JPH02124996A - Method for heating high-temperature carbonization gas in continuous coking installation - Google Patents

Method for heating high-temperature carbonization gas in continuous coking installation

Info

Publication number
JPH02124996A
JPH02124996A JP29653588A JP29653588A JPH02124996A JP H02124996 A JPH02124996 A JP H02124996A JP 29653588 A JP29653588 A JP 29653588A JP 29653588 A JP29653588 A JP 29653588A JP H02124996 A JPH02124996 A JP H02124996A
Authority
JP
Japan
Prior art keywords
gas
temperature
carbonization
oxygen
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29653588A
Other languages
Japanese (ja)
Other versions
JP2609306B2 (en
Inventor
Teruo Nakayama
輝雄 中山
Yoichi Tawara
俵 洋一
Hiroshi Nakama
仲摩 博至
Yoshimitsu Konno
金野 好光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63296535A priority Critical patent/JP2609306B2/en
Publication of JPH02124996A publication Critical patent/JPH02124996A/en
Application granted granted Critical
Publication of JP2609306B2 publication Critical patent/JP2609306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to continuously feed a high-temperature carbonization gas at a constant temperature into a continuous carbonization shaft oven by a process wherein a circulating gas is primarily heated, and a combustible component therein is then burned to raise the temperature of the gas to thereby from a high-temperature carbonization gas. CONSTITUTION:A circulating gas 14, discharged from a continuous carbonization shaft oven 3 of a continuous coking installation and flowing through a high- temperature gas pipe 15, is primarily heated at 500 deg.C or higher in an indirect heat exchange 27. An oxygen-containing gas 29 at 500 deg.C or higher is blown at a prescribed flow rate through an oxygen introducing pipe 28 into the heated circulating gas 14 to burn 10% or less of the combustible component therein to raise the temperature of the circulating gas, thus forming a high-temperature carbonization gas 4. The gas 4 is then fed into the oven 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可燃ガスを熱媒体とする直立型乾留炉を使用
して成形炭を乾留し冶金用成形コークスを製造する方法
において、熱媒体としての高温乾留ガスを加熱する方法
に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a method for producing metallurgical shaped coke by carbonizing briquettes using an upright carbonization furnace using combustible gas as a heat carrier. The present invention relates to a method of heating high-temperature carbonization gas.

〔従来の技術〕[Conventional technology]

一般炭を主原料とする原料炭にバインダー(粘結剤)を
加え、加圧・成形して成形炭を作り、これを直立型連続
乾留炉に投入し、冶金用コークスを製造する成形コーク
ス製造設備が、「燃料温会誌」第61巻第659号第1
69〜178頁、「鉄鋼界」昭和59年8月号第115
〜121頁等で紹介されている。
Molded coke production involves adding a binder (caking agent) to coking coal, the main raw material of which is steam coal, pressurizing and shaping it to create briquette coal, which is then fed into an upright continuous carbonization furnace to produce metallurgical coke. The equipment is ``Fuel Temperature Journal'' Vol. 61 No. 659 No. 1
pp. 69-178, "Steel World" August 1980 issue No. 115
It is introduced on pages 121 to 121.

第6図は、この成形コークス製造設備の設備フローを示
す。成形炭製造設備1で製造された成形炭2は、直立型
連続乾留炉3の頂部から炉内に投入される。この直立型
連続乾留炉3は、下部から導入される高温乾留ガス4と
中間部から導入される低温乾留ガス5との2段式ガス吹
込み構造を持っている。炉頂から投入された成形炭2は
、低温乾留ガス5、次いで高温乾留ガス4により適当な
速度で加熱・乾留される。得られたコークスは、直立型
連続乾留炉3下部の冷却ゾーンに降下し、底部から吹き
込まれる冷ガス6で約130℃程度に冷却された後、排
出装置7から乾留コークス8として切り出される。
FIG. 6 shows the equipment flow of this molded coke manufacturing equipment. Molten coal 2 produced in coal briquette manufacturing equipment 1 is charged into an upright continuous carbonization furnace 3 from the top thereof. This vertical continuous carbonization furnace 3 has a two-stage gas blowing structure in which high-temperature carbonization gas 4 is introduced from the lower part and low-temperature carbonization gas 5 is introduced from the middle part. Molded coal 2 charged from the top of the furnace is heated and carbonized at an appropriate rate by low-temperature carbonization gas 5 and then by high-temperature carbonization gas 4. The obtained coke descends to the cooling zone at the bottom of the vertical continuous carbonization furnace 3, is cooled to about 130° C. by cold gas 6 blown from the bottom, and is then cut out from the discharge device 7 as carbonization coke 8.

成形炭2の加熱用熱媒体として使用される高温乾留ガス
4及び低温乾留ガス5は、成形コークス製造時に副産物
として発生した可燃性のCOGである。すなわち、成形
炭2の乾留によって発生したガスは、炉内に吹き込まれ
た高温乾留ガス4及び低温乾留ガス5と共に、直立型連
続乾留炉3内を上昇して、炉頂部から顕熱回収装置9及
びガスクーラ10を経由して集塵機11に送られる。集
門機11で除塵された後、発生ガスの一部は、回収ガス
12として副産物回収設備13に送られ、精製、脱硫後
COG燃料として使用される。
The high-temperature carbonized gas 4 and the low-temperature carbonized gas 5 used as a heat medium for heating the coal briquettes 2 are flammable COG generated as a by-product during the production of shaped coke. That is, the gas generated by carbonization of the coal briquette 2 rises in the upright continuous carbonization furnace 3 together with the high-temperature carbonization gas 4 and low-temperature carbonization gas 5 blown into the furnace, and passes through the sensible heat recovery device 9 from the top of the furnace. and sent to the dust collector 11 via the gas cooler 10. After dust removal by the collector 11, a part of the generated gas is sent as a recovered gas 12 to a by-product recovery facility 13, where it is used as COG fuel after being purified and desulfurized.

残りの発生ガスの大部分は、循環ガス14としてガス循
環設備に送られる。このガス循環設備は、循環ガス14
を分流して直立型連続乾留炉3に吹き込まれるたt1高
温ガス用配管15.低温ガス用配管16及び冷ガス用配
管17を備えている。高温ガス用配管15にはガス加熱
器18が設けられており、循環ガス14を所定の温度に
加熱し、高温乾留ガス4として直立型連続乾留炉3に吹
き込む。他方、低温ガス用配管16には熱交換器19及
びエジェクター20が設けられており、循環ガス14の
温度を調節した後、600〜650℃の低温乾留ガス5
として直立型連続乾留炉3に吹き込む。
Most of the remaining generated gas is sent as circulating gas 14 to the gas circulation facility. This gas circulation equipment has a circulating gas 14
t1 high-temperature gas piping 15. It is equipped with a low temperature gas pipe 16 and a cold gas pipe 17. A gas heater 18 is provided in the high-temperature gas pipe 15, and the circulating gas 14 is heated to a predetermined temperature and blown into the vertical continuous carbonization furnace 3 as a high-temperature carbonization gas 4. On the other hand, the low temperature gas pipe 16 is provided with a heat exchanger 19 and an ejector 20, and after adjusting the temperature of the circulating gas 14, the low temperature carbonized gas 5 of 600 to 650°C is
It is blown into the vertical continuous carbonization furnace 3.

ガス加熱器18としては、第7図に示すように、高炉設
備の一つである外燃式熱風炉と同様な構のをもつものが
使用される。すなわち、ガス加熱器18は、一つの燃焼
炉21.二つの蓄熱炉22a、 22b。
As the gas heater 18, as shown in FIG. 7, one having a structure similar to that of an external combustion hot blast furnace, which is one type of blast furnace equipment, is used. That is, the gas heater 18 is one combustion furnace 21. Two heat storage furnaces 22a, 22b.

切換弁23a〜23h及びこれらを接続する各種配管で
構成されている。燃焼炉21では、混合ガスを常時燃焼
しており、その燃焼排ガスを切換弁23C又は23dの
切換えによって蓄熱炉22a又は22bの何れか一方に
供給する。
It is composed of switching valves 23a to 23h and various types of piping connecting these. In the combustion furnace 21, mixed gas is constantly combusted, and the combustion exhaust gas is supplied to either the regenerative furnace 22a or 22b by switching the switching valve 23C or 23d.

たとえば、切換弁23cを開き切換弁23dを閉じて、
燃焼排ガスを蓄熱炉22aに送り込んでいるとき、その
保有熱は蓄熱炉22aの蓄熱煉瓦に与えられる。そして
、約300℃に降温した排ガスは、排ガス導管24を経
由して煙突25から放散される。このとき、他方の蓄熱
炉22bには、冷ガス配管26から切換弁23hを経て
循環ガス14が導入される。この循環がス14は、蓄熱
炉22bの蓄熱煉瓦から熱を与えられ、約950℃の高
温に昇温しで高温乾留ガス4として直立型連続乾留炉3
に供給される。
For example, by opening the switching valve 23c and closing the switching valve 23d,
When the combustion exhaust gas is being sent to the regenerative furnace 22a, its retained heat is given to the regenerative bricks of the regenerative furnace 22a. Then, the exhaust gas whose temperature has decreased to about 300° C. is dissipated from the chimney 25 via the exhaust gas conduit 24. At this time, the circulating gas 14 is introduced into the other regenerator 22b from the cold gas pipe 26 via the switching valve 23h. This circulation gas 14 receives heat from the heat storage bricks of the heat storage furnace 22b, raises the temperature to a high temperature of approximately 950°C, and converts the high-temperature carbonization gas 4 into the upright continuous carbonization furnace 3.
is supplied to

所定時間経過した後、切換弁23a〜23hを切り換え
、循環ガス14を蓄熱炉22aに導入して昇温し、蓄熱
炉22bでは燃焼炉21からの燃焼排ガスによって蓄熱
煉瓦を昇温させる。このように、切換弁23a〜23h
 の切換えによって、蓄熱炉22a、 22bを約30
分程度の周期で蓄熱期と送風期に切り換え、所定温度に
昇温した高温乾留ガス4を得ている。
After a predetermined period of time has elapsed, the switching valves 23a to 23h are switched, and the circulating gas 14 is introduced into the regenerator 22a to raise its temperature, and in the regenerator 22b, the combustion exhaust gas from the combustion furnace 21 raises the temperature of the regenerator bricks. In this way, the switching valves 23a to 23h
By switching the regenerative furnaces 22a and 22b to about 30
The heat storage period and the ventilation period are switched at intervals of about minutes to obtain high-temperature carbonized gas 4 heated to a predetermined temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ガス加熱器18を使用して循環がス14を加熱するとき
、得られた高温乾留ガス4の温度が一定しない。すなわ
ち、蓄熱炉22&、 22bの切換え初期においては、
蓄熱期に昇温した蓄熱煉瓦が多量の熱を保有しているの
で、得られた高温乾留ガス4の温度も高くなる。しかし
、蓄熱煉瓦と循環ガス14との間の熱交換が進むにつれ
て、蓄熱煉瓦の保有熱量が減少し、高温乾留ガス4の温
度が低下する。
When the gas heater 18 is used to heat the circulating gas 14, the temperature of the resulting hot carbonized gas 4 is not constant. That is, at the initial stage of switching the regenerative furnaces 22&, 22b,
Since the heat storage bricks whose temperature rose during the heat storage period retain a large amount of heat, the temperature of the obtained high-temperature carbonized gas 4 also becomes high. However, as the heat exchange between the heat storage brick and the circulating gas 14 progresses, the amount of heat held by the heat storage brick decreases, and the temperature of the high-temperature carbonized gas 4 decreases.

この高温乾留ガス4の温度変動並びに蓄熱炉切換え時の
ガス遮断等は、直立型連続乾留炉3の炉況に悪影響を与
え、操業条件のコントロールを困難なものにしている。
Fluctuations in the temperature of the high-temperature carbonization gas 4 and gas shut-off when switching over the regenerator adversely affect the furnace condition of the vertical continuous carbonization furnace 3, making it difficult to control operating conditions.

また、切換弁23a〜23hは、約1200℃の高温燃
焼排ガスに接触すること、及び使用流体が可燃分を含む
ことにより、耐熱性が優れ、ガスシール性の良い特殊な
設計の高価なものが要求される。しかも、これら切換弁
23a〜23hの開閉動作ミスがガス爆発事故に繋がる
ため、制御設備に対する安全装置の付設、N、パージ等
の必要がある。
In addition, the switching valves 23a to 23h are expensive ones with special designs that have excellent heat resistance and good gas sealing properties because they come into contact with high-temperature combustion exhaust gas of approximately 1200°C and the fluid used contains flammable components. required. Furthermore, since a mistake in the opening/closing operation of these switching valves 23a to 23h may lead to a gas explosion accident, it is necessary to install a safety device, N, purge, etc. to the control equipment.

このような問題を解消するものとしては、循環ガス14
の加熱を電気ヒータで行う方式が考えられる。しかし、
大量の循環ガス14を高温に加熱するためには能力の大
きな電気ヒータが必要とされ、設備費及び運転費に対す
る負担が大きくなる。また、高温ガス用配管15の途中
で循環ガス14に含まれている可燃成分の一部を燃焼さ
せ、循環ガス14を昇温させて高温乾留ガス4とするこ
とが考えられる(特開昭54〜62205号公報、特開
昭54−127903号公報等参照〉。
To solve this problem, the circulating gas 14
A possible method is to use an electric heater for heating. but,
In order to heat a large amount of circulating gas 14 to a high temperature, an electric heater with a large capacity is required, which increases the burden on equipment costs and operating costs. Furthermore, it is conceivable to burn part of the combustible components contained in the circulating gas 14 in the middle of the high-temperature gas piping 15 to raise the temperature of the circulating gas 14 and turn it into high-temperature carbonized gas 4 (Japanese Patent Laid-Open No. 54 -62205, JP-A-54-127903, etc.).

しかし、集塵機11を出た後の循環ガス14は常温近く
まで降温しており、これを約900〜950℃程度の高
温乾留ガス4に昇温させるには多量の可燃成分を燃焼さ
せることが必要である。その結果、燃焼反応生成物とし
て多量の水分が高温乾留ガス4に含まれ、直立型連続乾
留炉3内における石炭の乾留反応に悪影響を及ぼし、製
造されるコークスの品質低下をもたらす。しかも、自己
燃焼が充分に行われないため、所定温度の高温乾留ガス
4を安定して得ることができず、炉況が不安定になる。
However, the temperature of the circulating gas 14 after exiting the dust collector 11 has fallen to near room temperature, and in order to raise the temperature of this to high-temperature carbonized gas 4 of about 900 to 950°C, it is necessary to burn a large amount of combustible components. It is. As a result, a large amount of water is contained in the high-temperature carbonization gas 4 as a combustion reaction product, which adversely affects the carbonization reaction of coal in the vertical continuous carbonization furnace 3, resulting in a deterioration in the quality of the produced coke. Moreover, since self-combustion is not sufficiently performed, high-temperature carbonized gas 4 at a predetermined temperature cannot be stably obtained, and the furnace condition becomes unstable.

そこで、本発明は、循環ガスを高温乾留ガスにする加熱
方法に改良を加えることによって、設備費、運転費等の
高騰を招かずに、連続的に一定温度の高温乾留ガスを直
立型連続乾留炉に供給し、安定した炉況の下で優れた品
質のコークスを製造することを目的とする。
Therefore, by improving the heating method for converting circulating gas into high-temperature carbonization gas, the present invention aims to continuously carbonize high-temperature gas at a constant temperature by vertical continuous carbonization without causing a rise in equipment costs, operating costs, etc. The purpose is to supply coke to the furnace and produce excellent quality coke under stable furnace conditions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の高温乾留ガス加熱方法は、その目的を達成する
ために、直立型連続乾留炉の下部及び中間部に熱媒体と
してそれぞれ高温乾留ガス及び低温乾留ガスを吹き込み
成形炭を乾留して成形コークスを製造する際、前記直立
型連続乾留炉から排出された発生ガスの循環経路におい
て、間接換熱器で前記発生ガスを500℃以上に一次加
熱した後、前記発生ガスが前記直立型連続乾留炉に吹き
込まれる直前の流路に温度500℃以上の酸素含有ガス
を吹き込み、前記発生ガスに含まれている可燃成分の1
0%以下を燃焼させることにより前記発生ガスを昇温し
、該昇温後の発生ガスを前記高温乾留ガスとして前と直
立型連続乾留炉に吹き込むことを特徴とする。
In order to achieve the object, the high-temperature carbonization gas heating method of the present invention blows high-temperature carbonization gas and low-temperature carbonization gas as heating media into the lower and intermediate parts of an upright continuous carbonization furnace, respectively, and carbonizes the formed coal to form formed coke. When manufacturing, in the circulation path of the generated gas discharged from the vertical continuous carbonization furnace, after the generated gas is primarily heated to 500°C or higher with an indirect heat exchanger, the generated gas is transferred to the vertical continuous carbonization furnace. Oxygen-containing gas with a temperature of 500°C or higher is blown into the flow path immediately before it is blown into the gas, and one of the combustible components contained in the generated gas is
It is characterized in that the temperature of the generated gas is raised by burning 0% or less, and the generated gas after the temperature rise is blown into the upright continuous carbonization furnace as the high temperature carbonization gas.

〔作用〕[Effect]

第6図で示した集塵機11を出た後の循環ガス14は、
常温近くまで降温している。この循環ガス14に含まれ
ている可燃成分の燃焼によって、高温乾留ガス4として
必要な温度900〜950℃程度までに循環がス14を
昇温させるとき、たとえば燃焼後のガスに含まれている
水分が15%程度近くに上昇する。この水分含有量は、
乾留して得られたコークスの強度に大きな影響を与える
。ところが、本発明者等は、コークスの強度低下をもた
らす水分含有量に上限値があることを解明した。この上
限値は、成形炭2の性状及び高温乾留ガス4の目標温度
にもよるが、10%程度である。
The circulating gas 14 after exiting the dust collector 11 shown in FIG.
The temperature has dropped to near normal temperature. When the circulation raises the temperature of the gas 14 to a temperature of about 900 to 950°C required for the high-temperature carbonization gas 4 by combustion of the combustible components contained in the circulating gas 14, for example, the combustible components contained in the gas after combustion are heated. The moisture content will rise to around 15%. This water content is
It has a great influence on the strength of coke obtained by carbonization. However, the present inventors have discovered that there is an upper limit to the water content that causes a decrease in the strength of coke. This upper limit value is about 10%, although it depends on the properties of the coal briquette 2 and the target temperature of the high-temperature carbonization gas 4.

そこで、本発明においては、循環ガスを予め間接換熱器
で加熱することにより、高温乾留ガス4として必要な温
度(たとえば90(1〜’150℃)に循環がス14を
昇温させるために燃焼される可燃成分の割合を10%以
下に減らしている。その結果、循環ガス14の自燃によ
って目標温度にしたときにおいても、水分含有量を前述
の上限値10%以下に抑えることが可能になった。その
ため、得られた高温乾留ガス4を直立型連続乾留炉3に
吹き込んでも、炉況に何らの悪影響を与えることなく、
成形炭2のコークス化反応を維持することができる。
Therefore, in the present invention, by heating the circulating gas in advance with an indirect heat exchanger, the circulating gas can be heated to the temperature required for the high-temperature carbonization gas 4 (for example, 90 (1 to 150°C)). The proportion of combustible components to be burned is reduced to 10% or less.As a result, even when the target temperature is reached by self-combustion of the circulating gas 14, it is possible to suppress the moisture content to the above-mentioned upper limit of 10% or less. Therefore, even if the obtained high-temperature carbonization gas 4 is blown into the vertical continuous carbonization furnace 3, there will be no adverse effect on the furnace condition.
The coking reaction of the formed coal 2 can be maintained.

ここで、−次加熱後の循環ガスの温度は、500℃以上
とすることが必要である。この温度が500℃以上であ
るとき、酸素含有ガスを吹き込んで可燃成分を燃焼させ
る段階で、燃焼の結果として高温乾留ガスに含まれる水
分の量を上限値10%以下に抑えることができる。とこ
ろが、−次加熱後の温度が500℃未満であると、次の
工程で燃焼させる可燃成分の量が多くなり、その結果高
温乾留ガス4に含まれる水分含有量が10%を超え、石
炭のコークス化反応に悪影響が現れる。
Here, the temperature of the circulating gas after the secondary heating needs to be 500°C or higher. When this temperature is 500° C. or higher, the amount of moisture contained in the high-temperature carbonized gas as a result of combustion can be suppressed to an upper limit of 10% or less at the stage of blowing oxygen-containing gas to burn the combustible components. However, if the temperature after the second heating is less than 500°C, the amount of combustible components to be burned in the next step will increase, and as a result, the moisture content in the high-temperature carbonization gas 4 will exceed 10%, causing the coal to burn out. A negative effect appears on the coking reaction.

また、空気等の燃焼用の酸素含有ガスも500℃以上に
予熱してお(ことが必要である。この予熱により、循環
ガスと酸素含有ガスとの間の拡散が促進され、燃焼反応
が円滑に行われる。更に、安定した自己燃焼を維持する
ために、燃焼の開始を比較的酸素リッチな雰囲気で行う
。このため、酸素含有ガス/循環ガスの比率が1.0以
上の個所に配置した点火器が使用される。この点火器に
よって、可燃成分の燃焼が容易に開始される。
It is also necessary to preheat the oxygen-containing gas for combustion, such as air, to 500°C or higher. This preheating promotes the diffusion between the circulating gas and the oxygen-containing gas, making the combustion reaction smooth. In addition, in order to maintain stable self-combustion, combustion is started in a relatively oxygen-rich atmosphere.For this reason, the combustion chamber is placed at a location where the ratio of oxygen-containing gas/circulating gas is 1.0 or more. An igniter is used, which facilitates the initiation of combustion of the combustible components.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発明の特徴
を具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.

第1図は、本発明に従った高温乾留ガス加熱機構を組み
込んだ直立型連続乾留炉及びその付帯設備を示す。なお
、同図において、第6図に示した部材等に対応するもの
については、同一の符番で指示し、その説明を省略した
FIG. 1 shows an upright continuous carbonization furnace and its ancillary equipment incorporating a high-temperature carbonization gas heating mechanism according to the present invention. In addition, in the figure, parts corresponding to those shown in FIG. 6 are indicated by the same reference numerals, and their explanations are omitted.

高温ガス用配管15を流れる循環ガス14は、間接換熱
器27で、500℃以上の温度に加熱される。間接換熱
器27としては、レキュペレータ等の間接熱交換器が使
用される。たとえば、循環ガス14の流路を取り巻くよ
うに、或いは流路内に蛇行して配回された高温側配管に
高温ガスを供給し、管壁を介して高温ガスの保有熱を循
環ガス14に伝える。
The circulating gas 14 flowing through the high-temperature gas pipe 15 is heated to a temperature of 500° C. or higher by the indirect heat exchanger 27 . As the indirect heat exchanger 27, an indirect heat exchanger such as a recuperator is used. For example, high-temperature gas is supplied to a high-temperature side pipe that is arranged so as to surround the flow path of the circulating gas 14 or in a meandering manner within the flow path, and the retained heat of the high-temperature gas is transferred to the circulating gas 14 through the pipe wall. tell.

この高温ガスは、BFG、COG等を燃焼した排ガスで
ある。な右、この高温ガスによる循環ガス14の加熱は
、管壁を介した熱伝導によって行われるため、最高加熱
温度は約650℃程度である。
This high-temperature gas is exhaust gas obtained by burning BFG, COG, and the like. Furthermore, since heating of the circulating gas 14 by this high-temperature gas is performed by heat conduction through the tube wall, the maximum heating temperature is about 650°C.

間接倹熱器27の下流側で、酸素ガス導管28が高温ガ
ス用配管15に開口している。間接換熱器27で一次加
熱された後の循環ガス14に、酸素ガス導管28を経由
して所定量の酸素含有ガス29が吹き込まれる。酸素含
有ガス29としては、空気、純酸素。
On the downstream side of the indirect heat exchanger 27, an oxygen gas conduit 28 opens into the hot gas pipe 15. A predetermined amount of oxygen-containing gas 29 is blown into the circulating gas 14 that has been primarily heated by the indirect heat exchanger 27 via the oxygen gas conduit 28 . The oxygen-containing gas 29 is air or pure oxygen.

酸素富化空気等が使用される。この吹き込まれた酸素含
有ガス29によって、循環ガス14に含まれている可燃
成分の一部が燃焼し、その燃焼熱で循環ガス14が昇温
する。このとき、燃焼反応を円滑に行わせるため、酸素
含有ガス29を予め加熱器30で500 ℃以上の温度
に加熱する。
Oxygen-enriched air or the like is used. This blown oxygen-containing gas 29 causes some of the combustible components contained in the circulating gas 14 to burn, and the heat of combustion raises the temperature of the circulating gas 14. At this time, in order to smoothly carry out the combustion reaction, the oxygen-containing gas 29 is heated in advance to a temperature of 500° C. or higher using a heater 30.

高温ガス用配管15に対する酸素ガス導管28の開口位
置は、直立型連続乾留炉3の羽口に近い位置に定められ
る。これにより、燃焼熱の放散量及び高温ガス用配管1
5内壁に対する煤の付着範囲を減少させることができる
。また、第1図では、一つの酸素ガス導管28を示して
いるが、これに拘束されることなく複数の酸素ガス導管
28を高温ガス用配管15に開口させることもできる。
The opening position of the oxygen gas conduit 28 with respect to the high-temperature gas pipe 15 is determined to be close to the tuyere of the vertical continuous carbonization furnace 3. As a result, the amount of combustion heat dissipated and the high temperature gas piping 1
5. The range of soot adhesion to the inner wall can be reduced. Furthermore, although one oxygen gas conduit 28 is shown in FIG. 1, a plurality of oxygen gas conduits 28 may be opened into the high temperature gas pipe 15 without being restricted thereto.

第2図は、その−例を示す。本例の場合、直立型連続乾
留炉3に設けた複数の羽口3aに対応させて高温ガス用
配管15を分岐させ、個々の分岐管15aに酸素ガス導
管28を開口させる。このように分岐管15a内で自己
燃焼を行うとき、高温ガス用配管15を高温ガスが流れ
る間の熱放散による降温が無くなり、羽口3aに吹き込
まれるガスの温度が一定化される。
FIG. 2 shows an example. In this example, the high-temperature gas pipe 15 is branched in correspondence with the plurality of tuyeres 3a provided in the vertical continuous carbonization furnace 3, and the oxygen gas conduit 28 is opened in each branch pipe 15a. When self-combustion is performed in the branch pipe 15a in this manner, there is no temperature drop due to heat dissipation while the high-temperature gas flows through the high-temperature gas pipe 15, and the temperature of the gas blown into the tuyere 3a is kept constant.

第3図は、高温ガス用配管15に対する酸素ガス導管2
8の開口部の一例を示す。本例においては、同図(a)
に示すように、高温ガス用配管15の途中に形成した大
径部15aに酸素ガス導管28を開口している。また、
同図ら)に示すように、大径部15aの接線方向に酸素
ガス導管28を開口している。これにより、酸素ガス導
管28から大径部15aに流入した酸素含有ガス29は
、大径部15aの内壁に沿って渦流として流れる。他方
、高温ガス用配管15から送られて来た一次加熱後の循
環ガス14は、流路断面積の大きな大径部15aで拡散
する。そのため、循環ガス14と酸素含有ガス29との
混合が充分に行われ、燃焼が円滑に進行する。また、大
径部15aから出るところで、燃焼後のガスが圧縮され
るので、均一な温度分布をもつ高温乾留ガス4として送
り出される。
FIG. 3 shows the oxygen gas conduit 2 connected to the high temperature gas piping 15.
An example of the opening of No. 8 is shown. In this example, the same figure (a)
As shown in FIG. 2, an oxygen gas conduit 28 is opened in a large diameter portion 15a formed in the middle of the high temperature gas piping 15. Also,
As shown in FIGS. 3A and 3B, an oxygen gas conduit 28 is opened in the tangential direction of the large diameter portion 15a. As a result, the oxygen-containing gas 29 flowing into the large diameter portion 15a from the oxygen gas conduit 28 flows as a vortex along the inner wall of the large diameter portion 15a. On the other hand, the primary heated circulating gas 14 sent from the high-temperature gas piping 15 is diffused in the large-diameter portion 15a having a large flow path cross-sectional area. Therefore, the circulating gas 14 and the oxygen-containing gas 29 are sufficiently mixed, and combustion proceeds smoothly. Moreover, since the gas after combustion is compressed at the point where it exits from the large-diameter portion 15a, it is sent out as a high-temperature carbonized gas 4 having a uniform temperature distribution.

ここで、酸素ガス導管28が大径部15a に開口して
いる個所に、点火器31が設けられている。この個所は
、酸素含有ガス/循環ガスの比率が1.0以上であるた
め、循環ガスの可燃成分に対する着火が迅速に行われる
。なお、点火器31は、酸素ガス導管28から噴出され
ている酸素含有ガス29が晒環ガス14に充分拡散され
ておらず、未だ酸素含有単が高い位置である限り、酸素
ガス導管28の開口部近傍に設けることができる。
Here, an igniter 31 is provided at a location where the oxygen gas conduit 28 opens into the large diameter portion 15a. In this location, since the ratio of oxygen-containing gas/circulating gas is 1.0 or more, the combustible components of the circulating gas are quickly ignited. Note that the igniter 31 closes the opening of the oxygen gas conduit 28 as long as the oxygen-containing gas 29 ejected from the oxygen gas conduit 28 has not been sufficiently diffused into the exposed ring gas 14 and the oxygen-containing gas 29 is still at a high position. It can be provided near the section.

第4図は、酸素ガス導管28から高温ガス用配管15に
供給される酸素含をガス29の流量を、高温乾留ガス4
の目標温度に基づいて制御する機構の一例を説明する図
である。
FIG. 4 shows the flow rate of the oxygen-containing gas 29 supplied from the oxygen gas conduit 28 to the high temperature gas pipe 15, and the flow rate of the high temperature carbonized gas 4.
FIG. 3 is a diagram illustrating an example of a mechanism for controlling based on a target temperature.

酸素ガス導管28の途中にはオリフィス32が設けられ
ており、オリフィス32前後の酸素ガス導管28を流れ
る酸素含有ガス29の圧力差を差圧発振器33で検出し
て流量計34に送り、酸素含有ガス29の流量を検出す
る。検出された流量は、演算器35に入カされる。他方
、高温ガス用配管15には熱電対等の温度計36が付設
されており、温度計36によって検出された高温ガス用
配管15を流れる高温乾留ガス4の温度力く演算器35
に入力される。
An orifice 32 is provided in the middle of the oxygen gas conduit 28, and a differential pressure oscillator 33 detects the pressure difference in the oxygen-containing gas 29 flowing through the oxygen gas conduit 28 before and after the orifice 32, and sends it to a flow meter 34. The flow rate of gas 29 is detected. The detected flow rate is input to the calculator 35. On the other hand, a thermometer 36 such as a thermocouple is attached to the high-temperature gas pipe 15, and a calculator 35 calculates the temperature of the high-temperature carbonized gas 4 flowing through the high-temperature gas pipe 15 detected by the thermometer 36.
is input.

演算器35では、温度計36からの温度検出値を設定値
と比較する。検出した温度が設定値よりも低い場合には
、酸素ガス導管28を流れる酸素含有ガス29の流量を
増加するように、流量調整弁37を開く指令を弁開度調
節器38に出力する。その結果、酸素ガス導管28の開
口部28a近傍での燃焼が促進され、高温乾留ガス4の
温度が高くなる。他方、温度計36で検出した温度が高
い場合には、流量調整弁37を絞り、酸素含有ガス29
の供給量を減らし燃焼反応を抑制する。このようにして
、直立型連続乾留炉3に吹き込まれる高温乾留ガス4の
温度が一定に維持される。なお、高温ガス用配管15に
は酸素分析器39が付設されており、酸素分析器39に
よって検出された高温乾留ガス4の酸素含有量が酸素レ
コーダ40に記録される。
The calculator 35 compares the detected temperature value from the thermometer 36 with a set value. If the detected temperature is lower than the set value, a command to open the flow rate regulating valve 37 is output to the valve opening controller 38 so as to increase the flow rate of the oxygen-containing gas 29 flowing through the oxygen gas conduit 28. As a result, combustion near the opening 28a of the oxygen gas conduit 28 is promoted, and the temperature of the high-temperature carbonized gas 4 increases. On the other hand, if the temperature detected by the thermometer 36 is high, the flow rate adjustment valve 37 is throttled and the oxygen-containing gas 29 is
This reduces the amount of gas supplied and suppresses the combustion reaction. In this way, the temperature of the high-temperature carbonization gas 4 blown into the vertical continuous carbonization furnace 3 is maintained constant. Note that an oxygen analyzer 39 is attached to the high-temperature gas pipe 15, and the oxygen content of the high-temperature carbonized gas 4 detected by the oxygen analyzer 39 is recorded on an oxygen recorder 40.

次段は、集塵機11を経由して来た循環ガス14を一次
加熱及び自燃で目標温度の高温乾留ガス4に加熱したと
きの操業条件を示す。なお、循環ガス14は、8253
%、CH4192%、CO3,7%、N219.1%、
CO23,6%、  (、H,0,2%、(,2861
J%の組成をもつものとし、この循環ガス14を必要な
量だけ間接換熱器27に送り込み、間接換熱器27で一
次加熱するものとする。そして、二次加熱のための酸素
含有ガス29として加熱器30で600 ℃に予熱した
空気を使用するという前提である。
The next stage shows operating conditions when the circulating gas 14 that has passed through the dust collector 11 is heated to a high temperature carbonized gas 4 at a target temperature by primary heating and self-combustion. Note that the circulating gas 14 is 8253
%, CH4192%, CO3,7%, N219.1%,
CO23,6%, (,H,0,2%, (,2861
It is assumed that the circulating gas 14 has a composition of J%, and a necessary amount of the circulating gas 14 is sent to the indirect heat exchanger 27, where it is primarily heated. The assumption is that air preheated to 600° C. by the heater 30 is used as the oxygen-containing gas 29 for secondary heating.

(以下、このページ余白) 第 表 注 流量はNm’/分 ドライ、回収ガス熱量はKcal/Nm”単位で表した
(Hereinafter, the margin of this page) The injection rate in the table is expressed in Nm'/min dry, and the recovered gas calorific value is expressed in Kcal/Nm'' units.

第1表から明らかなように、−次加熱で循環ガス14を
500℃以上に加熱すると、次の加熱工程で発生させる
燃焼熱が少なくて済むため、得られた高温乾留ガス4に
含まれる水分含を量を上限値10%以下に抑えることが
できる。
As is clear from Table 1, when the circulating gas 14 is heated to 500°C or higher in the secondary heating, less combustion heat is generated in the next heating step, so the moisture contained in the obtained high-temperature carbonized gas 4 is reduced. The content can be suppressed to below the upper limit of 10%.

第5図は、この高温乾留ガス4に含まれる水分含有量が
直立型連続乾留炉3内におけるコークス化反応に与える
影響を表したグラフである。第5図から明らかなように
、直立型連続乾留炉3に吹き込まれる高温乾留ガス4の
水分含有量が低くなるに従って、得られたコークスの強
度が高くなっている。そして、この傾向は、特に最終乾
留温度を高くしたときに顕著に現れる。この点、本実施
例においては、水分含有量の低い高温乾留ガス4を使用
しているので、製造されたコークスの強度p 1i5Q
は確実に目標値84を超えるものであった。
FIG. 5 is a graph showing the influence of the water content contained in the high-temperature carbonization gas 4 on the coking reaction in the vertical continuous carbonization furnace 3. As is clear from FIG. 5, as the moisture content of the high-temperature carbonization gas 4 blown into the vertical continuous carbonization furnace 3 decreases, the strength of the obtained coke increases. This tendency becomes particularly noticeable when the final carbonization temperature is increased. In this regard, in this example, since high-temperature carbonization gas 4 with a low moisture content is used, the strength of the produced coke is p 1i5Q
definitely exceeded the target value of 84.

したがって、このコークスを運搬し、高炉に装入してい
る段階で粉化する割合が小さく、また安定した条件下で
高炉の操業を行うことができた。
Therefore, the proportion of pulverization during the transportation and charging of this coke into the blast furnace was small, and the blast furnace could be operated under stable conditions.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、連続式コー
クス製造設備の直立型連続乾留炉に吹き込まれる高温乾
留ガスを、循環ガスを間接換熱器で一次加熱した後、可
燃成分の燃焼により生成した燃焼熱で目標温度に加熱す
ることによって得ている。そのため、二次燃焼時に消費
される可燃成分の量を少なくし、水分含有量の低い高温
乾留ガスが得られ、炉況に悪影響を与えることなく石炭
のコークス化を行うことが可能となる。しかも、蓄熱炉
を備えた熱風炉を使用した場合と異なり、一定温度の高
温乾留ガスを連続して得ることができ、直立型連続乾留
炉の炉、内温度分布に対する外乱が少なくなる。また、
複雑で高価な切換弁や配管を備えた熱風炉を必要とする
ことなく、目標温度をもつ高温乾留ガスが得られるため
、設備自体も簡単なものとなり、設備費、運転費に対す
る負担も軽減される。
As explained above, in the present invention, the high-temperature carbonization gas blown into the vertical continuous carbonization furnace of continuous coke manufacturing equipment is generated by the combustion of combustible components after the circulating gas is primarily heated with an indirect heat exchanger. This is achieved by heating the target temperature using the heat of combustion. Therefore, the amount of combustible components consumed during secondary combustion is reduced, high-temperature carbonized gas with low moisture content is obtained, and coal can be coked without adversely affecting furnace conditions. Moreover, unlike the case of using a hot blast furnace equipped with a regenerative furnace, high-temperature carbonization gas at a constant temperature can be continuously obtained, and disturbances to the temperature distribution inside the upright continuous carbonization furnace are reduced. Also,
Because high-temperature carbonized gas at the target temperature can be obtained without the need for a hot air stove with complicated and expensive switching valves and piping, the equipment itself is simple and the burden on equipment and operating costs is reduced. Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従った加熱機構を組み込んだ連続式コ
ークス製造設備を示すフロー図、第2図は高温ガス用配
管の分岐管それぞれに酸素ガス導管を開口させた例を示
し、第3図は高温ガス用配管に対する酸素ガス導管の開
口状態を示し、第4図は高温乾留ガスの温度を目標値に
制御する機構を示し、第5図は高温乾留ガスの水分含有
量がコークス強度に与える影響を表したグラフである。 他方、第6図は従来の連続式コークス製造設備を示すフ
ロー図、第7図はそれに組み込まれた熱風炉型のガス加
熱器を示す。 3;直立型連続乾留炉 4:高温乾留ガス5:低温乾留
ガス   8:乾留コークス14:循環ガス     
27:間接換熱器28;酸素ガス導管
Fig. 1 is a flow diagram showing a continuous coke manufacturing facility incorporating a heating mechanism according to the present invention, Fig. 2 shows an example in which an oxygen gas pipe is opened in each branch pipe of a high temperature gas pipe, and Fig. The figure shows the opening state of the oxygen gas conduit to the high-temperature gas pipe, Figure 4 shows the mechanism for controlling the temperature of the high-temperature carbonization gas to the target value, and Figure 5 shows the influence of the moisture content of the high-temperature carbonization gas on coke strength. This is a graph showing the influence. On the other hand, FIG. 6 is a flowchart showing a conventional continuous coke production facility, and FIG. 7 shows a hot air oven type gas heater incorporated therein. 3; Vertical continuous carbonization furnace 4: High-temperature carbonization gas 5: Low-temperature carbonization gas 8: Carbonization coke 14: Circulating gas
27: Indirect heat exchanger 28; Oxygen gas pipe

Claims (1)

【特許請求の範囲】[Claims] 1、直立型連続乾留炉の下部及び中間部に熱媒体として
それぞれ高温乾留ガス及び低温乾留ガスを吹き込み成形
炭を乾留して成形コークスを製造する際、前記直立型連
続乾留炉から排出された発生ガスの循環経路において、
間接換熱器で前記発生ガスを500℃以上に一次加熱し
た後、前記発生ガスが前記直立型連続乾留炉に吹き込ま
れる直前の流路に温度500℃以上の酸素含有ガスを吹
き込み、前記発生ガスに含まれている可燃成分の10%
以下を燃焼させることにより前記発生ガスを昇温し、該
昇温後の発生ガスを前記高温乾留ガスとして前記直立型
連続乾留炉に吹き込むことを特徴とする連続式コークス
製造設備における高温乾留ガス加熱方法。
1. When producing molded coke by carbonizing briquette coal by blowing high-temperature carbonization gas and low-temperature carbonization gas as heating media into the lower and intermediate parts of the vertical carbonization furnace, the emissions discharged from the vertical carbonization furnace. In the gas circulation path,
After the generated gas is primarily heated to 500° C. or higher using an indirect heat exchanger, an oxygen-containing gas having a temperature of 500° C. or higher is blown into the flow path immediately before the generated gas is blown into the vertical continuous carbonization furnace. 10% of the combustible components contained in
High-temperature carbonization gas heating in continuous coke manufacturing equipment, characterized in that the temperature of the generated gas is raised by burning the following, and the generated gas after the temperature rise is blown into the vertical continuous carbonization furnace as the high-temperature carbonization gas: Method.
JP63296535A 1988-07-15 1988-11-24 High-temperature carbonization gas heating method in continuous coke production equipment Expired - Lifetime JP2609306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296535A JP2609306B2 (en) 1988-07-15 1988-11-24 High-temperature carbonization gas heating method in continuous coke production equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17729488 1988-07-15
JP63-177294 1988-07-15
JP63296535A JP2609306B2 (en) 1988-07-15 1988-11-24 High-temperature carbonization gas heating method in continuous coke production equipment

Publications (2)

Publication Number Publication Date
JPH02124996A true JPH02124996A (en) 1990-05-14
JP2609306B2 JP2609306B2 (en) 1997-05-14

Family

ID=26497889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296535A Expired - Lifetime JP2609306B2 (en) 1988-07-15 1988-11-24 High-temperature carbonization gas heating method in continuous coke production equipment

Country Status (1)

Country Link
JP (1) JP2609306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517779A (en) * 1991-07-10 1993-01-26 Nippon Steel Corp High-temperature carbonized gas heater in continuous coke producing facilities
JPH0726267A (en) * 1993-07-12 1995-01-27 Kawasaki Steel Corp Process and apparatus for heating high-temperature carbonization gas in upright continuous formed coke producer
JP2013142090A (en) * 2012-01-06 2013-07-22 Nippon Steel & Sumikin Engineering Co Ltd Method and apparatus for producing formed coke

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262306A (en) * 1975-11-19 1977-05-23 Nippon Steel Corp Coking of briquette

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262306A (en) * 1975-11-19 1977-05-23 Nippon Steel Corp Coking of briquette

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517779A (en) * 1991-07-10 1993-01-26 Nippon Steel Corp High-temperature carbonized gas heater in continuous coke producing facilities
JPH0726267A (en) * 1993-07-12 1995-01-27 Kawasaki Steel Corp Process and apparatus for heating high-temperature carbonization gas in upright continuous formed coke producer
JP2013142090A (en) * 2012-01-06 2013-07-22 Nippon Steel & Sumikin Engineering Co Ltd Method and apparatus for producing formed coke

Also Published As

Publication number Publication date
JP2609306B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP6354962B2 (en) Oxygen blast furnace operation method
JP6256710B2 (en) Oxygen blast furnace operation method
KR920004676B1 (en) Process and apparatus for producing steel from scrap
CN204752780U (en) Melting reduction iron -smelting device
JP6777894B2 (en) Oxygen blast furnace equipment and method of manufacturing pig iron using the oxygen blast furnace equipment
JPH02124996A (en) Method for heating high-temperature carbonization gas in continuous coking installation
TW404983B (en) Scrap melting method
JP6922864B2 (en) Pig iron manufacturing equipment and pig iron manufacturing method using it
JP2774923B2 (en) High-temperature carbonized gas heating method and apparatus in vertical type continuously formed coke manufacturing equipment
JPH0517779A (en) High-temperature carbonized gas heater in continuous coke producing facilities
JP6919632B2 (en) Pig iron manufacturing equipment and pig iron manufacturing method using it
TWI758025B (en) Blast furnace operation method and blast furnace accessory equipment
LU102438B1 (en) Method for operating a blast furnace plant
BR102013033702A2 (en) metallurgical furnace
US2549720A (en) Method of and apparatus for regulating blast furnace top temperature
CN115418433B (en) High-temperature furnace drying method for opening new converter
JP7445842B2 (en) Gas reduction blast furnace and its operating method
JPH09229351A (en) Combustion method for heating furnace
GB2437958A (en) Operating ferrous and non-ferrous bast furnaces
US3061296A (en) Blast air preheating system for cupola furnaces and the like
US976966A (en) Iiouse
US3193379A (en) Method of operating a blast furnace
JP2002303412A (en) Method for gasifying and melting waste
US1974772A (en) Operating smelting furnaces
US1069865A (en) Process of treating combustible metallurgical-furnace gas to increase its calorific value.

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12