JPS59222927A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59222927A
JPS59222927A JP9920083A JP9920083A JPS59222927A JP S59222927 A JPS59222927 A JP S59222927A JP 9920083 A JP9920083 A JP 9920083A JP 9920083 A JP9920083 A JP 9920083A JP S59222927 A JPS59222927 A JP S59222927A
Authority
JP
Japan
Prior art keywords
zinc
layer
oxygen plasma
thin film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9920083A
Other languages
Japanese (ja)
Inventor
Shunji Otani
大谷 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9920083A priority Critical patent/JPS59222927A/en
Publication of JPS59222927A publication Critical patent/JPS59222927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Abstract

PURPOSE:To enable to manufacture a highly reliable semiconductor device at a high yield rate by a method wherein the crystal surface where zinc is diffused by performing a sealed tube method is cleaned using oxygen plasma, thereby enabling to remove a thin film layer easily and to perform an excellent metallization. CONSTITUTION:After an aperture has been provided on an SiO2 film 6, zinc and arsenic or zinc arsenide are vacuum-sealed in a quartz ampul as a source, a diffusion is performed using a sealed tube, and a P<+> layer 7 is formed. the above is exposed in oxygen plasma using a plasma etching device. Subsequently, a metallization is performed. A thin film layer 11 is removed by performing the oxygen plasma as abovementioned, an excellent ohmic contact is obtained, and also no exfoliation of an electrode is generated.

Description

【発明の詳細な説明】 (技術分野) 本発明は、半導体装置の製造法に関し、特に■−V族化
合物半導体の表面にZnが拡散されている場合において
、メタライゼーションの前処理としての前記表面の処理
法に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for manufacturing a semiconductor device, and in particular, when Zn is diffused on the surface of a -V group compound semiconductor, the surface is treated as a pre-treatment for metallization. Regarding the processing method.

(従来技術とその問題点) 111−V族化合物半導体を用いた発光素子を製造する
場合、P型半導体層にオーミック電極を形成する必要が
ある。ところでP型半導体に良好なオーミック電極を形
成するためには、一般に半導体のキャリヤ濃度を少くと
もl X I Q ”tri3以上まで高くすることが
望ましいが、そのために、封管法による亜鉛(Zn)の
拡散法が広く用いられている。
(Prior art and its problems) When manufacturing a light emitting device using a 111-V group compound semiconductor, it is necessary to form an ohmic electrode on a P-type semiconductor layer. By the way, in order to form a good ohmic electrode on a P-type semiconductor, it is generally desirable to increase the carrier concentration of the semiconductor to at least 1 The diffusion method is widely used.

このような製造法を用いた半導体装置の代表的な例とし
てガリウムアルミニウム砒素(GaAIAs)ダブルへ
テロ接合型発光ダイオードが挙げられる。
A typical example of a semiconductor device using such a manufacturing method is a gallium aluminum arsenide (GaAIAs) double heterojunction type light emitting diode.

以下発光ダイオードの製造への実施例を用いて本発明の
詳細な説明する。
The present invention will be described in detail below using an example for manufacturing a light emitting diode.

第1図は、光通信用高輝度発光ダイオードの断面を示す
概念図である。砒化ガリウム(GaAs )基板1上に
活性層3を含んだ四つのエビクキシャルWj 2 、3
 、4. 、5  が形成されており、ダブルへテロ接
合となるために所定のアルミニウムや不純Qjが添加さ
れている。エビクキシャル層5の」二に電流注入用の窓
孔を有する二酸化シリコン(S 102)膜6が形成さ
れており、窓孔部下のエビクキシャル層(GaAIAs
)に亜鉛(Zn)が拡散されたP−−7を有している。
FIG. 1 is a conceptual diagram showing a cross section of a high-brightness light emitting diode for optical communication. Four evixical layers Wj 2 , 3 including an active layer 3 on a gallium arsenide (GaAs) substrate 1
,4. , 5 are formed, and predetermined aluminum and impurity Qj are added to form a double heterojunction. A silicon dioxide (S102) film 6 having a window hole for current injection is formed on the second side of the evidential layer 5, and the evixical layer (GaAIAs) under the window hole is formed.
) has P--7 in which zinc (Zn) is diffused.

亜鉛拡散層上には、前記窓孔を通してオーミックコンタ
クトされた電極金属膜8が形成されており、前記二酸化
シリコン膜6上にも同時に形成されている。基板lの反
対の面にも電極金属9が形成されている。そして基板に
は、発光した光を外部へ取り出すための窓あけが行われ
ており、エピタキシャル層2が露出している。
An electrode metal film 8 is formed on the zinc diffusion layer and is in ohmic contact through the window hole, and is also formed on the silicon dioxide film 6 at the same time. Electrode metal 9 is also formed on the opposite surface of substrate l. A window is formed in the substrate to take out the emitted light to the outside, and the epitaxial layer 2 is exposed.

このような41へ造を有する発光ダイオードの製造工程
の中で本発明に関係する部分を示すと次のようになる。
The steps related to the present invention in the manufacturing process of a light emitting diode having such a 41-shaped structure are as follows.

S + 02膜の開化部を形成した後、亜鉛(Zn)と
砒素あるいは砒化亜鉛(ZnAs2)をサースとして石
英アンプル内に真空封入して600〜700°C程度に
加熱し、封管による拡散を行い、P″一層7 を形成す
る。しかる後に、オーミックコンタクトのためのメタラ
イゼーション工程を行う。
After forming the open part of the S + 02 film, zinc (Zn) and arsenic or zinc arsenide (ZnAs2) are vacuum sealed in a quartz ampoule as saas and heated to about 600 to 700°C to prevent diffusion using a sealed tube. Then, a metallization process for ohmic contact is performed.

しかるに、亜鉛(Zn)が拡散されたエピタキシャル層
の表面に何の処理もせずにメタライゼーションを行うと
、オーミック電極の接触抵抗が著しく高くなって順方向
電圧の高い素子となり、電極8の密着性が弱いために、
後の組立工程において前記電極がはがれるため歩留りが
著しく低下することが、しばしば生じる。この原因は、
封管拡散中に露出したエピタキシャル層6の表面が拡散
層 −一スにより汚染し、何らかの薄膜層が形成されて
いるためと考えられる。薄膜層の厚さは数100A′以
下である。この薄膜層は、耐薬品性が高い。
However, if metallization is performed on the surface of the epitaxial layer in which zinc (Zn) is diffused without any treatment, the contact resistance of the ohmic electrode becomes extremely high, resulting in a device with a high forward voltage, and the adhesion of the electrode 8 becomes poor. Because it is weak,
It often happens that the electrode peels off during the subsequent assembly process, resulting in a significant reduction in yield. The cause of this is
This is thought to be because the surface of the epitaxial layer 6 exposed during the sealed tube diffusion was contaminated by the diffusion layer and some kind of thin film layer was formed. The thickness of the thin film layer is several hundred A' or less. This thin film layer has high chemical resistance.

このような薄膜層を除去するための方法としては、従来
化学エツチングが行われていた。しかしこの方法には次
のような欠点がある。薄j漢層の組成、厚さは不均一で
あり、ピンホールも多くあるために、薄膜層のエツチン
グが1ffLむ段階で、結晶(エピタキシャル層)表面
が露出すると、薄膜層ノ方カ耐エツチング性に強いため
に、結晶の方が速くエツチングされてしまい。結晶の表
面に凹凸が生じ拡散層がエツチングされてしまうことに
なる。この凹凸の量は多いときには3〜5μInになる
ことがある。
Chemical etching has conventionally been used as a method for removing such thin film layers. However, this method has the following drawbacks. The composition and thickness of the thin layer are non-uniform, and there are many pinholes, so if the crystal (epitaxial layer) surface is exposed at the stage where the thin film layer is etched by 1ffL, the etching resistance of the thin film layer will deteriorate. Crystals are more resistant to corrosion, so they are etched faster. This results in unevenness on the surface of the crystal and etching of the diffusion layer. When the amount of this unevenness is large, it may be 3 to 5 μIn.

(発明の目的) 本発明の目的は、封管法により亜鉛(Z n )  を
拡散するときに化合物半導体の結晶表面に生じる薄膜層
を容易に取除き良好なメクラゼーションを行うことによ
り、信頼度の高い製品を歩留りよく製造する事のできる
新規な製造法を提供することにある。
(Objective of the Invention) The object of the present invention is to easily remove the thin film layer that occurs on the crystal surface of a compound semiconductor when diffusing zinc (Zn) using the sealed tube method, thereby improving reliability. The purpose of the present invention is to provide a new manufacturing method that can produce products with high yields.

(発明の内容〕 本発明の内容を実施例について説明する。ただし、本発
明とは直接関係しない工程については省略する。
(Contents of the Invention) The contents of the present invention will be explained with reference to Examples.However, steps not directly related to the present invention will be omitted.

第2図は、本発明の半導体表面の処理法を示す概念図で
ある。
FIG. 2 is a conceptual diagram showing the semiconductor surface treatment method of the present invention.

亜鉛(Zn)の拡散を行った後、プラズマエヅチング装
置を用い酸素プラズマ中に約10分さらす。
After zinc (Zn) is diffused, it is exposed to oxygen plasma for about 10 minutes using a plasma etching device.

このとき例えば真空度は5 torr  で高周波出力
は100W  である。この後、メタライゼーションを
行う。このような酸素プラズマ処理により薄膜層が除か
れる。酸素プラズマを行った試料では良好なオーミック
コンタクトが得られ、電極のはがれも生じなかった。酸
素プラズマ処理によるため、結晶表面はエツチングされ
ないという利点がある。
At this time, for example, the degree of vacuum is 5 torr and the high frequency output is 100W. After this, metallization is performed. Such oxygen plasma treatment removes the thin film layer. Good ohmic contact was obtained with the sample treated with oxygen plasma, and no electrode peeling occurred. Since oxygen plasma treatment is used, there is an advantage that the crystal surface is not etched.

なお本発明では、5in2膜の窓孔から拡散を行い、そ
の後酸素プラズマ処理を行ったが、Sin。
In the present invention, diffusion was performed through the window hole of the 5in2 film, and then oxygen plasma treatment was performed.

膜のあるなしは、本特許とは無関係である。The presence or absence of a membrane is irrelevant to this patent.

(発明の効果) 本発明によれば、封管法による亜鉛拡散工程中に生成し
た結晶表面の薄膜層を均一に除くことができ、しかも、
結晶表面をエツチングすることはないので、素子の構造
を破壊することはない。
(Effects of the Invention) According to the present invention, it is possible to uniformly remove the thin film layer formed on the crystal surface during the zinc diffusion process using the sealed tube method, and further,
Since the crystal surface is not etched, the structure of the device is not destroyed.

本発明により、直列抵抗が低くて信頼度の高し)発光ダ
イオードが実現される。
According to the present invention, a light emitting diode (with low series resistance and high reliability) is realized.

本発明は、いわゆる半導体レーザやその他の化合物半導
体素子の製造において同様の効果が得られることは言う
までもない。材料はGaAlAsに限ることなく 1n
GaAsP、InGaAs、InPその細化合物半導体
であっても同様の効果が得られることは当然である。
It goes without saying that the present invention can provide similar effects in the manufacture of so-called semiconductor lasers and other compound semiconductor devices. The material is not limited to GaAlAs.
It goes without saying that similar effects can be obtained with fine compound semiconductors such as GaAsP, InGaAs, and InP.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高輝度発光ダイオードの断面構造概念を示す図
、第2図は本発明による製造法を示す図である。 図中1はn型GaAs基板 2はn型Ga、  、AlxAs エピタキシャル層3
はP型Ga、  、AlyAsエピクキシャル層4はP
型Ga、□xA I XASエピクキシャル層5は  
P型Gel、−7AlzAs エビクキシャル層6は 
 5102膜 7は  Zn拡散層(p  ) 8.9は 電極金属膜 10は 光取出し窓 ]1は 薄膜層である。
FIG. 1 is a diagram showing a conceptual cross-sectional structure of a high-brightness light emitting diode, and FIG. 2 is a diagram showing a manufacturing method according to the present invention. In the figure, 1 is an n-type GaAs substrate 2 is an n-type Ga, AlxAs epitaxial layer 3
is P-type Ga, , AlyAs epitaxial layer 4 is P-type
The type Ga, □xA I XAS epitaxial layer 5 is
P-type Gel, -7AlzAs evixical layer 6 is
5102 film 7 is a Zn diffusion layer (p) 8.9 is an electrode metal film 10 is a light extraction window] 1 is a thin film layer.

Claims (1)

【特許請求の範囲】[Claims] l)封管法に゛より亜鉛が拡散されたm−v族化合物半
導体の表面に電極を形成する工程において、先に前記結
晶表面を酸素プラズマにより清浄化することを特徴とす
る半導体装置の製造方法。
l) Manufacturing a semiconductor device characterized in that in the step of forming an electrode on the surface of an m-v group compound semiconductor in which zinc is diffused by a sealed tube method, the crystal surface is first cleaned with oxygen plasma. Method.
JP9920083A 1983-06-02 1983-06-02 Manufacture of semiconductor device Pending JPS59222927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9920083A JPS59222927A (en) 1983-06-02 1983-06-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9920083A JPS59222927A (en) 1983-06-02 1983-06-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59222927A true JPS59222927A (en) 1984-12-14

Family

ID=14241004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9920083A Pending JPS59222927A (en) 1983-06-02 1983-06-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59222927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252134A (en) * 1986-04-24 1987-11-02 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252134A (en) * 1986-04-24 1987-11-02 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor device

Similar Documents

Publication Publication Date Title
JP2953468B2 (en) Compound semiconductor device and surface treatment method thereof
KR100952654B1 (en) Method of fabricating nitride semiconductor device
US4713354A (en) Method of heat treatment for reduction of dislocation density near III-V substrate surface
JP2003046117A (en) Method for manufacturing semiconductor light-emitting element
US4705760A (en) Preparation of a surface for deposition of a passinating layer
JPS59222927A (en) Manufacture of semiconductor device
JPH1041254A (en) Ohmic electrode and forming method thereof
JPH09162441A (en) Semiconductor device and its production
JPS59225520A (en) Manufacture of semiconductor device
JPH02196426A (en) Selective etching method for arsenic aluminium gallium
JPH06120163A (en) Forming of electrode of semiconductor device
JPS634345B2 (en)
KR900008408B1 (en) Electrode formulating method for iii-v family compound semiconductor device
JP2608448B2 (en) Processing method of GaAs substrate
JPH11284222A (en) Semiconductor device
JP3734534B2 (en) Method for forming Schottky barrier of compound semiconductor
JPH03284886A (en) Semiconductor element and forming method therefor
JPH03196617A (en) Impurity diffusion
JPH10242576A (en) Manufacture of semiconductor light emitting element
JPH11177080A (en) Manufacture of semiconductor device
JPH05235406A (en) Semiconductor light-emitting device
JPH08186286A (en) Semiconductor light-emitting element
JPS6242532A (en) Surface treating method of compound semiconductor
JPH0313739B2 (en)
JPH06196473A (en) Surface treating method of semiconductor device