JPH0153719B2 - - Google Patents

Info

Publication number
JPH0153719B2
JPH0153719B2 JP3742782A JP3742782A JPH0153719B2 JP H0153719 B2 JPH0153719 B2 JP H0153719B2 JP 3742782 A JP3742782 A JP 3742782A JP 3742782 A JP3742782 A JP 3742782A JP H0153719 B2 JPH0153719 B2 JP H0153719B2
Authority
JP
Japan
Prior art keywords
coal
furnace
oxygen
gas
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3742782A
Other languages
Japanese (ja)
Other versions
JPS58154797A (en
Inventor
Eiji Kida
Kenji Arisaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3742782A priority Critical patent/JPS58154797A/en
Publication of JPS58154797A publication Critical patent/JPS58154797A/en
Publication of JPH0153719B2 publication Critical patent/JPH0153719B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は噴流層式石炭ガス化炉の起動方法に係
り、特に使用炭種に制約されることなく、起動時
間を短かくし、安全な運転を行うのに好適な噴流
層式石炭ガス化炉の起動方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for starting a spouted bed type coal gasifier, in particular a jet flow suitable for shortening the startup time and ensuring safe operation without being restricted by the type of coal used. This article relates to a method for starting a bed coal gasifier.

噴流層式石炭ガス化炉は、第1図に示すように
本体シエル1の内側に水冷壁管群2が設けられ、
この水冷管群2と本体シエル1との空間によりシ
ール層を構成している。この空間にはN2ガス3
が導入され、圧力バランスをとることによつて、
炉内のガスが直接本体シエル1に接して腐食トラ
ブルが生じないようになつている。炉内の下部空
間4はキヤタブル5で内張された構造となつてお
り、微粉炭と酸素の混合物6は炉内で高温状態で
部分酸化して石炭ガスとなる過程において、灰分
は溶融し、ノーズ7からウオーターチヤンバ8に
落下し急冷した後、スラグロツクホツパ9を経て
大気中に排出される。石炭ガスは炉内の上部空間
10を通つて生成ガスの処理系に導入される。こ
の過程において、石炭ガスの保有熱によつて水冷
管群2を流動する水はスチームとなつて回収され
る。
As shown in FIG. 1, the spouted bed coal gasifier has a water-cooled wall tube group 2 provided inside a main body shell 1.
The space between the water-cooled tube group 2 and the main body shell 1 constitutes a sealing layer. This space contains N2 gas3
is introduced and by balancing the pressure,
Gas in the furnace comes into direct contact with the main body shell 1 to prevent corrosion problems from occurring. The lower space 4 in the furnace is lined with a cable 5, and in the process in which the mixture 6 of pulverized coal and oxygen is partially oxidized at high temperature in the furnace to become coal gas, the ash content is melted. After falling from the nose 7 into the water chamber 8 and being rapidly cooled, it is discharged into the atmosphere through the slug lock hopper 9. Coal gas is introduced into the produced gas treatment system through the upper space 10 within the furnace. In this process, the water flowing through the water-cooled pipe group 2 is recovered as steam due to the heat retained in the coal gas.

このような噴流層式石炭ガス化炉の起動時、起
動バーナ11で炉内を暖め、バーナが点火されて
いる状態から逐次石炭に切替えることになる。こ
の場合、石炭ガス化炉がTEXACO炉のように極
めて厚い耐火レンガが内張されていると、予め耐
火レンガの内面を赤熱しておけば、一旦バーナー
を切つて石炭に切替えても起動操作に特に支障は
生じない。しかし第1図に示すような構造の噴流
層式石炭ガス化炉においては炉内下部が薄いキヤ
スタブル5が内張され、その他の炉内面は水冷管
群2で形成されているのでTEXACO炉のように
余熱を利用することができない。
When starting up such a spouted bed coal gasifier, the startup burner 11 warms the inside of the furnace, and the state in which the burner is ignited is sequentially switched to coal. In this case, if the coal gasification furnace is lined with extremely thick refractory bricks like a TEXACO furnace, if the inner surface of the refractory bricks is heated in advance, it will not be possible to start up the furnace even if the burner is turned off and switched to coal. There are no particular problems. However, in the spouted bed type coal gasifier with the structure shown in Figure 1, the lower part of the furnace is lined with a thin castable 5, and the other inner surface of the furnace is formed by a group of water-cooled tubes 2, so it is similar to a TEXACO furnace. It is not possible to use residual heat.

また石炭ガス化に用いられる石炭種が低融点炭
の場合、起動バーナーで炉内雰囲気を加熱し、そ
の後石炭に切替えることによつて燃料の酸化手段
としての空気を使用する状態でも溶融スラグ化が
可能である。しかし石炭種が融点1500℃以上の高
融点炭の場合、空気燃焼の起動バーナーでは溶融
スラグ化が困難である。したがつて空気燃焼によ
り起動する場合、原料石炭中にスラグの低融点化
助剤を添加する方法も考えられるが、起動操作の
みのために低融点化助剤を添加するための設備を
設けることは実用面で問題がある。
In addition, when the type of coal used for coal gasification is low-melting point coal, by heating the atmosphere inside the furnace with a starter burner and then switching to coal, it is possible to convert it into molten slag even when air is used as the fuel oxidation means. It is possible. However, if the type of coal is high melting point coal with a melting point of 1500°C or higher, it is difficult to convert it into molten slag using an air-fired start-up burner. Therefore, when starting with air combustion, it is possible to add a slag low melting point additive to the raw coal, but it is necessary to provide equipment to add the low melting point additive only for the startup operation. has practical problems.

本発明の目的は、上記した従来技術の問題点を
解消し、使用される石炭種のいかんに拘わらず石
炭ガス化および溶融スラグ化が容易であつて、起
動時間を短縮し安定した運転を行なうことができ
る噴流式石炭ガス化炉の起動方法を提供すること
にある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, to facilitate coal gasification and molten slag regardless of the type of coal used, to shorten start-up time, and to achieve stable operation. An object of the present invention is to provide a method for starting a jet coal gasifier.

要するに本発明は、起動時に酸化剤として空気
又は通常の空気よりも酸素含有量が高い酸化性ガ
スを用い、炉内が一定の温度に達した後、助燃剤
を石炭に切替えると共に酸化性ガス中の酸素含有
量を次第に高くし十分な燃焼状態に達した後、石
炭の投入量および酸化性ガスの酸素含有量を高く
し、炉内昇温を行ないながら炉内雰囲気を酸化雰
囲気から還元雰囲気に移行させることによつて上
記目的を達成したものである。
In short, the present invention uses air or an oxidizing gas with a higher oxygen content than normal air as an oxidizing agent at startup, and after the inside of the furnace reaches a certain temperature, the combustion improver is switched to coal and the oxidizing gas is After reaching a sufficient combustion state by gradually increasing the oxygen content of the coal, the amount of coal input and the oxygen content of the oxidizing gas are increased, and the atmosphere inside the furnace is changed from an oxidizing atmosphere to a reducing atmosphere while increasing the temperature inside the furnace. By migrating, the above objective was achieved.

以下添付図面によつて本発明の実施例を説明す
る。第3図は本発明を実施するためのフローシー
トをブロツクダイヤグラムで示す。第3図におい
て、噴流式石炭ガス化炉11の起動時には酸化剤
として酸素製造設備12(空気分離装置)より発
生した酸素13と窒素14を混合器15を通じて
酸素―窒素混合ガス16を作り、噴流式石炭ガス
化炉11に供給する。一方起動時の燃料は、燃料
設備17より噴流式石炭ガス化炉11に供給し、
炉内を石炭灰がスラグ化するに可能な温度1300℃
〜3000℃まで加熱する。石炭は石炭設備18より
噴流式石炭ガス化炉11に供給される。ガス化炉
11で発生した石炭ガスは集塵器19を通り、こ
こで石炭ガス中の微粉炭が捕集され、この微粉炭
は再びガス化炉11に導入される。集塵器19を
通つたガスは生成ガスとして所望の設備に供給さ
れる。ガス化炉11で発生したスラグ21は第1
図に示すようなウオーターチヤンバおよびスラグ
ロツクホツパーを通じて大気中に排出される。こ
こで酸素―窒素混合ガス中の酸素濃度は25%〜80
%とすることが望ましい。混合ガス中の酸素濃度
が80%を越え、特に100%となると、炉内構造お
よび起動時用バーナーの温度上昇によるトラブル
が発生するため好ましくない。次に酸素―窒素混
合ガス中の酸素濃度の好適範囲について、酸素濃
度と燃焼ガス温度との関係を示す第4図によつて
説明する。起動時は失火やガスの爆発などによる
トラブルを防止するため、起動時は第4図に示す
酸化雰囲気領域で行なうのが望ましい。しかし起
動時の酸化剤として空気を用いた場合、酸化雰囲
気では1700〜1800℃程度までしか炉内温度が上昇
しないため、高溶融点灰石炭(灰溶融点1400〜
1500℃以上)では灰をスラグとして流動させて抜
出すことが困難となり、起動時間が長くなる問題
がある。一方起動時の酸化剤として100%の酸素
ガスを用いる場合、炉内温度が3000℃以上となる
ため装置の構造材料上の問題もある。従つて灰を
スラグ化するに十分な温度が得られ、かつ装置構
造材料上の問題を有しない酸素濃度25%〜80%が
望ましいことになる。また起動時の酸素―窒素混
合ガス中の酸素濃度を25%〜80%の範囲内で使用
される炭種により酸素濃度を調整することによつ
て使用される炭種に応じて起動操作を行なうこと
ができる。また上記のような酸素濃度の混合ガス
の場合、酸化剤として空気を用いる場合よりも起
動時の所用時間を短縮することができる。さらに
起動時に於いて酸化剤として空気を用いる場合、
酸化剤を空気から酸素に切替える場合に手間を要
し、切替え時の失火、温度低下などを生じる恐れ
がある。しかし本実施例に於いてはそのようなト
ラブルを未然に防止することができる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 3 shows, in block diagram form, a flow sheet for carrying out the present invention. In FIG. 3, when the jet coal gasification furnace 11 is started, oxygen 13 and nitrogen 14 generated from the oxygen production equipment 12 (air separation device) as oxidizers are passed through the mixer 15 to create an oxygen-nitrogen mixed gas 16, and the jet It is supplied to a type coal gasification furnace 11. On the other hand, fuel at startup is supplied from the fuel equipment 17 to the jet coal gasifier 11,
The temperature at which coal ash turns into slag inside the furnace is 1300℃.
Heat to ~3000℃. Coal is supplied from coal equipment 18 to jet coal gasifier 11 . The coal gas generated in the gasifier 11 passes through a dust collector 19, where pulverized coal in the coal gas is collected, and this pulverized coal is introduced into the gasifier 11 again. The gas that has passed through the dust collector 19 is supplied to desired equipment as generated gas. The slag 21 generated in the gasifier 11 is
It is discharged to the atmosphere through a water chamber and slug lock hopper as shown. Here, the oxygen concentration in the oxygen-nitrogen mixed gas is 25% to 80
It is desirable to set it as %. If the oxygen concentration in the mixed gas exceeds 80%, especially 100%, it is undesirable because troubles may occur due to temperature rises in the furnace internal structure and the burner during startup. Next, the preferred range of oxygen concentration in the oxygen-nitrogen mixed gas will be explained with reference to FIG. 4, which shows the relationship between oxygen concentration and combustion gas temperature. To prevent troubles such as misfires and gas explosions during startup, it is desirable to perform startup in the oxidizing atmosphere region shown in FIG. 4. However, if air is used as the oxidizing agent during startup, the temperature inside the furnace will only rise to about 1700 to 1800°C in an oxidizing atmosphere.
(1500℃ or higher), it becomes difficult to fluidize the ash as slag and extract it, leading to the problem of longer start-up times. On the other hand, if 100% oxygen gas is used as the oxidizing agent during startup, the temperature inside the furnace will exceed 3000°C, which poses problems regarding the structural materials of the equipment. Therefore, it is desirable to have an oxygen concentration of 25% to 80%, which provides a temperature sufficient to slag the ash and does not cause problems with the structural materials of the device. In addition, by adjusting the oxygen concentration in the oxygen-nitrogen mixed gas during startup within the range of 25% to 80% depending on the type of coal used, the startup operation is performed according to the type of coal used. be able to. Further, in the case of a mixed gas having the above oxygen concentration, the time required for startup can be shortened compared to the case of using air as an oxidizing agent. Furthermore, if air is used as an oxidizing agent during startup,
Switching the oxidizing agent from air to oxygen takes time and effort, and there is a risk of misfires, temperature drops, etc. at the time of switching. However, in this embodiment, such troubles can be prevented.

次に本発明の起動方法の一例を第5図に基づい
てさらに詳細に説明する。第5図に於いて起動時
のステツプを便宜的にステツプ1からステツプ7
に分けて説明する。ステツプ1において起動バー
ナーでLPGまたは油を空気相当または酸素濃度
25%程度の酸化性ガスを用いて燃焼し炉内温度を
常圧状態でAまで昇温する。炉内温度Aは石炭の
着火に必要な温度に維持されればよく、灰分を溶
融する必要はない。ステツプ2においては、炉内
温度A〜Bの恒温状態の過程でLPGを石炭(微
粉炭)に切替え、酸化性ガス中の酸素濃度を増加
させる。
Next, an example of the starting method of the present invention will be explained in more detail based on FIG. 5. In Fig. 5, the steps at startup are conveniently shown as Step 1 to Step 7.
I will explain it separately. In step 1, start the burner to convert LPG or oil to air equivalent or oxygen concentration.
Combustion is performed using approximately 25% oxidizing gas, and the temperature inside the furnace is raised to A at normal pressure. The furnace temperature A only needs to be maintained at a temperature necessary for igniting the coal, and there is no need to melt the ash. In step 2, LPG is switched to coal (pulverized coal) while the furnace temperature is constant from A to B, and the oxygen concentration in the oxidizing gas is increased.

このような操作によつて炉内温度を除々に上
げ、かつ完全酸化雰囲気G点を確認する(ステツ
プ3およびステツプ4)。石炭の投入量を酸素の
付加率以上に増量して、設定値より十分低い圧力
レベルGで還元雰囲気に移行させ、石炭ガス化で
ある可燃性ガスを生成する段階に入る(ステツプ
5)。次いで酸化性ガスを100%酸素に移行し、最
終的な昇圧、昇温を計り、最終的な溶融スラグの
生成温度Cに到達させる(ステツプ6)。溶融ス
ラグの生成温度Cを確認後、炉内圧の昇圧(I)
と石炭投入負荷(F)の設定を行う(ステツプ7)。
Through these operations, the temperature inside the furnace is gradually raised, and a complete oxidizing atmosphere at point G is confirmed (steps 3 and 4). The amount of coal input is increased to a level higher than the oxygen addition rate, the coal is transferred to a reducing atmosphere at a pressure level G sufficiently lower than the set value, and the stage of producing flammable gas, which is coal gasification, begins (step 5). Next, the oxidizing gas is changed to 100% oxygen, and the final pressure and temperature are measured to reach the final molten slag formation temperature C (step 6). After confirming the molten slag formation temperature C, increase the furnace pressure (I)
and the coal input load (F) are set (Step 7).

上記実施例においては、起動時の酸化剤に空気
を使用しないので噴流式石炭ガス化炉に空気を送
り込むための設備が不要となり、設備の低減を図
ることができる。尚上記実施例に於いては起動時
の酸化剤として酸素製造プラント(空気分離器)
から生成される酸素と窒素の混合ガスを用いてい
るが、本発明においては起動時の酸化剤として空
気に酸素製造プラント等から生成される酸素を混
入し、酸素濃度が25〜80%の酸化性ガスを用いて
使用することもできる。
In the above embodiment, since air is not used as an oxidizing agent during startup, equipment for feeding air into the jet coal gasifier is not required, and the number of equipment can be reduced. In the above embodiment, an oxygen production plant (air separator) is used as an oxidizing agent during startup.
However, in the present invention, oxygen produced from an oxygen production plant is mixed into the air as an oxidizing agent during startup, and an oxidizing gas with an oxygen concentration of 25 to 80% is used. It can also be used with sexual gases.

以上のように本発明によれば起動時において、
酸化性ガス中の酸素濃度を調整することによつて
十分な炉内温度を得ることができるので石炭ガス
化および灰の溶融スラグ化が支障なく進行し、ま
た起動時の所用時間を短縮することができ、また
使用される石炭種のいかんに拘わらず溶融スラグ
化が可能である。また従来法のように空気から
100%酸素ガスへの切替えが不要であるので切替
え作業時に生じる失火などのトラブルを未然に防
止することができる。
As described above, according to the present invention, at startup,
By adjusting the oxygen concentration in the oxidizing gas, a sufficient temperature inside the furnace can be obtained, so coal gasification and ash molten slag can proceed without any problems, and the time required for startup can be shortened. It is also possible to convert the coal into molten slag regardless of the type of coal used. Also, unlike the conventional method,
Since there is no need to switch to 100% oxygen gas, troubles such as misfires that occur during the switching process can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は噴流式石炭ガス化炉の構造を示す概略
的構成図、第2図は第1図のA―A′線に沿う断
面図、第3図は本発明の一例を示すブロツクダイ
ヤフラム、第4図は酸化剤中の酸素濃度と酸化、
還元雰囲気の関係を示す図、第5図は本発明の起
動方法の一例を示す説明図である。 1…本体シエル、2…水冷壁管群、5…キヤス
タブル、8…ウオーターチヤンバ、9…スラグロ
ツクホツパー、11…噴流式石炭ガス化炉、12
…酸素製造設備(空気分離装置)、13…酸素、
14…窒素、15…混合器、17…燃料設備、1
8…石炭供給設備、19…集塵器。
Fig. 1 is a schematic block diagram showing the structure of a jet coal gasifier, Fig. 2 is a cross-sectional view taken along line A-A' in Fig. 1, and Fig. 3 is a block diaphragm showing an example of the present invention. Figure 4 shows the oxygen concentration in the oxidizing agent and oxidation,
FIG. 5, which is a diagram showing the relationship between reducing atmospheres, is an explanatory diagram showing an example of the starting method of the present invention. DESCRIPTION OF SYMBOLS 1...Main shell, 2...Water-cooled wall tube group, 5...Castable, 8...Water chamber, 9...Slug lock hopper, 11...Jet type coal gasifier, 12
...Oxygen production equipment (air separation equipment), 13...Oxygen,
14... Nitrogen, 15... Mixer, 17... Fuel equipment, 1
8... Coal supply equipment, 19... Dust collector.

Claims (1)

【特許請求の範囲】 1 噴流式石炭ガス化炉内を助燃剤と通常の空気
又はこの空気よりも酸素含有量が高い酸化性ガス
とにより昇温し、炉内が一定の温度に達した後、
助燃剤を石炭に切替えるとともに酸化性ガス中の
酸素含有量を次第に高くし、十分な燃焼状態に達
した後、石炭の投入量および酸化性ガス中の酸素
含有量をさらに高くし、炉内昇温を行いながら炉
内雰囲気を酸化雰囲気から還元雰囲気に移行させ
ることを特徴とする噴流式石炭ガス化炉の起動方
法。 2 特許請求の範囲第1項において、酸化性ガス
が酸素と窒素との混合ガスである噴流式石炭ガス
化炉の起動方法。 3 特許請求の範囲第2項において、酸素および
窒素が、酸素製造プランドで生成されたものであ
る噴流式石炭ガス化炉の起動方法。
[Scope of Claims] 1 The temperature inside the jet coal gasifier is raised by a combustion improver and normal air or an oxidizing gas with a higher oxygen content than this air, and after the inside of the furnace reaches a certain temperature. ,
The combustion improver is changed to coal, and the oxygen content in the oxidizing gas is gradually increased. After reaching a sufficient combustion state, the amount of coal input and the oxygen content in the oxidizing gas are further increased, and the oxygen content in the oxidizing gas is increased. A method for starting a jet coal gasification furnace, which is characterized by shifting the atmosphere in the furnace from an oxidizing atmosphere to a reducing atmosphere while heating the furnace. 2. The method for starting a jet coal gasifier according to claim 1, wherein the oxidizing gas is a mixed gas of oxygen and nitrogen. 3. The method for starting a jet coal gasifier according to claim 2, wherein the oxygen and nitrogen are generated in an oxygen production plant.
JP3742782A 1982-03-10 1982-03-10 Starting spouted-bed coal gasifier Granted JPS58154797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3742782A JPS58154797A (en) 1982-03-10 1982-03-10 Starting spouted-bed coal gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3742782A JPS58154797A (en) 1982-03-10 1982-03-10 Starting spouted-bed coal gasifier

Publications (2)

Publication Number Publication Date
JPS58154797A JPS58154797A (en) 1983-09-14
JPH0153719B2 true JPH0153719B2 (en) 1989-11-15

Family

ID=12497211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3742782A Granted JPS58154797A (en) 1982-03-10 1982-03-10 Starting spouted-bed coal gasifier

Country Status (1)

Country Link
JP (1) JPS58154797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152300A (en) * 2013-02-13 2014-08-25 Mitsubishi Heavy Ind Ltd Method for starting gasification furnace, gasification furnace and gasification composite power generating equipment
JP2014208850A (en) * 2014-08-04 2014-11-06 三菱日立パワーシステムズ株式会社 Gasifier activation method, gasifier and gasification combined power generating installation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143491A (en) * 1984-12-17 1986-07-01 Mitsubishi Heavy Ind Ltd Furnace cooler
JPS61218690A (en) * 1985-03-25 1986-09-29 Mitsubishi Heavy Ind Ltd Coal gasifier
JPH0635588B2 (en) * 1985-03-25 1994-05-11 三菱重工業株式会社 Coal gasifier
JPS61221293A (en) * 1985-03-26 1986-10-01 Mitsubishi Heavy Ind Ltd Coal gasifying apparatus
JPH0631347B2 (en) * 1985-03-26 1994-04-27 三菱重工業株式会社 Coal gasifier
JPS61228093A (en) * 1985-04-01 1986-10-11 Mitsubishi Heavy Ind Ltd Fuel gasification apparatus
JPH0635589B2 (en) * 1985-04-17 1994-05-11 三菱重工業株式会社 Pressurized gasifier
JPS61181679U (en) * 1985-05-04 1986-11-12
AU2005305810B2 (en) * 2004-11-22 2009-07-30 Air Products And Chemicals, Inc. Apparatus for gasifying a fuel
JP5166910B2 (en) * 2008-01-29 2013-03-21 三菱重工業株式会社 Coal gasifier startup method and starter
JP5256807B2 (en) * 2008-03-21 2013-08-07 株式会社Ihi Operation method of gasification equipment
JP2014167044A (en) * 2013-02-28 2014-09-11 Mitsubishi Heavy Ind Ltd Oxygen-blown carbonaceous fuel gasification furnace, and operation method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152300A (en) * 2013-02-13 2014-08-25 Mitsubishi Heavy Ind Ltd Method for starting gasification furnace, gasification furnace and gasification composite power generating equipment
US9719038B2 (en) 2013-02-13 2017-08-01 Mitsubishi Hitachi Power Systems, Ltd. Gasifier start-up method, gasifier, and integrated gasification combined cycle facility
JP2014208850A (en) * 2014-08-04 2014-11-06 三菱日立パワーシステムズ株式会社 Gasifier activation method, gasifier and gasification combined power generating installation

Also Published As

Publication number Publication date
JPS58154797A (en) 1983-09-14

Similar Documents

Publication Publication Date Title
JPH0153719B2 (en)
RU2242520C2 (en) Method of starting up of a process of a direct melting
GB2136939A (en) Method for destroying refuse
CA2400234A1 (en) Reactor and process for gasifying and/or melting materials
JPS59150006A (en) Method and apparatus for melting scrap
WO1987007591A1 (en) Method of preparing a melt for the production of mineral wool and a shaft furnace for carrying out said method
AU2012350144B2 (en) Starting a smelting process
JP6357104B2 (en) Starting the smelting process
US2671724A (en) Heating scrap in open hearth furnaces
JP2002161283A (en) Startup method for coal gasifier
JPS6154354B2 (en)
JPS629652B2 (en)
JPH0332612B2 (en)
JPH0420591A (en) Entrained bed coal gasifying apparatus and starting thereof
EP0605378A1 (en) Method of valorizing the slag of a steelmaking electric furnace
US3179513A (en) Blast furnace fuel injection process
KR102161597B1 (en) Method and apparatus for manufacturing molten iron
JPH0456081B2 (en)
US4004895A (en) Coal reactor
JPH02200713A (en) Device and method for producing molten iron
US2749219A (en) Preparation of calcium carbide
US1080102A (en) Process of reducing zinc compounds.
CN101520176B (en) Exothermic catalytic combustion method for pyrolysis gasification submelting furnace under pure oxygen conditions
JP2001227713A (en) Melting furnace for refuse
JPS5589612A (en) Conbustion sustaining gas blowing-in method at melting type pyrolytic furnace for waste