JPS59230430A - System stabilizer - Google Patents
System stabilizerInfo
- Publication number
- JPS59230430A JPS59230430A JP58102323A JP10232383A JPS59230430A JP S59230430 A JPS59230430 A JP S59230430A JP 58102323 A JP58102323 A JP 58102323A JP 10232383 A JP10232383 A JP 10232383A JP S59230430 A JPS59230430 A JP S59230430A
- Authority
- JP
- Japan
- Prior art keywords
- synchronous machine
- adjustment
- phase correction
- configuration conditions
- amplification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、電力系統の安定度向上に寄与する系統安定
化装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system stabilizing device that contributes to improving the stability of a power system.
従来この種の系統安定化装置として、同期機の有効電力
を検出する方式(通常ΔF方式と呼ばれる)、同期機の
端子電圧より周波数を検出する方式(通常ΔF方式と呼
ばれる)及び同期機の速度を検出する方式(通常Δω方
式と呼ばれる)とがあるが、ここでは−例としてΔF方
式で説明する。Conventional system stabilization devices of this type include a method for detecting the active power of a synchronous machine (usually called the ΔF method), a method for detecting the frequency from the terminal voltage of the synchronous machine (usually called the ΔF method), and a method for detecting the speed of the synchronous machine. There is a method (usually called the Δω method) for detecting the ΔF method.Here, the ΔF method will be explained as an example.
第1図は従来の系統安定化装置の構成図を示す。FIG. 1 shows a configuration diagram of a conventional system stabilizing device.
第1図において、1は有効電力変換器、2は系統安定化
装置の位相補正要素、3は系統安定化装置の増幅要素、
4は自動電圧調整装置、5は同期機、6は界磁しゃ断器
、1は変流器(以下CTと呼ぶ)及び8は変圧器(以下
FTと呼ぶ)を示す。In FIG. 1, 1 is an active power converter, 2 is a phase correction element of a system stabilization device, 3 is an amplification element of a system stabilization device,
4 is an automatic voltage regulator, 5 is a synchronous machine, 6 is a field breaker, 1 is a current transformer (hereinafter referred to as CT), and 8 is a transformer (hereinafter referred to as FT).
次に動作について説明する。有効電力変換器IKよって
検出された同期機の有効電力信号を位相補正要素2及び
増幅要素3から成る調節装置を通し、その検出電力信号
を自動電圧調整装置4に供給する。一方、位相補正要素
2、増幅要素3は通常下記の式(1)のような伝達関数
G (31で表わされる。Next, the operation will be explained. The active power signal of the synchronous machine detected by the active power converter IK is passed through an adjustment device consisting of a phase correction element 2 and an amplification element 3, and the detected power signal is supplied to an automatic voltage adjustment device 4. On the other hand, the phase correction element 2 and the amplification element 3 are usually expressed by a transfer function G (31) as shown in equation (1) below.
但し、ここで K ・・・・・・・・・増幅率(ゲイン
定数)TR・・・・・・・−・扉14時定数
TLD 1・・・・・・・・・第2時定数TLGl・・
・・・・・・・第3時定数TLG2・・・・・・・・・
第4時定数この式(1)の各時定数により右辺各項の第
1.第2及び第3位相補正値が決定され、全位相補正値
及び増幅率が適当な値であれば、有効電力の変動に対し
て自動電圧調整装置4ど通して同期機5の励磁量を変化
させることによって電力系統の安定化を計ることが可能
である。However, here K......Amplification factor (gain constant) TR...- Door 14 time constant TLD 1......Second time constant TLGl・・・
......Third time constant TLG2...
Fourth time constant The first time constant of each term on the right side is determined by each time constant of this equation (1). If the second and third phase correction values are determined and the total phase correction value and amplification factor are appropriate values, the amount of excitation of the synchronous machine 5 is changed through the automatic voltage regulator 4 in response to fluctuations in active power. By doing so, it is possible to stabilize the power system.
従来のこの種の系統安定化装置にあっては、単一の系統
構成条件のもとで、位相補正要素2及び増幅要素3から
なる調節装置の各定数を一義的に決定しており、′多岐
に治る送電線網からなる系統構成条件が変化した場合に
は、その調節装置の固定的な定数では最適なものでなく
なり、このため各送電線に設けた断路器、しゃ断器など
の作動により系統に元号な安定度が確保できなくなると
いう欠点があった。In the conventional system stabilizing device of this kind, each constant of the adjustment device consisting of the phase correction element 2 and the amplification element 3 is uniquely determined under a single system configuration condition, When the system configuration conditions, which consist of a power transmission line network that can be adjusted in a wide variety of ways, change, the fixed constants of the regulating device are no longer optimal, and for this reason, the operation of disconnectors and circuit breakers installed on each power transmission line is necessary. The drawback was that it was no longer possible to ensure the stability of the system.
本発明は、上記のような従来のものの欠点を除去するた
めになされたもので、系統構成条件の変化に応じて常に
最適な機能を発揮できると共に簡略な構成で適格な系統
安定度に歿する制御性を与える系統安定化装置を提供す
ることを目的とするものである。The present invention has been made to eliminate the drawbacks of the conventional systems as described above, and is capable of always exhibiting optimal functions in response to changes in system configuration conditions, and achieves adequate system stability with a simple configuration. The purpose is to provide a system stabilizing device that provides controllability.
以下、この発明の一実施例について説明する。An embodiment of the present invention will be described below.
第2図は、一般的な電力系統の系統構成図を示す。FIG. 2 shows a system configuration diagram of a general power system.
第2図において、5は同期機、11〜14は送電線、1
5〜18は母線を示す。In Figure 2, 5 is a synchronous machine, 11 to 14 are transmission lines, 1
5 to 18 indicate bus lines.
また第3図は、本発明の一実施例による系統安定化装置
の構成図を示す。21〜24は系統構成条件によって動
作する4つの接点である。また、2〜2′は各接点21
〜24に対応する位相補正要素、3〜3′も各接点21
〜24に対応する増幅要素、それぞれ相互に定数が相異
した複数、この実施例では4つの調節回路を形成してい
る。Further, FIG. 3 shows a configuration diagram of a system stabilizing device according to an embodiment of the present invention. 21 to 24 are four contacts that operate depending on system configuration conditions. In addition, 2 to 2' are each contact 21
Phase correction elements corresponding to ~24, 3~3' are also connected to each contact 21
A plurality of amplification elements corresponding to .about.24, each having a different constant, form four adjustment circuits in this embodiment.
第4図は系統構成条件の変化により該系統に対して最も
有効な安定化用の調節回路を複数の調節回路から選択す
るブロック図を示す。第4図において、31は、送電線
11〜14の動作状態情報により、接点21〜24AS
rfれぞれの開路、閉路を選択指令する接点動作選択装
置である。FIG. 4 shows a block diagram in which the most effective stabilizing adjustment circuit for the system is selected from a plurality of adjustment circuits as the system configuration conditions change. In FIG. 4, 31 indicates contact points 21 to 24 AS based on operating state information of power transmission lines 11 to 14.
This is a contact operation selection device that selectively commands opening and closing of each rf.
また、第5図に接点動作選択装[31の具体構成図を示
す。第5図において、4oは調整抵抗、41〜44は送
WE線11〜14の動作状態情報を入れる接点、51〜
54は送電線を横杆する抵抗である。さらにまた、60
は増幅器であり、61〜64は予かじめ決定されている
系統構成条件パターンと現在の系統(h成条件とを比較
する比較器、11〜74は4つの接点21〜24をそれ
ぞれ動作させるリレーである。Further, FIG. 5 shows a specific configuration diagram of the contact operation selection device [31]. In FIG. 5, 4o is an adjustment resistor, 41 to 44 are contacts for inputting operating status information of the sending WE lines 11 to 14, and 51 to
54 is a resistor that crosses the power transmission line. Furthermore, 60
is an amplifier, 61 to 64 are comparators that compare a predetermined system configuration condition pattern with the current system (h configuration condition), and 11 to 74 are relays that operate four contacts 21 to 24, respectively. It is.
次に本実施例の動作を説明する。なお、第3図乃至第5
図に示した本実施例の系統安定化装置を、第°2図に示
すような電力系統に適用した場合の動作を例に述べるこ
とにする。第2図に示す系統格成の電力系統にあっては
、送電線11〜14のそれぞれの有意、無意に伴って最
終段の母線18にまで電力供給可能な系統構成条件の組
合せは、全部で9通り考えられることは明らかである。Next, the operation of this embodiment will be explained. In addition, Figures 3 to 5
The operation of the system stabilizing device of this embodiment shown in the figure when applied to a power system as shown in FIG. 2 will be described as an example. In the grid-structured power system shown in FIG. 2, the combinations of system configuration conditions that allow power to be supplied to the bus 18 at the final stage with each of the transmission lines 11 to 14, whether significant or insignificant, are all possible. It is clear that there are nine possibilities.
しかし同じ母線間の送電線は互にほとんど同じデータを
有しているので、MISには第2図に示す送電線11と
12並びに送電線13と14が同じであると仮定すると
、組合せは4通りに限定されることになる。However, since the transmission lines between the same busbars have almost the same data, the MIS has 4 combinations, assuming that the transmission lines 11 and 12 and the transmission lines 13 and 14 shown in Fig. 2 are the same. It will be limited to the street.
本発明はこの思想を応用したもので、まず系統安定化装
置として4種類の系統構成条件に対して最適に設定され
た位相補正要素2〜2′、増幅要素3〜3′をそれぞれ
4組だけ準備しておく。次に441J類の系統構成条件
パターンと送電#j111〜14の動作状態情報により
得られる実際パターンとを比較し、最も近い系統構成条
件パターンを選択し′C1その適合する接点を作動させ
る。これを第5図の具体構成で示した接点動作選択装置
によって説明すると、4つの接点41〜44に現実の送
電線11〜14に設けたしゃ断器(図示せず)の動作状
態情報を入れ、その実際の系統構成条件と4棟〜1の系
統構成条件パターンとを増幅器6oを介し′C比較器6
1〜64でそれぞれ比較して、最も近い該当系統パター
ンに対応するリレー11〜14のいずれかを働かせるよ
うにする。なお4oは基準電圧を与える調整抵抗で、ま
た51〜54は第2図に示した送@i11〜14の夫々
に対応1.て選定した模擬抵抗を意味する。これにより
、任意の系統4δ成条件に対して常時最適に近い系統安
定化装置が、数少ない位相補正要素2〜2′、増幅要素
3〜3′で形成される複数の調節回路の中で得ることが
できる。The present invention is an application of this idea. First, as a system stabilizing device, four sets each of phase correction elements 2 to 2' and amplification elements 3 to 3' are set optimally for four types of system configuration conditions. Be prepared. Next, the system configuration condition pattern of type 441J and the actual pattern obtained from the operation state information of power transmission #j111 to #j14 are compared, the closest system configuration condition pattern is selected, and the corresponding contact point 'C1 is activated. This can be explained using the contact operation selection device shown in the specific configuration of FIG. The actual system configuration conditions and the system configuration condition patterns of buildings 4 to 1 are sent to the 'C comparator 6 via the amplifier 6o.
1 to 64 are compared, and one of the relays 11 to 14 corresponding to the closest applicable system pattern is activated. Note that 4o is an adjustment resistor that provides a reference voltage, and 51 to 54 correspond to the transmission lines 1 to 14 shown in FIG. 2, respectively. means a simulated resistance selected by As a result, a system stabilizing device that is close to the optimum for any system 4δ configuration condition can be obtained in a plurality of adjustment circuits formed by a small number of phase correction elements 2 to 2' and amplification elements 3 to 3'. Can be done.
なお上記実施例では、系統安定化装置のハードウェアを
主に接点、オペアンプ等で説明したが、これ等は全てデ
ィジタル装置でもよく、またアナログ回路及びリレー回
路の組合せもしくはディジタル回路及びアナログ回路の
並用でも上記実施例と同様の効果を有する。In the above embodiment, the hardware of the system stabilization device was mainly explained using contacts, operational amplifiers, etc., but all of these may be digital devices, or a combination of analog circuits and relay circuits, or a combination of digital circuits and analog circuits. However, it has the same effect as the above embodiment.
以上のように本発明に係る系統安定化装置によれば、数
種類の系統安定化用のil!節回路をそれぞれ位相補正
値及び増幅率等の制御定数を変化させて設置し、かつ任
意の系統措成条件に迩した系統安定化用の調節回路を選
択する動作選択要素より構成したので、常に系統条件に
応じて最適に近い系統安定化装置が部品数の少ない回路
11す成で実現でき、しかも≦蕗拾成条件の変化に適格
に応答した調節回路で制御するので、優れた制御性をも
って系統に安定度を与えることが可能となる効果がある
。As described above, according to the system stabilizing device according to the present invention, several types of system stabilizing il! The node circuits are installed with varying control constants such as phase correction values and amplification factors, and are composed of operation selection elements that select the adjustment circuit for system stabilization that meets arbitrary system configuration conditions. A system stabilizing device that is close to the optimum according to the system conditions can be realized using a circuit 11 with a small number of parts, and moreover, it is controlled by an adjustment circuit that properly responds to changes in the power supply conditions, so it has excellent controllability. This has the effect of providing stability to the system.
第1図は従来の系統安定化装置の構成図、第2図は本発
明の一実施例を適用すべく例示的に示した電力系統の系
統構成図、第3図は本発明の一実施例による系統安定化
装置の構成図、第4図は第3図実施例の一部として働く
接点動作選択装置の概念構成ブロック図、第5図は第4
図の接点動作選択装置の具体的な構成図を示す。
1・・・有効電力変換器、2〜2′・・・位相補正要素
、3〜3′・−・増幅要素、4・・・自動電圧調整装置
、5・・・同期機、6・−・界磁しゃ断器、I・・・C
T、8−・・PT、11〜14・・・送電線、15〜1
8・・・母線、31・・・接点動作選択装置、40・・
・調整抵抗、41〜44・・・接点、51〜54・・・
模擬抵抗、60・・・増幅器、61〜64・・−比較器
、71〜74・・・リレー。
なお、図中同一符号は同−又は相当部分を示す。
代理人 大岩増雄
第 1 図
第 2 図
第 3 図
神戸市兵庫区和田崎町1丁目1
番2号三菱電機株式会社制御製
作所内
■出 願 人 三菱電機株式会社
東京都千代田区丸の内2丁目2
番3号Fig. 1 is a block diagram of a conventional system stabilizing device, Fig. 2 is a block diagram of a power system illustratively shown to apply an embodiment of the present invention, and Fig. 3 is an embodiment of the present invention. Fig. 4 is a conceptual block diagram of a contact operation selection device that works as a part of the embodiment shown in Fig. 3;
A specific configuration diagram of the contact operation selection device shown in the figure is shown. DESCRIPTION OF SYMBOLS 1... Active power converter, 2-2'... Phase correction element, 3-3'... Amplification element, 4... Automatic voltage regulator, 5... Synchronous machine, 6... Field breaker, I...C
T, 8-...PT, 11-14...Power line, 15-1
8...Bus bar, 31...Contact operation selection device, 40...
・Adjustment resistance, 41-44...Contact, 51-54...
Simulated resistance, 60...Amplifier, 61-64...-Comparator, 71-74...Relay. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent: Masuo Oiwa No. 1 Figure 2 Figure 3 Inside Mitsubishi Electric Corporation Control Works, 1-1-2 Wadazaki-cho, Hyogo-ku, Kobe City Applicant: Mitsubishi Electric Corporation 2-2 Marunouchi, Chiyoda-ku, Tokyo No. 3
Claims (1)
し入力された調節装置の出力信号に基づいて上記同期機
への励磁量を自動電圧調整装置を介して制御する系統安
定化装置において、上記調節装置は相互に位相補正値及
び増幅率を異にする複数の調節回路を有し、上記同期機
が連系される系統の系統構成条件の変化を検出して上記
調節装置から実際の上記系統構成条件に適合した上記位
相補正値及び増幅率をもつ上記調節回路を選択して上記
系統の安定度を向上させたことを特徴とする系統安定化
装置。In the system stabilization device that detects the active power, frequency, or rotational speed signal from the synchronous machine and controls the amount of excitation to the synchronous machine via an automatic voltage regulator based on the input output signal of the regulator, The adjustment device has a plurality of adjustment circuits with mutually different phase correction values and amplification factors, and detects changes in the system configuration conditions of the system to which the synchronous machine is interconnected, and the adjustment device detects changes in the system configuration conditions of the system to which the synchronous machine is interconnected, and outputs the information from the adjustment device to the actual system. A system stabilizing device characterized in that the stability of the system is improved by selecting the adjustment circuit having the phase correction value and amplification factor that match the configuration conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58102323A JPS59230430A (en) | 1983-06-08 | 1983-06-08 | System stabilizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58102323A JPS59230430A (en) | 1983-06-08 | 1983-06-08 | System stabilizer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59230430A true JPS59230430A (en) | 1984-12-25 |
Family
ID=14324343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58102323A Pending JPS59230430A (en) | 1983-06-08 | 1983-06-08 | System stabilizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59230430A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61154428A (en) * | 1984-12-26 | 1986-07-14 | 株式会社東芝 | Power system stabilizer |
-
1983
- 1983-06-08 JP JP58102323A patent/JPS59230430A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61154428A (en) * | 1984-12-26 | 1986-07-14 | 株式会社東芝 | Power system stabilizer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4112347A (en) | Conversion and control of electrical energy by electromagnetic induction | |
US5956220A (en) | Adaptive distance protection system | |
WO1986001951A1 (en) | Voltage regulator with independent peak and average voltage sensing | |
JPH0691748B2 (en) | Multiple output energy converter | |
US5654627A (en) | Method of automatically changing upper, balanced and lower voltage in electric power saving transformer and the device of the same | |
US4905117A (en) | Circuit and method for DC content protection of parallel VSCF power systems | |
EP0162425A1 (en) | Method and system for controlling an AC-DC converter system | |
US5073724A (en) | Programmable inverse time delay circuit | |
JPS59230430A (en) | System stabilizer | |
US6067218A (en) | Electronic trip device comprising at least one setting device | |
JPS589595A (en) | Operating state amount calculating device | |
JP2004201422A (en) | Excitation control device | |
US20030063422A1 (en) | Circuit breaker having analog override | |
EP0288642A2 (en) | Real load unbalance protection circuit and method | |
JPS59230431A (en) | System stabilizer | |
JPH0348734B2 (en) | ||
JP2721285B2 (en) | Control device of AC / DC converter | |
JPH0348735B2 (en) | ||
JPS6362986B2 (en) | ||
JPH0348733B2 (en) | ||
SU883882A2 (en) | Dc voltage power supply system | |
SU1023519A1 (en) | Device for automatic adjustment of bias-controlled arc-extinguishing reactor | |
SU1275624A1 (en) | Device for protection of electric network against damages | |
US919633A (en) | Distribution system. | |
JPH0530220B2 (en) |