 8 arranged in the grid is transferred to the phase correction element 2 and the amplification element 3.
Supplied to AVR4 through. Here, the phase correction element 2 and the amplification element 3 are usually expressed by a transfer function G(s) as shown in equation (1) below. That is, G(s)= TR S/1+ TR S・1+T LD1 S/1+T LG1 S・1/1+T LG2 SK...(1) However, here, K...amplification factor (gain constant) T R ...first time Constant T LD1 ...Second time constant T LG1 ...Third time constant T LG2 ...Fourth time constant The first, second, and third phase correction values are determined by the time constants on the right side of this transfer function G(S). If the total phase correction value and amplification factor are appropriate values, the output signals of the phase correction element 2 and amplification element 3 will change the excitation amount of the synchronous generator 5 through the automatic voltage regulator 4 in response to fluctuations in active power. By doing so, it is possible to stabilize the power system.

従来の系統安定化装置は、位相補正要素2及び
増幅要素3よりなる単一の調節回路により位相補
正値及び増幅率などの設定定数を決定している。
このため、送電線に設けたしや断器又は断路器の
開閉に伴い系統構成条件が変化した場合には、そ
れ等の制御定数は最適なものでなくなることとな
る。その結果、系統に対しては充分な安定度を与
えることができず、系統構成条件の変更に応じて
制御定数が変化されるべきであるにも拘わらず、
これを行い得ないという欠点を有していた。
In the conventional system stabilizing device, a single adjustment circuit including a phase correction element 2 and an amplification element 3 determines setting constants such as a phase correction value and an amplification factor.
For this reason, if the system configuration conditions change due to the opening and closing of a disconnector or disconnector provided on a power transmission line, the control constants thereof will no longer be optimal. As a result, it is not possible to provide sufficient stability to the system, and even though the control constants should be changed according to changes in the system configuration conditions,
It had the disadvantage of not being able to do this.

本発明は、上記のような従来のものの欠点を除
去するためになされたもので、系統構成条件の変
化に応じて常に最適な機能を発揮できる系統安定
化装置を提供することを目的とするものである。
The present invention was made in order to eliminate the drawbacks of the conventional devices as described above, and an object of the present invention is to provide a system stabilizing device that can always perform optimal functions in response to changes in system configuration conditions. It is.

以下、この発明の一実施例について説明する。
第2図は、第3図の本発明の一実施例の系統安定
化装置を適用する一般的な電力系統の系統構成図
を示す。第2図において、5は同期発電機、11
〜14は送電線、15〜18は母線、19a〜1
9dは送電線のしや断器にして、各送電線の両端
部に設けられているが図示例は1つにまとめて画
いている。
An embodiment of the present invention will be described below.
FIG. 2 shows a system configuration diagram of a general power system to which the system stabilizing device of the embodiment of the present invention shown in FIG. 3 is applied. In Figure 2, 5 is a synchronous generator, 11
~14 are power transmission lines, 15~18 are busbars, 19a~1
Reference numeral 9d indicates a power transmission line disconnector, which is provided at both ends of each power transmission line, but is shown as one in the illustrated example.

第3図は、本発明の一実施例による系統安定化
装置の構成図を示す。第3図において、2,3は
それぞれ第1の位相補正要素、第1の増幅要素、
また2′,3′はそれぞれ第9の位相補正要素、第
9の補正要素であり、21〜29はそれぞれ第1
〜第9の増幅要素3〜3′の出力端子に直列に接
続された接点であり、系統構成条件に伴つてそれ
ぞれ別々に閉成される。
FIG. 3 shows a configuration diagram of a system stabilizing device according to an embodiment of the present invention. In FIG. 3, 2 and 3 are a first phase correction element, a first amplification element,
Further, 2' and 3' are the ninth phase correction element and the ninth correction element, respectively, and 21 to 29 are the first phase correction element, respectively.
- These are contacts connected in series to the output terminals of the ninth amplification elements 3 to 3', and are closed separately depending on the system configuration conditions.

なお、図中では、位相補正要素、増幅要素、接
点はいずれも第1番と第9番との2つを図示した
が、実際にはそれぞれに破線を付して示したよう
に複数個すなわちこの実施例では9個存在してい
る。
In the figure, two phase correction elements, amplification elements, and contacts are shown, No. 1 and No. 9, but in reality, as shown with dashed lines, there may be more than one, i.e. In this example, there are nine.

第4図は、第2図に示す電力系統のうち4つの
送電線11〜14の正常又は異常に伴つて系統構
成条件の変化を識別する系統識別ロジツク回路の
回路構成図である。I11〜I14はいずれも送電線1
1〜14のそれぞれの正常・異常の各状態信号の
入力信号端子である。またL1〜L9はアンド回路
を構成しているロジツク素子である。O1〜O9
系統識別ロジツク回路の出力信号端子であり、各
出力信号は接点21〜29を選択して閉成させ
る。
FIG. 4 is a circuit configuration diagram of a system identification logic circuit that identifies changes in system configuration conditions as the four power transmission lines 11 to 14 in the power system shown in FIG. 2 are normal or abnormal. I 11 to I 14 are all power transmission lines 1
It is an input signal terminal for each normal/abnormal state signal of 1 to 14. Further, L 1 to L 9 are logic elements constituting an AND circuit. O1 to O9 are output signal terminals of the system identification logic circuit, and each output signal selects and closes contacts 21 to 29.

次に第3図実施例の動作を第2図及び第4図と
ともに説明する。
Next, the operation of the embodiment shown in FIG. 3 will be explained with reference to FIGS. 2 and 4.

今、第2図に示す電力系統について本実施例の
系統安定化装置を適用した場合の動作を考えるこ
とにする。第2図に示した系統構成図に於いて
は、送電線11〜14のそれぞれの正常・異常の
各状態は、それぞれの送電線に設けた断路器又は
しや断器の開閉状態信号より検出することは容易
であり、この信号を第4図に示す系統識別ロジツ
ク回路の入力信号端子I11〜I14に入力することに
より、この系統識別ロジツク回路によつて9通り
の系統構成条件が識別され、それぞれの識別信号
が出力端子O1〜O9から出力される。
Let us now consider the operation when the system stabilizing device of this embodiment is applied to the power system shown in FIG. In the system configuration diagram shown in Figure 2, the normal and abnormal states of each of the transmission lines 11 to 14 are detected from the open/close status signals of the disconnectors or breakers installed on each transmission line. By inputting this signal to the input signal terminals I 11 to I 14 of the system identification logic circuit shown in Fig. 4, nine system configuration conditions can be identified by this system identification logic circuit. and respective identification signals are output from output terminals O1 to O9 .

したがつて、第4図に示す系統識別ロジツク回
路から求まる各系統構成条件は予じめ定められる
ものであるから、これに対応し第1から第9まで
の各位相補正要素2、増幅要素3のそれぞれの位
相補正値並びに増幅率等の制御定数値を予じめ選
定しておけば、上記系統識別ロジツク回路からの
識別信号により、系統構成条件に対応する制御定
数の位相補正要素及び増幅要素を選択することが
でき、常に最適な系統化が達成し得ることにな
る。
Therefore, since each system configuration condition determined from the system identification logic circuit shown in FIG. 4 is determined in advance, each of the first to ninth phase correction elements 2 and amplification elements 3 is If the respective phase correction values and control constant values such as amplification factors are selected in advance, the phase correction element and amplification element of the control constant corresponding to the system configuration conditions are determined by the identification signal from the system identification logic circuit. can be selected, and the optimal systemization can always be achieved.

なお上記実施例では、系統安定化装置のハード
ウエアを接点等を揚げて説明したが、これらは全
てデジタル装置で置換えることも容易であり、ま
たアナログ回路及びリレー回路の組合せもしくは
デジタル回路及びアナログ回路の併用でも上記実
施例と同様の効果を奏することは、当業者にも自
明である。
In the above embodiment, the hardware of the system stabilization device was explained by referring to contacts, etc., but all of these can easily be replaced with digital devices, or a combination of analog circuits and relay circuits, or a combination of analog circuits and relay circuits, or digital circuits and analog It is obvious to those skilled in the art that the same effects as in the above embodiment can be achieved by using a combination of circuits.

また本実施例の動作の説明にあたり、第2図に
示す電力系統を例に開示したが、系統構成は第2
図に限らず、いかなる構成であつても良く、それ
に応じて第4図の系統識別ロジツク回路を設計変
更すればよいことは明白である。
In addition, in explaining the operation of this embodiment, the power system shown in Fig. 2 was disclosed as an example, but the system configuration is as follows.
It is obvious that the system identification logic circuit shown in FIG. 4 can be designed in any configuration other than that shown in the figure, and may be modified accordingly.

以上のように本発明による系統安定化装置で
は、同期発電機が連系される系統の系統構成条件
のそれぞれに対応して設けた相異なる制御定数を
有する複数の位相補正要素及び増幅要素と、前記
系統に設けられたしや断器又は断路器の開閉情報
を論理して電力系統状態を識別し、この識別され
た電力系統状態に最適な制御定数を有する位相補
正要素及び増幅要素を選択する系統識別ロジツク
回路とを具備したので、常にその系統構成条件に
適応した最適な制御性をもつた系統安定化装置が
実現できる効果がある。
As described above, the system stabilization device according to the present invention includes a plurality of phase correction elements and amplification elements each having different control constants provided corresponding to each of the system configuration conditions of the system to which the synchronous generator is interconnected; The power system state is identified by logically using the switching information of the breakers or disconnectors installed in the power system, and the phase correction element and amplification element having the optimum control constant for the identified power system state are selected. Since the present invention is equipped with a system identification logic circuit, it is possible to realize a system stabilizing device that always has optimal controllability adapted to the system configuration conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の系統安定化装置の構成図、第2
図は本発明の一実施例の系統安定化装置を適用し
て電力系統例の系統構成図、第3図は本発明の一
実施例による系統安定化装置の構成図、第4図は
第2図系統から系統構成条件を識別する系統識別
ロジツク図である。 1……有効電力変換器、2,2′……位相補正
要素、3,3′……増幅要素、4……AVR、5…
…同期発電機、6……しや断器、7……CT、8
……PT、11〜12……送電線、15〜18…
…母線、21〜29……接点、I11〜I14……入力
信号端子、L1〜L9,O1〜O9……出力信号端子。 なお、図中、同一符号は同一又は相当部分を示
す。
Figure 1 is a configuration diagram of a conventional grid stabilizing device, Figure 2
The figure is a system configuration diagram of an example of a power system to which a system stabilization device according to an embodiment of the present invention is applied, FIG. 3 is a configuration diagram of a system stabilization device according to an embodiment of the present invention, and FIG. FIG. 4 is a system identification logic diagram for identifying system configuration conditions from the diagram system; 1... Active power converter, 2, 2'... Phase correction element, 3, 3'... Amplification element, 4... AVR, 5...
...Synchronous generator, 6...Shiya breaker, 7...CT, 8
...PT, 11-12...Power line, 15-18...
...Bus bar, 21-29...Contact, I11 - I14 ...Input signal terminal, L1 - L9 , O1 - O9 ...Output signal terminal. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 同期発電機からの有効電力、周波数又は回転
速度等の状態出力信号を入力する位相補正要素
と、この位相補正要素の出力信号を増幅要素を介
して入力し上記同期発電機の励磁量を制御する自
動電圧調整装置とを有する系統安定化装置におい
て、上記同期発電機が連系される系統の系統構成
条件のそれぞれに対応して設けた相異なる制御定
数を有する複数の位相補正要素及び増幅要素と、
前記系統に設けられたしや断器又は断路器の開閉
情報を論理して電力系統状態を識別し、この識別
された電力系統状態に最適な制御定数を有する位
相補正要素及び増幅要素を選択する系統識別ロジ
ツク回路とを具備したことを特徴とする系統安定
化装置。
1. A phase correction element that inputs status output signals such as active power, frequency, or rotational speed from the synchronous generator, and an output signal of this phase correction element that is input via an amplification element to control the amount of excitation of the synchronous generator. In a system stabilizing device having an automatic voltage regulator, a plurality of phase correction elements and amplification elements having different control constants are provided corresponding to respective system configuration conditions of a system to which the synchronous generator is interconnected. and,
The power system state is identified by logically using the switching information of the breakers or disconnectors installed in the power system, and the phase correction element and amplification element having the optimum control constant for the identified power system state are selected. A system stabilizing device characterized by comprising a system identification logic circuit.
JP58102321A 1983-06-08 1983-06-08 System stabilizer Granted JPS59230428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102321A JPS59230428A (en) 1983-06-08 1983-06-08 System stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102321A JPS59230428A (en) 1983-06-08 1983-06-08 System stabilizer

Publications (2)

Publication Number Publication Date
JPS59230428A JPS59230428A (en) 1984-12-25
JPH0348734B2 true JPH0348734B2 (en) 1991-07-25

Family

ID=14324297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102321A Granted JPS59230428A (en) 1983-06-08 1983-06-08 System stabilizer

Country Status (1)

Country Link
JP (1) JPS59230428A (en)

Also Published As

Publication number Publication date
JPS59230428A (en) 1984-12-25

Similar Documents

Publication Publication Date Title
JP2786308B2 (en) Solid state trip device
BRPI0617832A2 (en) fault protection system and method of providing coordinated fault protection for a distribution line by coupling a source to a load
KR880010530A (en) Circuit breaker with style storage rated plug
US5524083A (en) Decentralized, modular tripping arrangement
US4835651A (en) Loss-of-potential supervision for a distance relay
US6671151B2 (en) Network protector relay and method of controlling a circuit breaker employing two trip characteristics
KR880010531A (en) Circuit breaker with style storage override circuit
JPH0348734B2 (en)
US20090257163A1 (en) Current gain control of circuit breaker trip unit
JPH11306897A (en) Distribution board
US2345155A (en) Automatic reclosing circuit breaker system
EP0125043B1 (en) Static type switch disconnect circuit and power distribution system including said circuit
JP3094558B2 (en) Network relay
JPS59230430A (en) System stabilizer
JPH0348735B2 (en)
US2439247A (en) Protective arrangement for translating devices
JPH0348733B2 (en)
US2234235A (en) Protection device for electrical networks
JPH08203392A (en) Device for closing and tripping circuit breaker
JPS6343284A (en) Electric carpet
Fielding Co-ordination principles and methods using fuse and relays
JPH0458715A (en) Protective relay device for system interconnection
JPS59230431A (en) System stabilizer
JPH01186114A (en) Parallel operation protective device
JPH0638362A (en) Bus protective system