JPS59230428A - System stabilizer - Google Patents

System stabilizer

Info

Publication number
JPS59230428A
JPS59230428A JP58102321A JP10232183A JPS59230428A JP S59230428 A JPS59230428 A JP S59230428A JP 58102321 A JP58102321 A JP 58102321A JP 10232183 A JP10232183 A JP 10232183A JP S59230428 A JPS59230428 A JP S59230428A
Authority
JP
Japan
Prior art keywords
system configuration
configuration conditions
phase correction
power
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58102321A
Other languages
Japanese (ja)
Other versions
JPH0348734B2 (en
Inventor
三谷 哲之
宏 杉本
松下 邦雄
前田 龍巳
勝 下村
誠一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Shikoku Electric Power Co Inc
Priority to JP58102321A priority Critical patent/JPS59230428A/en
Publication of JPS59230428A publication Critical patent/JPS59230428A/en
Publication of JPH0348734B2 publication Critical patent/JPH0348734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、電力系統の安定度向上に寄与する系統安定
化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system stabilizing device that contributes to improving the stability of a power system.

従来この種の系統安定化装置として、同期発′亀機の有
効電力を検出する方式(通常ΔP方式と呼ばnる)、同
期機の端子電圧エリ周波数を検出する方式(通常ΔF刀
式と呼ばれる)、及び同期機の回転速度を検出する方式
(通常lω方式と呼ばれる)とがあるが、ここでは−例
としてlP方式で説明する。第1図は、従来の系統安定
化装置の構成図を示す。第1図において、1は有効電力
変換器、211系統安定化装置の位相補正要素、3は系
統安定化装置の増幅要素、4は自動電圧調整装置(以下
AVRと呼ぶ)、5は同期&q、eは界磁しゃ断器、7
は浚流器(以下CTと呼ぶ)及び8ti変圧器(以下P
Tと呼ぶ)を示す。
Conventionally, as this type of system stabilization device, there are two methods: a method for detecting the active power of the synchronous generator (usually called the ΔP method), and a method for detecting the terminal voltage frequency of the synchronous generator (usually called the ΔF method). ), and a method for detecting the rotational speed of a synchronous machine (usually called the lω method), but here, the lP method will be explained as an example. FIG. 1 shows a configuration diagram of a conventional system stabilizing device. In FIG. 1, 1 is an active power converter, 211 is a phase correction element of the system stabilization device, 3 is an amplification element of the system stabilization device, 4 is an automatic voltage regulator (hereinafter referred to as AVR), 5 is a synchronization &q, e is a field breaker, 7
is a dredger (hereinafter referred to as CT) and an 8ti transformer (hereinafter referred to as P
(referred to as T).

仄に従来の系統安定化装置の動作について説明する。系
統に配したCT7及びPT8を経て有効“成力変換器1
に工って検出された同期光’i&a5η)らの有効電力
を1位相補正要素2及び増幅要素3を通し、その電力制
御信号を自動電圧調整装置すなわちAVR4に供給する
。ここで位相補正要素2及び増幅要素3は1通常下記の
ような式(11のような伝達関数G(S)で表わされる
。すなわち。
The operation of a conventional system stabilizing device will be briefly explained. Effective "force converter 1" is transmitted through CT7 and PT8 arranged in the system.
The effective power of the synchronized light 'i & a5η) detected in this manner is passed through a 1-phase correction element 2 and an amplification element 3, and its power control signal is supplied to an automatic voltage regulator, that is, an AVR 4. Here, the phase correction element 2 and the amplification element 3 are usually expressed by a transfer function G(S) as shown in the following equation (11).

この伝逼関数G (S)の石塊の名時定数にエリ第1゜
第2及び第3位相補正値が決定さ扛、全体41」補正値
及び増幅率が適当な値であれは、有効電力の変動に対し
て位相補正要素2.増幅要素3の出力信号が自動電圧調
整装置4を通して同期発電機5の励磁量を変化させるこ
とによって電力系統の安定化を計ることが可能である。
The first, second, and third phase correction values are determined based on the time constant of the stone block of this transfer function G (S), and if the overall correction value and amplification factor are appropriate values, they are effective. Phase correction element for power fluctuations2. The output signal of the amplification element 3 passes through the automatic voltage regulator 4 to change the amount of excitation of the synchronous generator 5, thereby making it possible to stabilize the power system.

従来の系統安定化装置は、単一の系統構成条件のもとで
1位相補正要素2及び増幅要素3のそ1ぞnの位相補正
値及び増幅率などの設定定数を決定しており、仮に系統
構成条件が俊化した場合には、そこで定めた設定定数値
自体は最適なものでなくなることとなり、その場合の糸
M、に対しては充分な安定度を与えることができず、系
統構成条件の変更に応じて設定定数が変化されるべきで
あるにも拘わらず、これを行い得ないという欠点を有し
ていた。
The conventional system stabilizing device determines the setting constants such as the phase correction value and amplification factor of each of the phase correction element 2 and the amplification element 3 under a single system configuration condition. If the system configuration conditions become more flexible, the set constant values themselves will no longer be optimal, and in that case, it will not be possible to provide sufficient stability to the thread M, and the system configuration will change. Although setting constants should be changed in response to changes in conditions, this method has the disadvantage of not being able to do this.

本発明は、上記のような従来のものの欠点を除去するた
めになさ′i″したもので、系統構成条件の変化に応じ
て常に最適な機能を発揮できる系統安定化装置を提供す
ることを目的とするものである。
The present invention has been made in order to eliminate the drawbacks of the conventional devices as described above, and an object of the present invention is to provide a system stabilizing device that can always perform optimal functions in response to changes in system configuration conditions. That is.

以下、この発明の一実施例について説明する。An embodiment of the present invention will be described below.

第2図は、第3図の 発明の一実施例の系統安定化装置
を適用しょうとする一般的な電力系統の系統構成図を示
す。第2図において、5は同期発電機、11〜14は送
電線、15〜18は母線をそfLぞれ示す。
FIG. 2 shows a system configuration diagram of a general power system to which the system stabilizing device of the embodiment of the invention shown in FIG. 3 is applied. In FIG. 2, 5 is a synchronous generator, 11 to 14 are power transmission lines, and 15 to 18 are bus bars.

第3図は1本発明の一実施例による系統安定化装置の構
成図を示す。第3図において、2,3はそれぞれ第1の
位相補正要素、第1の増幅要素。
FIG. 3 shows a configuration diagram of a system stabilizing device according to an embodiment of the present invention. In FIG. 3, 2 and 3 are a first phase correction element and a first amplification element, respectively.

また2’、3’はそれぞれ第9の位相補正要素、第9の
増幅要素であり、さらに、21〜29はそれぞれ第1〜
第9の増幅要素3〜3′の出力端子に直列に接続される
接点であり2系統構成条件に伴ってそれぞn別々に作動
する接点である。なお1図中では1位相補正要素、増幅
要素、接点はいず扛も第1番と第9番との2つを図示し
たが、実際にtまそれぞれに破線を付して示した様rc
複数個すなわちこの実施例では9個存在している。
Further, 2' and 3' are the ninth phase correction element and the ninth amplification element, respectively, and 21 to 29 are the first to the ninth amplification elements, respectively.
These are contacts that are connected in series to the output terminals of the ninth amplification elements 3 to 3', and are operated separately according to the two-system configuration conditions. In Figure 1, there are no phase correction elements, no amplification elements, and no contacts, and only two, No. 1 and No. 9, are shown, but in reality, each of them is shown with a broken line.
There are a plurality of them, that is, nine in this embodiment.

第4図は、第2図に示す電力系統のうち4つの送電線1
1〜14の正常又は異常に伴って系統構成条件の変化を
識別する系統識別ロジック回路の回路構成図である。■
□1〜1□、はいず扛も送電線11〜14のそれぞれの
正常・異常の名状態信号の入力信号端子である。’F7
tL工〜L、はいず扛もロジック素子である。0□〜0
.はロジック回路の出力信号端子であり、@出力信号は
接点21〜29を選択して作動させる。
Figure 4 shows four transmission lines 1 of the power system shown in Figure 2.
FIG. 2 is a circuit configuration diagram of a system identification logic circuit that identifies changes in system configuration conditions according to normality or abnormality of numbers 1 to 14; ■
The terminals □1 to 1□ are input signal terminals for normal/abnormal status signals of the power transmission lines 11 to 14, respectively. 'F7
Both L and L are logic elements. 0□〜0
.. is an output signal terminal of the logic circuit, and the @ output signal selects and operates the contacts 21 to 29.

仄に第31実施例の動作を第2図及び第4図とともに説
明する。
The operation of the 31st embodiment will be briefly explained with reference to FIGS. 2 and 4.

今、第2図に示す電力系統について不実施例の系統安定
化装置を適用した場合の動作を考えることにする。第2
図に示した系統構成図に於いては。
Let us now consider the operation when the system stabilizing device of the non-embodiment is applied to the power system shown in FIG. Second
In the system configuration diagram shown in the figure.

送電線11〜14のそ扛ぞ扛の正常・異常の各状態に伴
う系統構成条件の絹み合せは、先に述べた様に出力信号
0□〜0,1での9通りの条件が考えられる。これ等の
各条件を得るための送電線11〜14の各状態は、それ
ぞれの送電線に設けた断路器又はしゃ断器の開閉状態信
号より検出することは容易であり、この信号を第4図に
示す系統識別ロジック回路の入力信号端子I工1〜工□
、に人力することにエリ識別さ扛る。
As mentioned earlier, nine conditions for output signals 0□ to 0,1 can be considered to match the system configuration conditions associated with the normal and abnormal states of the transmission lines 11 to 14. It will be done. Each state of the power transmission lines 11 to 14 for obtaining each of these conditions can be easily detected from the open/close state signal of the disconnector or circuit breaker provided on each power transmission line, and this signal is shown in FIG. Input signal terminals of the system identification logic circuit shown in Figures 1 to □
, Eri is identified by human power.

したがって、第4図に示す系統識別ロジック回路刀)ら
求する各系統構成条件は予じめ定められるものであるか
ら、これに対応し第1刀)ら第9′!Fでの各位相補正
要素2.増幅要素3のそれぞnの位相補正値並びに増幅
率等の設定定数値な予じめ選定しておけばよく、これに
よっていかなる系統構成条件の変化に対しても、常に最
適な系統安定化が達成し得ることになる。
Therefore, since each system configuration condition required from the system identification logic circuit shown in FIG. Each phase correction element at F2. It is only necessary to select in advance the phase correction value for each of the amplification elements 3 and the setting constant values such as the amplification factor, thereby ensuring optimal system stabilization at all times regardless of changes in system configuration conditions. It will be achievable.

なお上記実施例では、系統安定化装置のノ・−ドウエア
な接点等を掲げて説明したが、これらは全てデジタル装
置で置換えることも容易であり、1たアナログ回路とリ
レー回路との絹合せもしくはデジタル回路とアナログ回
路との並用でも上記実施例と同様の効果を奏することは
、当業者にも自明である。また本実施例の動作の説明に
あkす。
In the above embodiment, the hardware contacts of the system stabilizing device were explained, but all of these can be easily replaced with digital devices, and the combination of analog circuits and relay circuits can be easily replaced. Alternatively, it is obvious to those skilled in the art that the same effects as in the above embodiments can be achieved by using a digital circuit and an analog circuit in parallel. Let us now also explain the operation of this embodiment.

第2図に示す電力系統を例に開示したが、系統構成は第
2図に限らず、い刀)なる構成であっても良く、それに
応じて第4図の系統識別ロジック回路を設計ffEすれ
ばよいことは明白である。
Although the power system shown in Figure 2 has been disclosed as an example, the system configuration is not limited to that shown in Figure 2, and may be any other configuration, and the system identification logic circuit shown in Figure 4 should be designed accordingly. It is clear that this is a good thing.

以上のように本発明による系統安定化装置では。As described above, in the system stabilizing device according to the present invention.

考えらi’Lる系統構成条件の種類の数だけ系統安定化
装置の中心部に当る位相補正侠素、増幅要素を設置し、
力)つ、系統情報からそnに対応した伝達関数を迅択す
るロジック回路とにエリ構成し穴ので、常にその系統構
成条件に応じた最適な制御性をもった系統安定化装置が
実現できる効果がある。
Install phase correction elements and amplification elements in the center of the system stabilization device for the number of types of system configuration conditions that can be considered,
Since the system is configured with a logic circuit that quickly selects the transfer function corresponding to the system information from the system information, it is possible to realize a system stabilization device that always has optimal controllability according to the system configuration conditions. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の系統安定化装置の構成図、第2図は本発
明の一実施例の系統安定化装置を河川した電力系統例の
系統構成図、第3図は本発明の一実施例による系統安定
化装置の構成図、第4図は第2図系統刀1ら系統構成条
件を識別する系統識別ロジック図である。 1・・・有効電力変換器、 2 、2’・・・位相補正
要素。 3.3′・・・増幅要素、4・・・AVR,5・・・同
期発電機。 6・・・しゃ断器、7・・・CT、8・・・PT、11
〜12・・・送電線、15〜18・・・・母線、21〜
29・・・接点。 11□〜”Ill  ・・・入力信号端子、L工〜L、
・・・ロジック素子、0□〜0.・・・出力信号端子。 なお1図中、同一符号は同一、又は相当部分を示す。 代理人  大 岩 増 雄 第  1  図 第2図 第3図 第1頁の続き 0発 明 者 田中誠− 神戸市兵庫区和田崎町1丁目1 番2号三菱電機株式会社制御製 作所内 ■出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2 番3号
Figure 1 is a configuration diagram of a conventional power system stabilization device, Figure 2 is a system configuration diagram of an example of a power system using a system stabilization device according to an embodiment of the present invention, and Figure 3 is an example of an embodiment of the present invention. FIG. 4 is a system identification logic diagram for identifying system configuration conditions from the system system 1 shown in FIG. 2. 1... Active power converter, 2, 2'... Phase correction element. 3.3'...Amplification element, 4...AVR, 5...Synchronous generator. 6... Breaker, 7... CT, 8... PT, 11
~12...Power line, 15~18...Bus bar, 21~
29...Contact. 11□~”Ill...Input signal terminal, L~L,
...Logic element, 0□~0. ...Output signal terminal. In addition, in FIG. 1, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa 1 Figure 2 Figure 3 Continued from page 1 0 Inventor Makoto Tanaka - Mitsubishi Electric Corporation Control Manufacturing Co., Ltd., 1-1-2 Wadazaki-cho, Hyogo-ku, Kobe ■ Application People Mitsubishi Electric Corporation 2-2-3 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】 同期発電機からの有効電力1周波数又は回転速度等の状
態出力信号を入力する調節回路の出力信号に工って自動
電圧調整装置を介して上記同期光′を機の励磁量を制御
する系統安定化装置において。 上記同期発電機が連系される系統の系統構成条件の変化
を識別する系統識別ロジック回路と、上記系統構成条件
のそれぞれに応じた位相補正値及び増幅率等の設電定数
を個別に与えるため上記系統構成条件の変化する数に応
じてそれぞれ設けられる調節回路とを備え、上記系統構
成条件に対応して上記設電定数を最適値に切換制御した
ことを特徴とする系統安定化装置。
[Claims] The synchronous light' is used to excite the machine through an automatic voltage regulator using the output signal of a regulating circuit that inputs active power from a synchronous generator, such as a frequency or a status output signal such as rotational speed. In system stabilizers that control the amount of electricity. A system identification logic circuit that identifies changes in the system configuration conditions of the system to which the synchronous generator is interconnected, and a system that individually provides set power constants such as phase correction values and amplification factors according to each of the system configuration conditions. A system stabilizing device comprising: an adjustment circuit provided in accordance with a changing number of the system configuration conditions, and controlling the set power constant to an optimum value in accordance with the system configuration conditions.
JP58102321A 1983-06-08 1983-06-08 System stabilizer Granted JPS59230428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102321A JPS59230428A (en) 1983-06-08 1983-06-08 System stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102321A JPS59230428A (en) 1983-06-08 1983-06-08 System stabilizer

Publications (2)

Publication Number Publication Date
JPS59230428A true JPS59230428A (en) 1984-12-25
JPH0348734B2 JPH0348734B2 (en) 1991-07-25

Family

ID=14324297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102321A Granted JPS59230428A (en) 1983-06-08 1983-06-08 System stabilizer

Country Status (1)

Country Link
JP (1) JPS59230428A (en)

Also Published As

Publication number Publication date
JPH0348734B2 (en) 1991-07-25

Similar Documents

Publication Publication Date Title
US4905117A (en) Circuit and method for DC content protection of parallel VSCF power systems
JPS59230428A (en) System stabilizer
JP3017765B2 (en) Excitation controller for synchronous machine
JP2603528B2 (en) AA neutral line open phase detection point extension unit
JP2555329B2 (en) Remote control device for multi-circuit switch
JPS6043760B2 (en) Excitation device of synchronous machine
SU883882A2 (en) Dc voltage power supply system
JPS59230427A (en) Excitation controller of generator
SU1001309A1 (en) Device for ensuring parallel operation of synchronous generators
JP2638178B2 (en) Parallel operation power supply control method
JPS59230430A (en) System stabilizer
JP3690226B2 (en) Thyristor control device, etc.
JP2001112169A (en) Rush-current controller
JPH01268425A (en) Current limiter
JPS60204221A (en) Power source supply system
JP2590614B2 (en) Instrument transformer
JPS59230431A (en) System stabilizer
SU1101799A1 (en) Device for checking and protecting two power units
JP2526516B2 (en) Fault monitoring method
JPH09146628A (en) Digital output device diagnostic method, digital output device and plant controller
JPH0974797A (en) Abnormality detection method of exciter for synchronous generator
JPH01319223A (en) Relay driving device
JPS58190238A (en) Parallel operating device for generators
JPH04190632A (en) System stabilizer
JPS58201519A (en) Fluctuatiln detecting relaying device for power system