JPS59228041A - Polyester filament fabric - Google Patents

Polyester filament fabric

Info

Publication number
JPS59228041A
JPS59228041A JP58099929A JP9992983A JPS59228041A JP S59228041 A JPS59228041 A JP S59228041A JP 58099929 A JP58099929 A JP 58099929A JP 9992983 A JP9992983 A JP 9992983A JP S59228041 A JPS59228041 A JP S59228041A
Authority
JP
Japan
Prior art keywords
polyester filament
fabric
fiber
yarn
reflection component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58099929A
Other languages
Japanese (ja)
Other versions
JPH0130935B2 (en
Inventor
良司 中村
佳久 段本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP58099929A priority Critical patent/JPS59228041A/en
Publication of JPS59228041A publication Critical patent/JPS59228041A/en
Publication of JPH0130935B2 publication Critical patent/JPH0130935B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発8Aは、優雅な絹様の光沢を有するボリエステルフ
ィラメント織物に関し、更に詳しくは、合繊特有のギラ
ギラした光沢を除去すると同時に絹様の上品な光沢を有
するポリエステルフィラメント織物に関する。ポリエス
テルは、その物性が絹に近い事よシ、ポリエステルフィ
ラメント糸使いのシルキー調織物の開発が進められてき
た。しかし、ポリエステルフィラメント織物は変化が少
なく平滑すぎるため、組機織物として風合、触感ともに
満足出来るものでなかったので、衣料用として用い難く
、衣料用ポリエステルフィラメント織物はポリエステル
フィラメント糸を撚糸として用いるか、仮撚加工糸等の
嵩高糸として用いて、織成されていた。しかし、最近、
異収縮混繊糸の技術とアルカリ溶液による減量加工技術
の開発によシ、よりシルキーな薄地布帛が衣料用として
開発されてきておシ、風合的には高度なレベルに達して
いる。しかし、絹の優雅な光沢は得られなかった。絹の
光沢を表現する手段として、艶消剤の含有量の少ない、
いわゆるブライト系の糸を用いていたため、ギラギラす
る光沢や触感的にぬめる、いわゆるプラスティ・ツク感
触が改良されなかった。ギラギラ光沢を消去する手段と
して艶消剤を多く含有した、いわゆるセミダル糸や、フ
ルダル糸が用いられfcが、ギラツキは消えるものの、
その光沢はくすみ、シルりの光沢とは異質になる。また
、繊維断面を五葉以上の多葉化としてギラツキを消去す
る方法も取られているが、効果が充分でない事に加え、
紡糸の操業が難しく、断面異形度の差異からストリーク
等のトラブルのもとKもなυやすい。
Detailed Description of the Invention The present invention 8A relates to a polyester filament fabric having an elegant silk-like luster, and more specifically, to a polyester filament fabric having an elegant silk-like luster while eliminating the glittering luster peculiar to synthetic fibers. Regarding textiles. Since polyester has physical properties similar to those of silk, progress has been made in the development of silky-like fabrics using polyester filament yarn. However, polyester filament woven fabrics have little change and are too smooth, so they are not satisfactory in terms of texture and feel as braided fabrics, making them difficult to use for clothing. It was used as a bulky yarn such as a false-twisted yarn to be woven. However, recently,
Thanks to the development of different shrinkage blend yarn technology and weight loss processing technology using alkaline solutions, silkier and thinner fabrics have been developed for clothing, and their texture has reached an advanced level. However, the elegant luster of silk could not be obtained. As a means of expressing the luster of silk, we use a method with a low content of matting agent.
Because so-called bright yarn was used, the glittering luster and tactile feel of the so-called plastitsuku could not be improved. So-called semi-dull yarn or full-dull yarn containing a large amount of matting agent is used as a means to eliminate the glare, but although the glare disappears,
The luster becomes dull and different from the luster of silk. In addition, a method has been taken to eliminate glare by making the fiber cross section multi-lobed with five or more lobes, but in addition to being insufficiently effective,
The spinning operation is difficult, and problems such as streaks are likely to occur due to differences in the degree of cross-sectional irregularity.

本発明者らは、上記欠点に鑑み、絹様の優雅な光沢を有
し、プラスティック様のぬめシ感を除去しfCポリエス
テルフィラメント織物について検討した結果、本発明に
至った。
In view of the above-mentioned drawbacks, the present inventors have studied fC polyester filament fabrics that have silk-like elegant luster and eliminate plastic-like sliminess, and as a result, have arrived at the present invention.

すなわち、本発明織物は、偏光法で評価される光学特性
に於て、表面反射成分Mが全反射成分(6)に対し、5
096以下であ勺、且つ、透過屈折反射成分(1)と内
部反射成分(1)の和が全反射成分(6)K対し、40
チ以上であるポリエステル系フィラメント糸を実質的に
無撚の状態で、経および/または、緯糸に用い、且つ、
眩光が全布帛表面の少なくとも55%以上占めることを
%徴とするポリエステルフィラメント織物である。
That is, in the optical properties of the fabric of the present invention evaluated by the polarization method, the surface reflection component M is 5% higher than the total reflection component (6).
096 or less, and the sum of the transmitted refraction reflection component (1) and the internal reflection component (1) is 40
A polyester filament yarn having a diameter of 1 or more is used in a substantially untwisted state for the warp and/or weft, and
This polyester filament fabric is characterized by glare occupying at least 55% of the entire fabric surface.

4Il[l ここで、偏光法て評死される光学特性について説明する
。第1図および第2図に繊維に光が照射した場合のモデ
ル図を示した。繊維100表面に入射した光は、表面反
射成分M1と透過屈折反射成分σ)2および内部反射成
分(1)3に分離され、透過屈折成分および内部繊維内
部での特定波長の吸収によシ、繊維特有の光沢を表現す
る。これらの光学特性は、偏光特性を利用し、投光角を
限定することによシ分離出来る。@3図に測定器の概要
を示した。詳細は昭和35年9月10日コロナ社発刊蓮
沼宏著の「光沢」中に記載されているが、Ingers
ollの光沢度計の変形で投φ受光器に偏光子を用いた
ものである。投光器8の中心軸X受光器9の中心軸およ
び回転テーブル4の中心は同一平面(投・受光面)内に
あシ、回転テーブル4の上面は該平面に垂直に位置し、
測定中は全要素はブラックボックス(図示せず)中にお
さめられ、外部からの光が遮断されている。また受光器
の受光電圧は増巾器(図示せず)を介し、外部レコーダ
ーに連結され、受光強度が表示される。ターンテーブル
4は、ブラックボックス外部よシ回転操作が可能で、1
測定に対し360°回転する。投光器8および受光器9
の先端には偏光子5.6が取9つけられておシ、各偏光
面は投・受光面に平行か、垂直方向に任意に設定出来る
。また、ターンテーブル4の上面は、試料7の厚みに関
係なく試料7の受光面が、一定となる工夫がなされてお
シ、投。受光器中心軸の交点に一致するようになってい
る。
4Il[l Here, the optical characteristics evaluated by the polarization method will be explained. Figures 1 and 2 show model diagrams when fibers are irradiated with light. The light incident on the surface of the fiber 100 is separated into a surface reflection component M1, a transmitted refraction reflection component σ) 2, and an internal reflection component (1) 3, and due to the transmission refraction component and absorption of a specific wavelength inside the internal fiber, Expresses the unique luster of fibers. These optical characteristics can be separated by utilizing polarization characteristics and limiting the projection angle. Figure @3 shows an overview of the measuring device. The details are described in "Glossy" written by Hiroshi Hasunuma and published by Coronasha on September 10, 1960, but Ingers
This is a modification of Oll's gloss meter using a polarizer for the φ receiver. The center axis of the emitter 8, the center axis of the receiver 9, and the center of the rotary table 4 are in the same plane (projection/light receiving surface), and the top surface of the rotary table 4 is located perpendicular to the plane.
During measurement, all elements are placed in a black box (not shown), blocking light from the outside. Further, the light receiving voltage of the light receiver is connected to an external recorder via an amplifier (not shown), and the light receiving intensity is displayed. Turntable 4 can be rotated from outside the black box, and
Rotate 360° for measurement. Emitter 8 and receiver 9
A polarizer 5.6 is attached to the tip of the light beam, and each polarization plane can be arbitrarily set to be parallel to or perpendicular to the light emitting/receiving surface. Further, the upper surface of the turntable 4 is designed so that the light-receiving surface of the sample 7 remains constant regardless of the thickness of the sample 7. It is designed to coincide with the intersection of the center axes of the photoreceiver.

試料7は艶消しの黒色厚紙に被測定試料糸が平行状態を
保ちながら約3m、m厚に巻かれている。
In sample 7, the sample yarn to be measured is wound around matte black cardboard to a thickness of approximately 3 m and m thickness while maintaining a parallel state.

以上の条件下で、投・受光面に対する投・受光器の偏光
面の関係および被測定糸軸との関係より第1表に示す6
通りの測定がなされる。
Under the above conditions, the relationship between the polarization planes of the emitter and receiver with respect to the emitter and receiver surfaces, and the relationship with the yarn axis to be measured, is shown in Table 1.
street measurements are taken.

第1表 これらは投・受光角θ1.θ、が等しく、Brewst
er の条件(tanθ=nn:被測試料糸の屈折率)
を満した時に反射光が偏光特性よシ、表面反射成分(ロ
)と透過屈折反射成分α)と内部反射成分(1)および
拡散反射成分■i)に、分離出来る事を利用し友もので
あり、各試料の屈折率(n)Kより投・受光角θ8.θ
、は適宜、変更すべきであるが、本測定の場合、θ、−
〇、=57.5° (n = 1.57の場合)に固定
する。
Table 1 These are the projection and reception angles θ1. θ, are equal and Brewst
er conditions (tanθ=nn: refractive index of sample thread to be measured)
When the above conditions are satisfied, reflected light can be separated into a surface reflection component (b), a transmitted refraction reflection component α), an internal reflection component (1), and a diffuse reflection component ■i) according to its polarization characteristics. Yes, from the refractive index (n)K of each sample, the projection/reception angle θ8. θ
, should be changed as appropriate, but in the case of this measurement, θ, −
〇, fixed at =57.5° (for n = 1.57).

これらの測定結果より、各成分は第1表に示し九受光素
子の出力電圧(受光強度)よシ、次式によシ求められる
From these measurement results, each component can be determined by the following equation based on the output voltage (received light intensity) of the nine light receiving elements shown in Table 1.

表面反射成分M = ((A−B)+(D−E))/2
透過屈折反射成分α)−((B−C)+ (E−F )
J /2内部反射成分(1) = (F−C)/2拡散
反射光成分■i) = C 全反射成分(6)−M+T+1+DI 表面反射成分曽は入射光と同質の白色光であり、該成分
が増加するとガラス表面の反射光と同じく、ギラギラし
九光沢となり、透過屈折反射成分(1)と内部反射成分
(1)が増加すると宝石様の光沢となるので、Mおよび
(T+i)の量の関係よシ光沢の質を判定することが出
来る。表面反射成分(財)は主に繊維表面の状態と繊維
の屈折率に依存し、透過屈折反射成分(1)と内部反射
成分(1)は繊維の屈折率および繊維内部の透過性(繊
維と繊維内部に存在する粒子の屈折率差に依存)および
繊維表面の形状によりほぼ決定される。表面反射成分(
財)が50%を越えるとギラギラした光沢となり、本発
明の目的を達しえず、透過屈折反射成分(1)と内部反
射成分(i)の和が全反射成分■に対し、40チより少
なくなるとくすんだ光沢となり、光沢の優雅さは消失す
る。
Surface reflection component M = ((A-B)+(D-E))/2
Transmission refraction reflection component α) - ((B-C) + (E-F)
J /2 Internal reflection component (1) = (FC) /2 Diffuse reflection light component ■i) = C Total reflection component (6) - M + T + 1 + DI The surface reflection component Z is white light of the same quality as the incident light, and When the component increases, it becomes glaring and glossy like the reflected light on the glass surface, and when the transmitted refraction reflection component (1) and internal reflection component (1) increase, it becomes jewel-like luster, so the amount of M and (T + i) The quality of the gloss can be determined based on the relationship. The surface reflection component mainly depends on the condition of the fiber surface and the refractive index of the fiber, and the transmission refraction reflection component (1) and the internal reflection component (1) depend on the refractive index of the fiber and the permeability inside the fiber (fiber and (depending on the refractive index difference of particles existing inside the fiber) and the shape of the fiber surface. Surface reflection component (
If the total reflection component (1) exceeds 50%, the object of the present invention cannot be achieved due to the glare, and the sum of the transmitted refraction and reflection component (1) and the internal reflection component (i) is less than 40% compared to the total reflection component (2). When this happens, the shine becomes dull and the elegance of the shine disappears.

測定試料は借成布帛中より糸を取り出し、織クリンプが
消失する程度の張力下で、注意深く、平行状態を保ちつ
つ艶消し愚色紙に巻く。寸た、本光学特性は、糸に撚が
入ると糸軸と繊維軸が一致しない事よシ、上記測定法で
は測定不可であるばかりか、実質的な目視判定による光
沢も消失し、くすんでしまう。
For the measurement sample, take out the threads from the borrowed fabric and carefully wrap them on matte guishoku paper while keeping the threads parallel to each other under enough tension to eliminate the weave crimp. In fact, when the yarn is twisted, the fiber axis does not match the yarn axis, and this optical property is not only impossible to measure using the above measurement method, but also loses its luster by visual inspection and becomes dull. Put it away.

この事より、本発明布帛は実質的に無撚状の糸を経およ
び/または緯糸に用い、且つ、眩光が全布帛表面の55
%以上を占める如く、用いる必要がある。ここで、実質
的に無撚とは糸1メートル当、HSOO回の撚数以下の
ものをさす。光沢にすぐれた無撚糸の全布帛表面に対す
る占める割合が55チ未満となると効果が著しくな夛、
充分な光沢効果が得られず、好ましくは70チ以上占め
る事が良い。
From this, the fabric of the present invention uses substantially non-twisted yarns for the warp and/or weft, and the glare is reduced by 55% of the entire fabric surface.
% or more. Here, "substantially no twist" refers to the number of twists equal to or less than HSOO times per meter of yarn. If the ratio of non-twisted yarn with excellent gloss to the total fabric surface is less than 55 inches, the effect will be significant.
Since a sufficient gloss effect cannot be obtained, it is preferable that the area occupies 70 inches or more.

また、本発明ポリエステルフィラメント織物を構成する
糸は、微細孔形成剤を含むポリエステル繊維糸をアルカ
リ性溶液で処理することにより、繊維表面に繊維軸方向
にたて長の微細孔を多数有し、実質的な艶消剤を含まな
いか、も[7〈は0.05 %以下含んでいるポリエス
テル系フィラメント糸であって、該微細孔は最大重の度
数分布の最大値が0 、2−(1、7μmの範囲内にあ
シ、長さ/最大重の比の平均値が3以下であり、その数
は繊維表面の100μゴ尚シ10〜30個存在し、且1
その深さは全体の60チ以上がo、1μm以下であり、
その強度は2.1/d以上であることが好ましい。ここ
でいう繊維表面の117および長さは5000倍以上の
倍率の走査型電子顕微鏡写真の100個以上の測定値か
ら求める。また、深さはアクリル樹脂で包埋した繊維を
4μ厚に切断し、酢酸イソアミルでアクリル樹脂を溶出
し之後、10000倍以上の倍率の電子顕微鏡写真によ
シ、隣接する6間に接線をひき、該接線と四部底面との
距離を測定して求める。
In addition, the yarn constituting the polyester filament fabric of the present invention has a large number of vertically long micropores in the fiber axis direction on the fiber surface by treating the polyester fiber yarn containing a micropore-forming agent with an alkaline solution. A polyester filament yarn that does not contain or contains less than 0.05% of a matting agent, and the micropores have a maximum value of 0,2-(1 , the average value of the length/maximum weight ratio is 3 or less within the range of 7 μm, and the number of reeds is 10 to 30 on the fiber surface of 100 μm, and 1
The depth is o, 1 μm or less for the entire 60 inches or more,
The strength is preferably 2.1/d or more. The fiber surface 117 and length herein are determined from 100 or more measured values of a scanning electron micrograph at a magnification of 5000 times or more. In addition, the depth was determined by cutting the fibers embedded in acrylic resin to a thickness of 4 μm, eluting the acrylic resin with isoamyl acetate, taking an electron micrograph at a magnification of 10,000 times or more, and drawing tangent lines between adjacent 6. , is determined by measuring the distance between the tangent and the bottom of the four parts.

また、実質的な艶消剤とは酸化チタンの如く高屈折率(
特に2以上)の顔料をいう。
In addition, a substantial matting agent is a material with a high refractive index (such as titanium oxide).
In particular, it refers to pigments (2 or more).

また、強度は東洋ボールドウィン社製テンシロンで、試
長200yrtm T引張速度を200mm /分で創
建した強力をその糸のデニールで除した値をいう。また
、微細孔の最大中の度数分布の最大値が0.2μm−0
,7μmの範囲に入る事が必要である。最大値が、0.
2μm未満の場合は、触感がぬめシ、また、目的とする
絹様の光沢が得られず、ギラギラした光沢忙なる。また
、最大値が0.7μmを越え石と触感に対する効果が半
減し、また、特に淡色に染色した場合、白っぽく見える
、いわゆるパステル調の光沢になる。
In addition, the strength is the value obtained by dividing the strength obtained by using Tensilon manufactured by Toyo Baldwin Co., Ltd. at a test length of 200 yrtm and a T-pulling speed of 200 mm/min by the denier of the thread. In addition, the maximum value of the frequency distribution among the maximum micropores is 0.2 μm-0
, 7 μm. The maximum value is 0.
If it is less than 2 μm, the texture will be slimy and the desired silk-like luster will not be obtained, resulting in a glittery luster. In addition, when the maximum value exceeds 0.7 μm, the effect on stone and touch is halved, and especially when dyed in a light color, it appears whitish and has a so-called pastel-like luster.

また、微細孔の深さが0.1μmを越えるものが全体の
40%を越えると光沢にくすみが生じ、絹様の輝きが消
失するので、全体の60−以上が0.1μm以下である
ことが必要でちる。
Also, if the depth of the micropores exceeds 40% of the total, the gloss will become dull and the silk-like shine will disappear, so the total depth of 60 or more should be 0.1 μm or less. is necessary.

また、その最大深さは0.4μm以下であること原糸の
強力が低下し、織物の実用性能が低下する。また、微細
孔の数が繊維表面に100μR当シ10〜30個ある事
が必要であり、10個未満になると触感効果がなくなシ
、ぬめり感が出るし、光沢的には金属調のギラツイた光
沢になシ好まI〜くない。逆にその数が30個を越える
と光沢がくすみ、絹様光沢から綿様の光沢に移行し、目
的を達し得ない。また繊維の強度が2 g/dを切ると
布帛強力が低下し、実用にたえないのでよくない。特に
シルキー織物を目的とした薄地織物の場合、特あり、0
.05%以上含む場合は、繊維中の光の透過性が低下し
、高級で優雅な光沢が得られず、0.05%以下である
ことが好ましく、よシ好ましくは全く含まない方が良い
In addition, if the maximum depth is 0.4 μm or less, the strength of the yarn decreases, and the practical performance of the fabric decreases. In addition, it is necessary that the number of micropores be 10 to 30 per 100 μR on the fiber surface; if the number is less than 10, the tactile effect will be lost, a slimy feeling will appear, and the gloss will have a metallic glare. I don't like the shine. On the other hand, if the number exceeds 30, the luster becomes dull, changing from silk-like luster to cotton-like luster, and the purpose cannot be achieved. Furthermore, if the strength of the fibers is less than 2 g/d, the strength of the fabric will decrease, making it unsuitable for practical use. Especially for thin fabrics intended for silky fabrics, special, 0
.. If it is contained in an amount of 0.05% or more, the light transmittance in the fiber is reduced and a high-class and elegant gloss cannot be obtained.

また、本発明織物に用いられる実質的無撚状の糸は、異
収縮混繊糸法等により、繊維長差を付与することが、よ
りシルキーな風合にするうえで好ましい。但し、仮撚加
工法等で得られるクリングを有する嵩高糸は、光学特性
を著しくそこなうため好ましくない。繊維長差は織物状
で一定長の印を入れた後、糸を取り出し、各フィラメン
ト糸を個々に分離しフィラメントデニール当D 0.1
gの荷重下で繊維長を測定し、最大繊維長(&)と最小
繊維長(虱)より次式より求める。
Further, it is preferable to impart fiber length differences to the substantially untwisted yarn used in the fabric of the present invention by a differential shrinkage blending yarn method or the like in order to obtain a silkier texture. However, bulky yarns with cling obtained by false twisting or the like are not preferred because they significantly impair optical properties. The difference in fiber length is determined by marking a certain length on a woven fabric, taking out the yarn, separating each filament yarn individually, and determining the filament denier D 0.1.
The fiber length is measured under a load of g, and is calculated from the following formula from the maximum fiber length (&) and the minimum fiber length (lice).

繊維長差(チ) = ((tl−4)/1l)X100
この繊維長差は0.5〜10%の筒中にある事が必要で
あp、0.5%未満であると織物嵩密度が低く、ペーパ
ーライYになる。また、繊維長差が10%を越えると織
物はばたついた風合となり、シルキー織物として不適で
ある。
Fiber length difference (chi) = ((tl-4)/1l)X100
This fiber length difference needs to be in the range of 0.5 to 10%, and if it is less than 0.5%, the bulk density of the fabric will be low and the fabric will become paper-like. Furthermore, if the fiber length difference exceeds 10%, the fabric will have a fluttering texture, making it unsuitable for use as a silky fabric.

好ましくは、1.0〜5チである事が良い。また本発明
織物を構成する糸の総デニールは、布帛の用、途を考慮
すると、30デニール〜100デニールの筒中である事
が好ましい。
Preferably, it is 1.0 to 5 inches. Further, the total denier of the threads constituting the fabric of the present invention is preferably in the range of 30 to 100 deniers in consideration of the intended use of the fabric.

でもよいが、風合、触感の点より、三葉断面糸であるこ
とが好ましい。
However, trilobal cross-section yarn is preferred from the viewpoint of texture and feel.

本発明でいうポリエステル系とはテレフタル酸またはそ
のエステル形成性誘導体をカルボン酸成分とし、エチレ
ングリコール、1,4−プタンジオールから選ばれるグ
リコールまたはそのエステル形成性誘導体をグリコール
成分とするポリエステルを対象とする。このジカルボン
酸成分の一部を、たとえば、5−スルホインフタル酸の
モノアルカリ金属塩、イソフタル酸、ジフェニルジカル
ボン酸、アジピン酸、セバシン酸、p−オキシ安息香酸
等で置きか乏、でもよく、また肖業稈周知の着色防止剤
、触媒、エーテル結合副生防止剤、抗酸化剤、可を燃剤
等を適宜使用することが出来る。以下実施例にて詳細に
説明するが、該実施例は背に本発明を限定するものでは
ない。
In the present invention, the polyester type refers to a polyester containing terephthalic acid or its ester-forming derivative as the carboxylic acid component and a glycol selected from ethylene glycol and 1,4-butanediol or its ester-forming derivative as the glycol component. do. A part of this dicarboxylic acid component may be substituted with, for example, a monoalkali metal salt of 5-sulfoiphthalic acid, isophthalic acid, diphenyldicarboxylic acid, adipic acid, sebacic acid, p-oxybenzoic acid, etc. In addition, well-known coloring inhibitors, catalysts, ether bond by-product inhibitors, antioxidants, flame retardants, and the like can be appropriately used. The present invention will be explained in detail below using Examples, but the present invention is not limited to these Examples.

実施例−1,2および比較例−1,3 ン メメチルテレフタレー)100(BLエチレ:y f 
リ:7−ル53o部、三酸化アンチモン0.33部およ
びトリエチルアミン1.0部をエステル交換缶に仕込み
、その後、エチレングリコールのカオリナイト(Eng
el ha、rd社製A S P−072、相粒子を遠
心分離で10チ除去、屈折率1.56、平均粒子径0.
3trm、1μm以上の粒子6wt%、Ti0zが不純
物としてカオリン中に1.5wt%含有)分散溶液19
8部を投入し、150℃〜210℃まで130分をがけ
て昇温しつつ、副生メタノールを留出しながらエステル
交換反応を行なった。得られた生成物を210℃の重縮
合缶に移し、80分間に内温を210℃〜275℃に昇
温しつつ系を徐々に0.1.mmHgまで減圧し、以後
275℃0、]、mHgで重縮合反応を約40分間行な
って所定組成のポリエステルを得た。該ポリエステルを
押出し型紡糸機により、紡糸孔数36のY字形スリット
孔を有する紡糸口金を用い、紡糸温度290℃、巻き取
り速度1300−7’−で常法に従って紡糸した。得ら
れた未延伸糸を常法によって延伸し、50デニール/3
6フイラメントの三葉断面延伸フィラメントを得た。か
くして得られたポリエステルフィラメント糸をたて糸よ
こ糸に用いて平織を織成し、通常の精練後、180℃で
仮セントし5.50 t/lのNaOH水溶液で90℃
の温度下で第2表に示す減量率となるような処理時間で
アルカリ減量処理後、160℃で最終セットして、仕上
り布帛とした。
Examples-1, 2 and Comparative Examples-1, 3
53 parts of Li:7-ol, 0.33 parts of antimony trioxide, and 1.0 parts of triethylamine were charged into a transesterification tank, and then ethylene glycol kaolinite (Eng.
El Ha, RD ASP-072, 10 phase particles removed by centrifugation, refractive index 1.56, average particle size 0.
3trm, 6wt% particles of 1 μm or more, 1.5wt% TiOz contained in kaolin as impurities) Dispersion solution 19
8 parts of the mixture was added, and while the temperature was raised from 150°C to 210°C over 130 minutes, the transesterification reaction was carried out while distilling by-product methanol. The obtained product was transferred to a polycondensation reactor at 210°C, and the system was gradually heated to 0.1°C while increasing the internal temperature from 210°C to 275°C over 80 minutes. The pressure was reduced to mmHg, and then a polycondensation reaction was carried out at 275° C., 0, ] mHg for about 40 minutes to obtain a polyester having a predetermined composition. The polyester was spun using an extrusion type spinning machine using a spinneret having 36 Y-shaped slit holes at a spinning temperature of 290°C and a winding speed of 1300-7'- in accordance with a conventional method. The obtained undrawn yarn was drawn by a conventional method to form a 50 denier/3
A 6-filament trilobal cross-section drawn filament was obtained. The thus obtained polyester filament yarn was used as the warp and weft to weave a plain weave, and after normal scouring, it was pre-cented at 180°C and then heated at 90°C with a 5.50 t/l NaOH aqueous solution.
After the alkali weight loss treatment was carried out at a temperature of 160°C for a treatment time such that the weight loss rate shown in Table 2 was obtained, the fabric was finally set at 160°C to obtain a finished fabric.

該織物をカーボンと金とで蒸着後、走査型の電子顕微鏡
にて500部倍の先側面の写真を撮シ、微細孔の最大中
および数を計測した。
After carbon and gold were vapor-deposited on the fabric, a photograph of the front and side surfaces was taken at 500 parts magnification using a scanning electron microscope, and the maximum size and number of micropores were measured.

また織物中の原糸を取り出し、アクリル樹脂に包埋後、
4μm厚さの数枚の小片に切断後、酢酸イソアミルにて
アクリル樹脂を溶出し、同上手法で電子顕微鏡にてio
、ooo倍の写真を得、更にその写真をプロジェクタ−
で10倍に拡大して微細孔の深さを測定した。また該織
物から抜き出した糸を東洋ボールドウィン社製テンシロ
ンにて糸強力を測定した。同時に織物の糸を抜き出し、
厚さ約1mで4cm角の黒色紙上に巾約20期、片面厚
さ約3萌になる様、注意深く、平行に糸を巻き光学特性
を測定した。また同織物を経験豊かな1G名の判定者に
よ多官能的に触感、弾発性を判定した。また、最終セッ
ト前の織物を三菱化成工業株式会社のDlanLx G
reen、 3G−Eを2%owf用いて、130℃で
45分間染色し還元洗浄後、乾燥して、160℃で最終
セットした布帛で色調を判定し7た。上記測定結果及び
判定結果を第2表に示した。
In addition, after taking out the yarn from the fabric and embedding it in acrylic resin,
After cutting into several pieces with a thickness of 4 μm, the acrylic resin was eluted with isoamyl acetate, and io was
, get an ooo times the size of the photo, and then send the photo to the projector.
The depth of the micropores was measured under 10x magnification. Further, the yarn strength of the yarn extracted from the fabric was measured using a Tensilon manufactured by Toyo Baldwin. At the same time, pull out the threads from the fabric,
The optical properties were measured by carefully winding the thread in parallel on a 4 cm square black paper with a thickness of about 1 m so that the width was about 20 mm and the thickness on one side was about 3 mm. In addition, the same fabric was evaluated in terms of touch and elasticity using a multisensory method by an experienced judge named 1G. In addition, the fabric before the final set was manufactured by Mitsubishi Chemical Corporation's DlanLx G.
The fabric was dyed using 2% OWF of 3G-E at 130°C for 45 minutes, dried, and finally set at 160°C, and the color tone was determined. The above measurement results and judgment results are shown in Table 2.

実施例−3 実施例−1と同法によシボリエステルレジンを重合後、
紡糸するに際し、未延伸糸を同量ずつ2本のボビンに分
割捲取り]〜、同未延伸糸を2本同時に供給してホット
ローラ一温度85℃、ホットプレート温度150℃下で
延伸し、うち1本はホットプレートに接触しないよう、
ガイドビンで糸道を別とした。同系を捲上げロー2−上
で合糸して1本の糸として巻取った。かくして得たフィ
ラメント糸の収縮率は23%と6%の異収縮混繊糸であ
った。この異収縮混繊糸を実施例1と同様にして織物と
なし、アルカリ減量処理後、微細孔の大きさ、光学特性
、触感を実施例1と同様にして測定、判定した。その結
果を第2表に示した。
Example-3 After polymerizing shibori ester resin by the same method as Example-1,
When spinning, the same amount of undrawn yarn is divided into two bobbins and wound up] ~, two of the same undrawn yarns are simultaneously fed and stretched at a hot roller temperature of 85°C and a hot plate temperature of 150°C, One of them should not come in contact with the hot plate.
Separate the thread path with a guide bin. Similar threads were wound up on winding row 2 and wound into a single thread. The filament yarn thus obtained had a shrinkage rate of 23% and 6%, and was a mixed fiber yarn with different shrinkage. This differentially shrinkable mixed fiber yarn was made into a woven fabric in the same manner as in Example 1, and after an alkali weight reduction treatment, the size of micropores, optical properties, and tactile sensation were measured and judged in the same manner as in Example 1. The results are shown in Table 2.

比較例−2 反応缶に投入するエチレングリコールのカオリナイト分
散液量を297部とし、エチレングリコール投入量を5
40部とした以外は実施例−1と同様にして重合して得
たポリエステルを、実施例1と同様にして紡糸、延伸、
織布、加工、アルカリ減量処理を施し、微細孔の大きさ
、光学特性、触感を実施例1と同様にして測定、判定し
た。結果を第2表に示した。
Comparative Example-2 The amount of ethylene glycol kaolinite dispersion added to the reaction vessel was 297 parts, and the amount of ethylene glycol added was 5 parts.
A polyester obtained by polymerization in the same manner as in Example 1 except that the amount was changed to 40 parts was subjected to spinning, stretching, and spinning in the same manner as in Example 1.
The fabric was woven, processed, and subjected to alkali weight loss treatment, and the size of micropores, optical properties, and tactile sensation were measured and judged in the same manner as in Example 1. The results are shown in Table 2.

比較例−4 反応缶に投入するエチレングリコールのカオリナイト分
散液に変え、富士チタン製酸化チタンTA−300のエ
チレングリコールに対し10wt%の分散溶液を60部
、エチレングリコール投入量を670部とする以外はす
べて実施例−1と同法にしたがった。結果をt42表に
示した。
Comparative Example-4 The kaolinite dispersion of ethylene glycol charged into the reaction vessel was changed to 60 parts of a 10 wt% dispersion of titanium oxide TA-300 manufactured by Fuji Titanium in ethylene glycol, and the amount of ethylene glycol charged was 670 parts. The same method as in Example-1 was followed in all other respects. The results are shown in the t42 table.

比較例−5 酸化チタンのエチレングリコール分散液を248部、投
入し\エチレングリコール量を480部とする以外は比
較例−4と同法にしたがった。結果を第2表に示した。
Comparative Example 5 The same method as Comparative Example 4 was followed except that 248 parts of an ethylene glycol dispersion of titanium oxide was added and the amount of ethylene glycol was changed to 480 parts. The results are shown in Table 2.

比較例−6 反応缶に投入するエチレングリコールのカオリナイト分
散液量を99部とし、エチレングリコールの量を630
部とする以外はすべて実施例−1と同法にしたがった。
Comparative Example-6 The amount of ethylene glycol kaolinite dispersion added to the reaction vessel was 99 parts, and the amount of ethylene glycol was 630 parts.
The same method as in Example-1 was followed in all respects except for the section.

結果を第2表に示した。The results are shown in Table 2.

比較例−7 反応缶に投入するエチレングリコールのカオリナイト分
散液量を396部としエチレングリコール投入量を35
0部とする以外はすべて実施例−1と同法にしたがった
。結果を第2表に示した。
Comparative Example-7 The amount of ethylene glycol kaolinite dispersion added to the reaction vessel was 396 parts, and the amount of ethylene glycol added was 35 parts.
The same method as in Example 1 was followed in all cases except that the number of copies was 0. The results are shown in Table 2.

第2表から明奉らかな様に繊維表面の微細孔の形状およ
び繊維中の艶消剤の量を満足させることにより、光沢風
合触感とも絹様で実用性に富む織物が得られる。
As is clear from Table 2, by satisfying the shape of the micropores on the fiber surface and the amount of matting agent in the fibers, it is possible to obtain fabrics that are glossy, silk-like, and highly practical.

また、微細孔形成剤の量や減量加工水準によ7社 るf&維衣表面瑣細孔が、大きすぎてもだめだし数も多
すぎても少なすぎても目的とする光沢持続や色相が得ら
れない。
In addition, depending on the amount of micropore-forming agent and the level of reduction processing, the pores on the surface of 7 companies'f&fiber cloths will not be too large, and the desired gloss retention and hue will not be achieved if the number is too large or too small. I can't do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、繊維断面方向からみた反射光のモデル図1、 第2図は、繊維側面方向からみた反射光のモデル図、 第3図は、光学特性測定装置の概要を示す図である。 1、表面反射成分  2.透過屈折反射成分3、内部反
射成分  41回転テーブル5.6.偏光子    7
.測定試料 8、投光器     9.受光器 10繊維 第10        第2゜ U 第3図 ■ 手  続  補  正  書 1、 事件の表示 昭和58年特許願第99929号 a 発明の名称 ポ゛リエスデルフィラメント織り勿 & 補正をする者 事件との関係  特許出願人 大阪市北区堂島浜二丁目2番8号 (316)東洋紡績株式会社 (2)  同第15真下第2行の「分散溶液」と「19
8部」の間へ「(エチレングリコール11あたりカオリ
ナイトが1809相当の分散液)」を挿入する。
FIG. 1 is a model diagram of reflected light seen from the cross-sectional direction of the fiber, FIG. 2 is a model diagram of reflected light seen from the side direction of the fiber, and FIG. 3 is a diagram showing an outline of an optical property measuring device. 1. Surface reflection component 2. Transmission refraction reflection component 3, internal reflection component 41 rotary table 5.6. Polarizer 7
.. Measurement sample 8, floodlight 9. Photoreceiver 10 Fiber No. 10 2゜U Figure 3 ■ Procedures Amendment 1, Description of the case 1982 Patent Application No. 99929a Name of the invention Polyester filament weaving & amendment person case Relationship between patent applicant 2-2-8 Dojimahama, Kita-ku, Osaka (316) Toyobo Co., Ltd. (2) "Dispersion solution" and "19
Insert "(a dispersion liquid containing 1809 parts of kaolinite per 11 parts of ethylene glycol)" between "8 parts".

Claims (4)

【特許請求の範囲】[Claims] (1)表面反射成分Mが全反射成分(6)に対し、50
チ以下であり、且つ、透過屈折反射成分(1)と内部反
射成分(1)の和が全反射成分(2)に対し、40%以
上であるポリエステル系フィラメント糸を実質的に無撚
の状態で、経および/または緯糸に用い、且つ、眩光が
全布帛表面の少なくとも55%以上占めることを特徴と
するポリエステルフィラメント織物。
(1) The surface reflection component M is 50% compared to the total reflection component (6).
polyester filament yarn that is less than or equal to A polyester filament fabric, which is used for the warp and/or weft, and is characterized in that the dazzling light occupies at least 55% of the entire fabric surface.
(2)微細孔形成剤を含むポリエステル系繊維糸をアル
カリ性溶液で処理することにより、繊維表面に繊維軸方
向に几て長の微細孔を多数有し、実質的な艶消剤を含ま
ないか、もしくは0.05%以下含んでいるポリエステ
ル系フィラメント糸であって、該微細孔は、(イ)最大
中の度数分布の最大値が0.2〜0.7μmの範囲内に
あp、(ロ)長さ/i&大巾の比の平均値が3以下であ
り、(ハ)その数はm維表面の100/177/当シ1
0〜30個存在し、且つ、に)その深さは全体の60チ
以上が0.1μm以下であり、(−J)その強度u2.
l/d以上テアルポリエステルフィラメント糸で構成さ
れている特許請求の範囲第1項記載のポリエステルフィ
ラメント織物。
(2) By treating polyester fiber yarn containing a micropore-forming agent with an alkaline solution, the fiber surface has many micropores extending in the fiber axis direction and does not contain a substantial matting agent. , or a polyester filament yarn containing 0.05% or less, the micropores are (a) with a maximum value of the frequency distribution within the range of 0.2 to 0.7 μm, ( b) The average value of the ratio of length/i & width is 3 or less, and (c) the number is 100/177/1 of the m fiber surface.
There are 0 to 30 of them, and (-J) their depth is 0.1 μm or less for 60 or more of them, and (-J) their strength is u2.
The polyester filament fabric according to claim 1, wherein the polyester filament fabric is composed of a polyester filament yarn having a tear of 1/d or more.
(3)ポリエステル系フィラメント糸の総デニールが3
0〜looデニールであり、眩光を構成する繊維の断面
形状が三葉状である特許請求の範囲第1項および第2項
記載のポリエステルフィラメント織物。
(3) Total denier of polyester filament yarn is 3
The polyester filament fabric according to claims 1 and 2, which has a denier of 0 to loo and has a trilobal cross-sectional shape of the fibers constituting the dazzling light.
(4)ポリエステル系フィラメント糸が、布帛中の1本
の系中で0.5〜10%の繊維長差を有している特許請
求の範囲第1項、第2項および第3項に記載のポリエス
テルフィラメント織物。
(4) Claims 1, 2 and 3, wherein the polyester filament yarns have a fiber length difference of 0.5 to 10% in one system in the fabric. polyester filament fabric.
JP58099929A 1983-06-03 1983-06-03 Polyester filament fabric Granted JPS59228041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58099929A JPS59228041A (en) 1983-06-03 1983-06-03 Polyester filament fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58099929A JPS59228041A (en) 1983-06-03 1983-06-03 Polyester filament fabric

Publications (2)

Publication Number Publication Date
JPS59228041A true JPS59228041A (en) 1984-12-21
JPH0130935B2 JPH0130935B2 (en) 1989-06-22

Family

ID=14260433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58099929A Granted JPS59228041A (en) 1983-06-03 1983-06-03 Polyester filament fabric

Country Status (1)

Country Link
JP (1) JPS59228041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306672A (en) * 1988-06-03 1989-12-11 Toyobo Co Ltd Polyester filament yarn
WO1994006957A1 (en) * 1992-09-16 1994-03-31 Teijin Limited Highly bathochromic polyester cloth
JP2019183330A (en) * 2018-04-12 2019-10-24 帝人フロンティア株式会社 Polyester multifilament and fabric

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620638A (en) * 1979-07-30 1981-02-26 Teijin Ltd Polyester fiber fabric and production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620638A (en) * 1979-07-30 1981-02-26 Teijin Ltd Polyester fiber fabric and production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306672A (en) * 1988-06-03 1989-12-11 Toyobo Co Ltd Polyester filament yarn
WO1994006957A1 (en) * 1992-09-16 1994-03-31 Teijin Limited Highly bathochromic polyester cloth
US5385784A (en) * 1992-09-16 1995-01-31 Teijin Limited Deeply dyed polyester fabric
JP2019183330A (en) * 2018-04-12 2019-10-24 帝人フロンティア株式会社 Polyester multifilament and fabric

Also Published As

Publication number Publication date
JPH0130935B2 (en) 1989-06-22

Similar Documents

Publication Publication Date Title
US4084622A (en) Textured polyester yarns and process for the production thereof
JPS59228041A (en) Polyester filament fabric
JPS59228014A (en) Silky polyester filament yarn
JPH02221411A (en) Polyester multifilament yarn having flat cross section and woven or knit fabric using the same yarn
JP2527213B2 (en) Polyester composite processed yarn
JP3464062B2 (en) Bulky polyester crimped yarn with refreshing feeling
JPS6343484B2 (en)
WO2016133196A1 (en) Fiber bundle and false twisted yarn, woven knitted item, and clothing containing same
JPS63275734A (en) Polyester composite processed yarn
JPH062235A (en) Polyester conjugate false twisted yarn
CA1050366A (en) Textured polyester yarns and process for the production thereof
JPH01246430A (en) Silky polyester based combined filament yarn having different shrinkage
JPS63249728A (en) Polyester composite processed yarn
JPS601412B2 (en) Polyester bulky yarn and its manufacturing method
JPH1072741A (en) Doubled filament woven fabric and its production
JP2003105630A (en) Drawn polyester yarn having excellent color developing property
JP2527212B2 (en) Polyester yarn
JPH09316743A (en) Polyester differentially shrinkable combined filament yarn and its production
JPS63112742A (en) Polyester composite processed yarn
JPH0382817A (en) Polyester fiber having excellent color-developing property
JPH0364543A (en) Production of polyester blended yarn having different fineness and different shrinkage
JPS5860033A (en) Production of polyester processed yarn having dyeable capacity difference in longitudinal direction of yarn
JPH04174741A (en) Cashmere-like woven fabric and its production
JP2020084358A (en) False twist hollow multifilament yarn, manufacturing method thereof, and woven or knitted fabric
JPH01118667A (en) Polyester fabric