JPS5922763B2 - Soot addition method for vertical reduction furnace - Google Patents
Soot addition method for vertical reduction furnaceInfo
- Publication number
- JPS5922763B2 JPS5922763B2 JP55038429A JP3842980A JPS5922763B2 JP S5922763 B2 JPS5922763 B2 JP S5922763B2 JP 55038429 A JP55038429 A JP 55038429A JP 3842980 A JP3842980 A JP 3842980A JP S5922763 B2 JPS5922763 B2 JP S5922763B2
- Authority
- JP
- Japan
- Prior art keywords
- soot
- furnace
- gas
- reducing gas
- reducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/02—Making spongy iron or liquid steel, by direct processes in shaft furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/26—Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
- C21B2100/64—Controlling the physical properties of the gas, e.g. pressure or temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
Description
【発明の詳細な説明】
本発明は、還元鉄製造用たて型還元炉において、還元炉
に供給する還元ガスに煤を添加する方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adding soot to reducing gas supplied to the reduction furnace in a vertical reduction furnace for producing reduced iron.
一般に、炭化水素を原料としてCO及びH2を主とする
還元ガスを作り、該還元ガスにより鉄鉱石、ペレットの
還元を行なうたて型還元炉においては、操業効率、還元
ガスの利用効率向上の観点より高温還元が有利であるこ
とが知られている。In general, in vertical reduction furnaces that use hydrocarbons as raw materials to produce reducing gases mainly consisting of CO and H2, and reduce iron ore and pellets using the reducing gases, it is important to improve operating efficiency and reducing gas utilization efficiency. It is known that higher temperature reduction is advantageous.
しかし、反面においては、還元された鉄鉱石、ペレット
が融着塊状となり、還元炉を閉塞させ操業不能にすると
いう難点がある。However, on the other hand, there is a drawback that the reduced iron ore and pellets form a fused mass, which clogs the reduction furnace and makes it inoperable.
そこで、先に、特開昭54−126617をもって、炭
化水素ガスと水蒸気、あるいは炭酸ガスで主たる還元ガ
スをっ(す、別に遊離炭素(煤)を含む還元ガスを前記
還元ガスに混合し還元炉へ導入する方法を前記難点の解
決方法として提案した。Therefore, in Japanese Patent Application Laid-Open No. 54-126617, the main reducing gas was made of hydrocarbon gas and water vapor or carbon dioxide gas, and a reducing gas containing free carbon (soot) was mixed with the reducing gas and a reduction furnace was developed. We proposed a method to solve the above-mentioned difficulties.
この提案により、高温還元時の融着による難点は解決さ
れたのであるが、新たに次のような難点を抱えることに
なった。Although this proposal solved the problems caused by fusion during high-temperature reduction, it introduced the following new problems.
それを第1図に示す例により説明すると、還元炉Sは、
還元ガス発生炉Gから主還元ガスを、煤発生炉Bから煤
を各供給管1,2を介してそれぞれ供給されて操業され
る。To explain this using the example shown in FIG. 1, the reduction furnace S is
The main reducing gas is supplied from the reducing gas generating furnace G and soot is supplied from the soot generating furnace B through the respective supply pipes 1 and 2 for operation.
煤発生炉Bは、予め煤発生可能温度(約1000℃)以
上に加熱しなければならないが、この加熱時の燃焼排ガ
スを直接還元炉Sへ導入すると、還元炉Sで還元鉄の再
酸化や、還元ガスと燃焼空気の混合による爆発等を生起
し好ましくないこと等から主還元ガス配管1と煤発生炉
Bは弁3にて縁切りされている。The soot generating furnace B must be heated in advance to a temperature above which it can generate soot (approximately 1000 degrees Celsius), but if the combustion exhaust gas from this heating is directly introduced into the reducing furnace S, the reduced iron will be reoxidized in the reducing furnace S. The main reducing gas pipe 1 and the soot generating furnace B are separated from each other by a valve 3 to prevent explosions and the like from occurring due to mixing of the reducing gas and combustion air.
このため、煤発生炉Bの運転休止期間中子熱バーナ−(
図示しない)にて燃焼加熱するため弁3を閉とし燃焼排
ガスを冷却装置Qを経て排出管4より排出する必要があ
った。For this reason, during the outage period of soot generating furnace B, the core heat burner (
(not shown), it was necessary to close the valve 3 and discharge the combustion exhaust gas from the exhaust pipe 4 via the cooling device Q.
また、煤発生炉Bに設ける煤発生用バーナー(図示せず
)と予熱バーナーは通常別物であり、そのため運転開始
にあたりバーナー交換が必要であり、その際空気が煤発
生炉Bへ侵入するので弁3を開ける前にこの空気を排除
しなければならないなど繁雑であった。In addition, the soot generating burner (not shown) and the preheating burner installed in the soot generating furnace B are usually different, so it is necessary to replace the burner before starting operation. The air had to be removed before opening 3, which was complicated.
また、弁3の開閉により後続の主還元ガス配管への接続
導管2が急速加熱冷却を受け、しばしばライニング剥離
、脱落のトラブルを生ずる難点を有していた。In addition, when the valve 3 is opened and closed, the connecting conduit 2 to the subsequent main reducing gas pipe is rapidly heated and cooled, which often causes troubles such as lining peeling and falling off.
本発明は、上記の難点を解決する経済的且つ安全な煤添
加方法を提供するもので、煤を添加した還元ガスを用い
るたて型還元炉において、還元ガス配管に煤発生炉を直
結し、煤発生炉を所定の温度まで予熱昇温した後、煤発
生のための燃焼に切り換えることを特徴とするたて型還
元炉の煤添加方法を要旨とするものである。The present invention provides an economical and safe soot addition method that solves the above-mentioned difficulties.In a vertical reduction furnace using reducing gas added with soot, the soot generating furnace is directly connected to the reducing gas piping. The gist of this invention is a method of adding soot to a vertical reduction furnace, which is characterized by preheating the soot generating furnace to a predetermined temperature and then switching to combustion for generating soot.
以下本発明を図面を用いて詳細に説明する。The present invention will be explained in detail below using the drawings.
第2図は、本発明の一実施例である。FIG. 2 is an embodiment of the present invention.
煤発生炉Bは、天然ガス(NG)を圧縮空気、または酸
素富化空気(A)により不完全燃焼させ煤含有還元ガス
を発生する。The soot generating furnace B incompletely burns natural gas (NG) using compressed air or oxygen-enriched air (A) to generate soot-containing reducing gas.
一方還元ガス発生炉Gは天然ガス(NG)と水蒸気また
は炭酸ガスにより還元性ガスを発生し、この還元性ガス
は前記煤含有還元ガスと供給管1内で混合されこの混合
ガスを供給管1から還元炉Sの下方に供給し、還元炉S
内を次第に上昇しつつ原料(ペレット、鉄鉱石等)を還
元する。On the other hand, the reducing gas generating furnace G generates reducing gas using natural gas (NG) and water vapor or carbon dioxide gas, and this reducing gas is mixed with the soot-containing reducing gas in the supply pipe 1, and this mixed gas is transferred to the supply pipe 1. from the reduction furnace S to the lower part of the reduction furnace S.
While gradually rising inside the tank, raw materials (pellets, iron ore, etc.) are reduced.
通常還元炉S内における還元ガスの利用率は25〜40
%なので、炉頂に達した還元ガスは、冷却除塵後、再び
圧縮機Cで昇圧し、脱炭酸設備りにて炭酸ガスを除去し
た後、加熱炉Hで加熱し循環利用する。The utilization rate of reducing gas in the reduction furnace S is usually 25 to 40.
%, the reducing gas that has reached the top of the furnace is cooled and dusted, then pressurized again by the compressor C, carbon dioxide is removed by the decarboxylation equipment, and then heated in the heating furnace H and recycled.
加熱炉Hにおける加熱温度は、還元炉Sへ吹込む還元ガ
スの温度が所定値となるよう設定されるが、高温の煤含
有ガス(通常1000〜1400℃)を混合するため低
減できる。The heating temperature in the heating furnace H is set so that the temperature of the reducing gas blown into the reducing furnace S becomes a predetermined value, but it can be reduced because high temperature soot-containing gas (usually 1000 to 1400° C.) is mixed.
還元炉系統で運転を中断又は休止する場合、もはや還元
ガスを必要としないことから、煤発生炉Bは直ちに待機
状態となり、循環ガスも停止されガス加熱炉Hは休止状
態となる。When the operation of the reducing furnace system is interrupted or stopped, the soot generating furnace B immediately goes into a standby state, the circulating gas is also stopped, and the gas heating furnace H goes into a dormant state, since reducing gas is no longer required.
しかし還元ガス発生炉Gは、通常短時間休止の場合、運
転再開に労力と長時間を要することをさけるべ(弁5に
より還元炉Sと縁を切り発生量を減少させ待機運転する
。However, when the reducing gas generating furnace G is normally stopped for a short time, it is necessary to avoid requiring labor and a long time to restart the operation (the valve 5 is used to disconnect the reducing gas generating furnace S from the reducing furnace S to reduce the amount of gas generated and perform standby operation.
この間、耐火物でライニングされた各ガス導入配管6.
γ、1及び煤発生炉Bは自然放冷により温度低下をおこ
し、なかんづく煤発生炉Bは熱分解継続温度を下廻るこ
ととなる。During this time, each gas introduction pipe lined with refractory material6.
The temperature of γ, 1 and soot generating furnace B is lowered by natural cooling, and in particular, soot generating furnace B falls below the thermal decomposition continuation temperature.
そのため、第1図に示すような従来法で虫媒発生炉Bが
弁3により縁切りされ保熱燃焼を行なうが、本発明にお
いてはその必要が全くない。Therefore, in the conventional method as shown in FIG. 1, the insect pollutant generating furnace B is cut off by the valve 3 to perform heat retention combustion, but this is not necessary at all in the present invention.
すなわち、本発明では、還元炉Sの運転を再開する場合
、定格温度の還元ガスを弁5を開き少量ずつ供給管1へ
供給し、供給管1の昇温速度に合わせ供給還元ガスを増
量するとともにガス加熱炉Hにより循環ガスも昇温する
。That is, in the present invention, when restarting the operation of the reduction furnace S, the reducing gas at the rated temperature is supplied to the supply pipe 1 little by little by opening the valve 5, and the amount of supplied reducing gas is increased in accordance with the rate of temperature rise of the supply pipe 1. At the same time, the circulating gas is also heated by the gas heating furnace H.
煤発生炉Bの温度低下度合は、通常還元ガス供給管1よ
り小さいが、同程度であったとしても、該昇温期間中に
昇温することが可能である。The degree of temperature decrease in the soot generating furnace B is usually smaller than that in the reducing gas supply pipe 1, but even if the degree is the same, the temperature can be increased during the temperature increase period.
これを説明するとまず、煤発生炉Bに設けたパイロット
バーナーFに電極スパーク(図示しない)にて点火する
。To explain this, first, a pilot burner F provided in a soot generating furnace B is ignited using an electrode spark (not shown).
パイロットバーナーFの燃料は例えば還元ガス発生のた
めの原料と同じ炭化水素ガス(天然ガスNG)あるいは
その他の炭化水素ガスを使用し圧縮空気(A)により完
全燃焼(空気比キ1)を行ない、この排ガスを供給管1
において主還元ガスと混合する。The fuel for the pilot burner F is, for example, the same hydrocarbon gas (natural gas NG) as the raw material for generating the reducing gas, or other hydrocarbon gas, which is completely combusted (air ratio: 1) using compressed air (A). This exhaust gas is supplied to pipe 1
The main reducing gas is mixed with the main reducing gas.
この混合は、排ガス量が少量のため主還元ガスの還元機
能は失なわれない。In this mixing, since the amount of exhaust gas is small, the reducing function of the main reducing gas is not lost.
煤発生炉は通常パイロットバーナーの燃焼熱により昇温
か可能であるが、熱分解継続下限温度に達したら原料炭
化水素と圧縮空気とを少量導入し完全燃焼させ炉を昇温
することもできる。The temperature of a soot-producing furnace can usually be raised by the combustion heat of a pilot burner, but when the lower limit temperature for continued thermal decomposition is reached, a small amount of raw material hydrocarbon and compressed air can be introduced to cause complete combustion and raise the temperature of the furnace.
これと平行して、予熱炉Pで天然ガス(NG)と圧縮空
気(A)を予熱することができる。In parallel with this, natural gas (NG) and compressed air (A) can be preheated in the preheating furnace P.
煤発生炉Bが定格温度に達したら原料天然ガスを増量し
空気比を迅速に低下させ不完全燃焼に移行する。When the soot generating furnace B reaches the rated temperature, the amount of raw natural gas is increased, the air ratio is quickly lowered, and incomplete combustion is started.
このように、本発明により還元炉Sが定常状態に移行す
るまでに特に悪影響なく煤発生炉Bを立上げることがで
きるのである。Thus, according to the present invention, the soot-generating furnace B can be started up without any particular adverse effects before the reducing furnace S shifts to a steady state.
なお、パイロットバーナーFの点火時に、煤発生炉B内
に滞留する還元ガスによる万一の爆発をさげるために、
不活性ガス導入設備8を具備することもできる。In addition, in order to reduce the possibility of an explosion due to the reducing gas remaining in the soot generating furnace B when the pilot burner F is ignited,
Inert gas introduction equipment 8 may also be provided.
以上のように、本発明により煤発生炉Bと主還元ガス供
給系1との縁切り弁3を省略できるため設備を簡略化で
きて、なおかつ従来の難点をことごとく解決できる。As described above, according to the present invention, the cut-off valve 3 between the soot generating furnace B and the main reducing gas supply system 1 can be omitted, so that the equipment can be simplified and all the conventional problems can be solved.
実施例
第2図のように構成したガス発生炉Gからの発生ガスの
一部と循環ガスにより還元炉Sを600〜700℃へと
昇温している段階において、還元ガス発生炉Gは、50
%負荷の2516 ONm/Hの還元ガスを製造してお
り、その組成はN2−65.3%、C0=19.5%、
C02= 2.3%、N20=10
あり、一方循環ガスは、N2=69.3%、C0−20
、7%、CO2−1%、N20=1.2%、CH,−6
、8%、N2=1.0%の組成からなり、この両者を等
量に混合し、その結果還元炉SへN2= 6 7.3%
、C0=20.1%、Co2=1.7%、CH4= 4
. 6%、N2= 0. 7%、N20 = 5. 6
%の組成としたガスを吹込むときに、煤発生炉Bのパイ
ロットバーナFにおいて、CH4= 88.8%、C2
H6=5.5%、C3H8=3.7%、C4H1o=
1.8%、N2= 0.1%の天然ガス3ONm”/H
を圧縮空気(A)を用い完全燃焼させ煤発生炉Bを併せ
昇温したところ、還元炉Sへの吹込みガスの組成はN2
=66.8%、C0=19.9%、C02=1.8%、
H20= 5.7%、CH4=4.6%、N2= 1.
2%、となり、わずかにガス還元能としての指標H2+
CO/H20+CO2値が1197から11.56と低
下したにすぎなかつた。Embodiment At the stage where the temperature of the reducing furnace S is being raised to 600 to 700°C using a part of the generated gas from the gas generating furnace G configured as shown in FIG. 2 and the circulating gas, the reducing gas generating furnace G is 50
% load of 2516 ONm/H is produced, its composition is N2-65.3%, C0 = 19.5%,
C02 = 2.3%, N20 = 10, while circulating gas has N2 = 69.3%, C0-20
, 7%, CO2-1%, N20=1.2%, CH,-6
, 8%, and N2 = 1.0%, both of which are mixed in equal amounts, and as a result, N2 = 6 7.3% is sent to the reduction furnace S.
, C0=20.1%, Co2=1.7%, CH4=4
.. 6%, N2=0. 7%, N20 = 5. 6
When blowing gas with a composition of %, in pilot burner F of soot generating furnace B, CH4 = 88.8%, C2
H6=5.5%, C3H8=3.7%, C4H1o=
1.8%, N2 = 0.1% natural gas 3ONm”/H
When the gas was completely combusted using compressed air (A) and the temperature of the soot generating furnace B was raised, the composition of the gas blown into the reduction furnace S was N2.
=66.8%, C0=19.9%, C02=1.8%,
H20=5.7%, CH4=4.6%, N2=1.
2%, which is a slight indicator of gas reduction ability H2+
The CO/H20+CO2 value only decreased from 1197 to 11.56.
この結果、同等支障なく還元炉S及び煤発生炉Bを昇温
できた。As a result, the temperatures of the reducing furnace S and the soot generating furnace B could be raised without any problems.
第1図は、従来の煤添加方法の説明図、第2図は、本発
明の煤添加方法の説明図である。
S・・・・・・還元炉、G・・・・・・還元ガス発生炉
、B・・・・・・煤発生炉、F・・°・・・パイロット
バーナー、1・・・・・−還元ガス供給管、6・・−・
・・循環ガス供給管、7・・−・・・煤含有ガス供給管
。FIG. 1 is an explanatory diagram of the conventional soot addition method, and FIG. 2 is an explanatory diagram of the soot addition method of the present invention. S...Reduction furnace, G...Reducing gas generating furnace, B...Soot generating furnace, F...°...Pilot burner, 1......- Reducing gas supply pipe, 6...
... Circulating gas supply pipe, 7... Soot-containing gas supply pipe.
Claims (1)
て、還元ガス配管に煤発生炉を直結し煤発生炉を所定の
温度まで予熱昇温したのち煤発生のための燃焼に切り換
えることを特徴とするたて型還元炉の煤添加方法。1. A vertical reduction furnace that uses reducing gas added with soot, which is characterized by directly connecting the soot generating furnace to the reducing gas piping, preheating the soot generating furnace to a predetermined temperature, and then switching to combustion for generating soot. A method of adding soot to a vertical reduction furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55038429A JPS5922763B2 (en) | 1980-03-26 | 1980-03-26 | Soot addition method for vertical reduction furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55038429A JPS5922763B2 (en) | 1980-03-26 | 1980-03-26 | Soot addition method for vertical reduction furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56136910A JPS56136910A (en) | 1981-10-26 |
JPS5922763B2 true JPS5922763B2 (en) | 1984-05-29 |
Family
ID=12525059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55038429A Expired JPS5922763B2 (en) | 1980-03-26 | 1980-03-26 | Soot addition method for vertical reduction furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5922763B2 (en) |
-
1980
- 1980-03-26 JP JP55038429A patent/JPS5922763B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56136910A (en) | 1981-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0281144A2 (en) | Oxygen enriched combustion | |
JP6256710B2 (en) | Oxygen blast furnace operation method | |
JP3176680B2 (en) | Blast furnace operation method | |
JPH0153719B2 (en) | ||
CN104053792B (en) | Start fusion process | |
TW404983B (en) | Scrap melting method | |
JPS601362B2 (en) | Method for recovering thermal energy from converter exhaust gas | |
JPS5922763B2 (en) | Soot addition method for vertical reduction furnace | |
TW202129014A (en) | Blast furnace operation method and auxiliary equipment of blast furnace | |
JPS61233083A (en) | Compound generating device by coal gasification | |
JPS61207492A (en) | Coal gasifying apparatus | |
JP2020020012A (en) | Pig-iron manufacturing facility and method for manufacturing pig-iron using the same | |
JP2802504B2 (en) | Coal gasifier startup or hot banking system | |
JPS6365007A (en) | High oxidizing combustion type smelting reduction method | |
KR102161597B1 (en) | Method and apparatus for manufacturing molten iron | |
JPH0114806B2 (en) | ||
JP6919632B2 (en) | Pig iron manufacturing equipment and pig iron manufacturing method using it | |
TW202129016A (en) | Blast furnace operation method and auxiliary equipment for blast furnace | |
JPH02151687A (en) | Method and device for raising temperature of lining refractory at start-up of coke dry quenching equipment | |
JP2003231905A (en) | Method and apparatus for blowing large amount of fuel through tuyere into co-production blast furnace | |
JP2544088B2 (en) | Integrated coal gasification combined cycle power plant | |
JPH0517779A (en) | High-temperature carbonized gas heater in continuous coke producing facilities | |
JPS60122809A (en) | Low nox combustion device burning fine coal powder | |
JPH05271810A (en) | Method for melting metal | |
JPH02124996A (en) | Method for heating high-temperature carbonization gas in continuous coking installation |