JPH06120163A - Forming of electrode of semiconductor device - Google Patents

Forming of electrode of semiconductor device

Info

Publication number
JPH06120163A
JPH06120163A JP33213992A JP33213992A JPH06120163A JP H06120163 A JPH06120163 A JP H06120163A JP 33213992 A JP33213992 A JP 33213992A JP 33213992 A JP33213992 A JP 33213992A JP H06120163 A JPH06120163 A JP H06120163A
Authority
JP
Japan
Prior art keywords
electrode
sputtering
gaalas
electrode material
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33213992A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Yatani
光芳 八谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP33213992A priority Critical patent/JPH06120163A/en
Publication of JPH06120163A publication Critical patent/JPH06120163A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain good ohmic characteristics as well as deposit characteristics in the forming of an ohmic contact electrode on the surface of a crystal comprising III-V compound semiconductors including Al by treating the crystal surface by sputtering in a vacuum device and eliminating oxides. CONSTITUTION:Ga on the surface of a GaAlAs layer, which is formed on top of a semiconductor insulating substrate 1 comprising GaAs, is first removed, and an oxide formed on the surface of the GaAlAs layer 2 is removed by reverse sputtering in normal high frequency in a vacuum device. Next, N side electrode 8 is formed by normal sputtering. For electrode material, any materials will suffice so long as it provides ohmic contact for GaAlAs of the N type. In this instant, after reverse sputtering, by sputtering the next electrode material in the same vacuum device, the GaAlAs surface which has been exposed during the sputtering can form an electrode material on a clean surface without being in touch with the oxidation atmosphere. Subsequently, it is subjected to a few minutes of heat treatment in a nitrogen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、半導体装置の電極形成
方法に係り、特にAlを含むIII−V族化合物半導体基板
表面への電極の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming electrodes on a semiconductor device, and more particularly to a method for forming electrodes on the surface of a III-V compound semiconductor substrate containing Al.

【従来の技術】近年、III−V族化合物半導体の特長を活
かした発光ダイオード、半導体レーザー、電界効果トラ
ンジスタ、フォトダイオード等の種々の素子が実用化さ
れ、その応用分野も増々広がってきている。しかし、こ
れらの化合物半導体材料は、Si等の単元素材料と比べ
て物理的性質が素子製作過程で複雑に変化し、素子製作
工程も単純でなく高度の技術を要する場合が多い。特に
Alを含む化合物半導体表面は不安定で製作途中の熱処
理や化学処理で変化しやすく、オーミック接触のための
電極形成が行いにくい問題がある。これに対し種々の対
策検討が行われてきた。図3は、この従来例の一つであ
る特開昭56−116619号公報に開示された電極形
成方法の説明図である。この方法によれば、先ず、Ga
Asからなる半導体絶縁基板1上に液相エピタキシャル
法を用いてTeドープ(n≒5〜10×1017cm-3
のN型のGa(1ーX)AlXAs層(x≒0.8〜0.9)
2を厚さ40〜50μm成長させる。しかるのち、通常
の真空蒸着法を用いて200℃より高い温度にしたGa
AlAs面にAuGeNi電極3を形成する方法が用い
られている。また、図4は従来例の他の一つである論文
(L.R.Zheng 他:Applied Phys
icsLetter.Vol.60、No.7、p.8
77〜879(1992))に開示された電極形成方法
の説明図である。この方法によれば、先ず、GaAsか
らなる半導体絶縁基板1上に液相エピタキシャル法を用
いてSeドープ(n≒7.5×1017cm-3)のN型の
Ga(1ーX)AlXAs層(x≒0.55)2を厚さ200
nm成長させる。次にGaAlAs層表面をアンモニア
−過水系およびフッ化水素酸−硝酸系の各薬液で順次処
理した後、通常の真空蒸着法を用いてPd層4、AuG
e層5、Ag層6、Au層7を積層して電極を形成す
る。しかるのち、窒素雰囲気下400℃〜500℃、3
0秒の条件で熱処理する方法が用いられている。
2. Description of the Related Art In recent years, various devices such as light emitting diodes, semiconductor lasers, field effect transistors, and photodiodes, which take advantage of the characteristics of III-V group compound semiconductors, have been put into practical use, and their fields of application have been expanding. However, the physical properties of these compound semiconductor materials change in a complicated manner in the element manufacturing process as compared with a single element material such as Si, and the element manufacturing process is often not simple and requires high technology. In particular, the surface of the compound semiconductor containing Al is unstable and is likely to change due to heat treatment or chemical treatment during manufacturing, and there is a problem that it is difficult to form an electrode for ohmic contact. In response to this, various measures have been studied. FIG. 3 is an explanatory diagram of an electrode forming method disclosed in Japanese Patent Laid-Open No. 56-16619, which is one of the conventional examples. According to this method, first, Ga
Te doping (n≈5 to 10 × 10 17 cm −3 ) on the semiconductor insulating substrate 1 made of As by the liquid phase epitaxial method.
N-type Ga (1-X) Al X As layer (x ≈ 0.8 to 0.9)
2 is grown to a thickness of 40 to 50 μm. After that, Ga is heated to a temperature higher than 200 ° C. by using an ordinary vacuum deposition method.
A method of forming the AuGeNi electrode 3 on the AlAs surface is used. In addition, FIG. 4 is another example of a conventional example (LR Zheng et al .: Applied Phys.
icsLetter. Vol. 60, No. 7, p. 8
77-879 (1992)) is an explanatory view of the electrode forming method disclosed in FIG. According to this method, first, Se-doped (n≈7.5 × 10 17 cm −3 ) N-type Ga (1−X) Al is formed on the semiconductor insulating substrate 1 made of GaAs by the liquid phase epitaxial method. X As layer (x≈0.55) 2 thickness 200
nm growth. Next, the surface of the GaAlAs layer is sequentially treated with ammonia-perhydrogen-based and hydrofluoric acid-nitric acid-based chemicals, and then the Pd layer 4 and AuG are formed using a normal vacuum deposition method.
The e layer 5, the Ag layer 6, and the Au layer 7 are laminated to form an electrode. After that, 400 ℃ -500 ℃ under nitrogen atmosphere, 3
A method of heat treatment under the condition of 0 seconds is used.

【発明が解決しようとする課題】前述したように、Ga
AlAs表面は活性で通常、周囲の雰囲気により酸化膜
が形成されている。従って、この酸化膜を薬品処理で除
去したのち電極が形成される。しかし、酸化膜が除去さ
れて露出した結晶表面も活性化されやすく、また酸化さ
れやすい性質を持っている。薬品処理に順じて行う水洗
処理、乾燥処理および電極形成を行う真空装置までのG
aAlAs基板のハンドリング等の間にも周囲の雰囲気
によりGaAlAs表面には酸化膜が新たに形成されて
しまう。上述した従来例ではこの酸化膜を破壊して電極
金属を結晶表面に付着させ、十分な付着力と良好なオー
ミック接触を得ようとするものである。しかし、この酸
化膜は厚みが1nm〜10nm程度あり厚さも不均一の
ため、これらの方法においても微細な領域で均一なオー
ミック接触を得ることは困難になっている。すなわち、
例えば電極径が数十μm以下と微細な円形電極において
電圧−電流特性に整流性がみられ、電極の抵抗もばらつ
く問題がある。このため、LEDアレーのような微細サ
イズの電極が必要なデバイスの製作においてはGaAl
As上にGaAsを構成し、電極をGaAsとコンタク
トする方法が取られている場合もある。しかし、特にこ
のような発光素子においては、GaAsが発光した光の
吸収体となるためこの方法も十分に満足のいくものでは
ないのが現状である。
As mentioned above, Ga
The AlAs surface is active, and an oxide film is usually formed by the surrounding atmosphere. Therefore, the electrode is formed after the oxide film is removed by chemical treatment. However, the exposed crystal surface after the oxide film is removed is also easily activated and oxidized. G up to a vacuum device that performs water washing treatment, drying treatment and electrode formation according to chemical treatment
An oxide film is newly formed on the GaAlAs surface due to the ambient atmosphere even during handling of the aAlAs substrate. In the above-mentioned conventional example, the oxide film is destroyed to adhere the electrode metal to the crystal surface to obtain sufficient adhesion and good ohmic contact. However, since this oxide film has a thickness of about 1 nm to 10 nm and the thickness is not uniform, it is difficult to obtain a uniform ohmic contact in a fine region even by these methods. That is,
For example, in a fine circular electrode having an electrode diameter of several tens of μm or less, rectification is seen in voltage-current characteristics, and there is a problem that the resistance of the electrode also varies. Therefore, when manufacturing a device such as an LED array that requires fine size electrodes, GaAl
In some cases, GaAs is formed on As and the electrode is brought into contact with GaAs. However, especially in such a light emitting device, this method is not sufficiently satisfactory at present because GaAs serves as an absorber of the emitted light.

【課題を解決するための手段】本願発明は、上記問題点
に鑑みなされたものであり、請求項1に係る発明は、
「Alを含むIII−V族化合物半導体からなる結晶の表面
上へのオーミック接触電極の形成において、真空装置内
で該結晶の表面をスパッタ法で処理して酸化物を除去し
た後、該結晶を該真空装置内から取り出すことなく該結
晶の表面にオーミック接触を得る電極材を形成すること
を特徴とする半導体装置の電極形成方法。」を提供し、
請求項2に係る発明は、「請求項1記載の半導体装置の
電極形成方法において、電極材を200℃以上550℃
以下の温度の結晶表面に形成することを特徴とする半導
体装置の製造方法。」を提供するものである。
The present invention has been made in view of the above problems, and the invention according to claim 1 is
“In the formation of an ohmic contact electrode on the surface of a crystal made of a III-V group compound semiconductor containing Al, the surface of the crystal is treated by a sputtering method in a vacuum apparatus to remove oxides, and then the crystal is removed. An electrode forming method for a semiconductor device, characterized in that an electrode material for obtaining ohmic contact is formed on the surface of the crystal without taking it out from the vacuum device. "
According to a second aspect of the invention, in the method for forming an electrode of a semiconductor device according to the first aspect, the electrode material is 200 ° C. or higher and 550 ° C.
A method of manufacturing a semiconductor device, which comprises forming on a crystal surface at the following temperature. Is provided.

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1は本発明の第1の実施例である半導体
装置の電極形成方法を説明するための半導体装置の断面
図である。同図において符号1はGaAsからなる半導
体絶縁基板、符号2は、半導体絶縁基板1上に液相エピ
タキシャル法で厚み10μmに形成されたTeドープ
(n≒1×1018cm-3)のN型のGa(1ーX)AlXAs
層(x≒0.7)である。先ず、GaAlAs層2の表
面上のGaを除去し、図示しない真空装置内で、通常の
高周波による逆スパッタ法を用いてGaAlAs層2の
表面上に形成されている酸化物を除去する。逆スパッタ
条件は逆スパッタ圧力2Pa、逆スパッタ電力は100
Wである。次に、通常のスパッタ法によりN側電極8を
形成する。電極材料はAu−Ge(12wt%)−Ni
(4wt%)であり、10μm径の円形で200μmの
間隔で直線状に配列されている。なお、電極材料はN型
のGaAlAsに対してオーミック接触が得られるもの
であれば何を用いても構わない。ここで逆スパッタ後、
次の電極材のスパッタを同一の真空装置内で行うことに
より、その間露出したGaAlAs面は酸化雰囲気に触
れることはなく、清浄な面に電極材料を形成することが
出来る。しかるのち、窒素雰囲気で400℃〜500℃
に保たれた電気炉内で数分間の熱処理を行う。これは電
極材と半導体を合金化反応させてオーミック接触を得る
目的で行っている。なお、熱処理を電極材のスパッタ直
後に同一の真空装置内で行ってもよい。後者の方法を用
いると、電極形成から熱処理の間に起こる可能性がある
電極材のピンホール等から侵入した酸素によるGaAl
As面の酸化の心配がなくなる。以上のようにして、N
型のGaAlAsに対して良好なオーミック特性および
付着特性を有する電極8を形成することができる。上述
した第1の実施例では、N型のGaAlAsへのN電極
形成を示したが、導電型がP型の場合も、P型のGaA
lAsに対しオーミック接触が得られる電極材を用いる
ことで適用できる。図2は、本発明の第2の実施例であ
る半導体装置の電極形成方法を説明するための半導体装
置の断面図である。先ず、GaAsからなる半導体絶縁
基板1上に有機金属気相エピタキシャル法(MOCVD
法)でZnドープ(n≒5×1017cm-3)のP型のG
(1ーX)AlXAs層(x≒0.45)2を厚み2μm形
成する。これに対し、第1の実施例と同様の逆スパッタ
を行いGaAlAs層2の表面の酸化物を除去した後、
同一の真空装置内で通常のスパッタ法により300℃に
設定したGaAlAs層2の表面にP側電極9を形成す
る。電極材料はAu−Be(1wt%)である。但し、
電極材はP型のGaAlAsに対してオーミック接触の
得られるものであれば何を用いても構わない。なお、こ
の時の温度は200℃以下では電圧−電流特性が整流性
を示し、550℃以上ではGaAlAs結晶表面からA
sの脱離が起こり欠陥が誘発されて結晶劣化が起こるこ
とから200℃以上550℃以下の範囲にあることが必
要である。このようにGaAlAs結晶表面を200℃
以上550℃以下の温度に保って電極材を形成すると、
電極材の堆積と同時に電極材と半導体の合金化反応が起
こりオーミック接触が得られるようになるため、第1の
実施例で行った電気炉等による熱処理が不要になる。ま
た、電極形成から熱処理の間に起こる可能性がある電極
材のピンホール等から侵入した酸素によるGaAlAs
面の酸化の心配もいらない。以上のようにして、P型の
GaAlAsに対して良好なオーミック特性および付着
特性を有する電極9を形成することができる。上述した
第2の実施例では、P型のGaAlAsへのP電極形成
を示したが、導電型がN型の場合も、N型のGaAlA
sに対しオーミック接触が得られる電極材を用いること
で適用できる。尚、上述した第1、第2の実施例ではG
aAlAsを用いたが、他のAlを含むIII−V族化合物
半導体に適用しても同様の効果が得られる。なお、本発
明は上述した実施例以外にもAlを含むIII−V族化合物
半導体にオーミック電極の形成が必要な半導体装置、例
えば発光ダイオード、レーザーダイオード、ヘテロバイ
ポーラトランジスタ等の製作においても適用することが
できるものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a semiconductor device for explaining an electrode forming method for a semiconductor device according to a first embodiment of the present invention. In the figure, reference numeral 1 is a semiconductor insulating substrate made of GaAs, and reference numeral 2 is Te-doped (n≈1 × 10 18 cm −3 ) N-type formed on the semiconductor insulating substrate 1 by a liquid phase epitaxial method to a thickness of 10 μm. Ga (1−X) Al X As
It is a layer (x≈0.7). First, Ga on the surface of the GaAlAs layer 2 is removed, and the oxide formed on the surface of the GaAlAs layer 2 is removed by a normal high frequency reverse sputtering method in a vacuum device (not shown). Reverse sputtering conditions are reverse sputtering pressure of 2 Pa and reverse sputtering power of 100.
W. Next, the N-side electrode 8 is formed by the usual sputtering method. The electrode material is Au-Ge (12 wt%)-Ni
(4 wt%), which are circular with a diameter of 10 μm and are linearly arranged at intervals of 200 μm. Any electrode material may be used as long as it allows ohmic contact with N-type GaAlAs. After reverse sputtering here,
By sputtering the next electrode material in the same vacuum apparatus, the exposed GaAlAs surface does not come into contact with the oxidizing atmosphere and the electrode material can be formed on a clean surface. After that, 400 ℃ -500 ℃ in nitrogen atmosphere
Heat treatment is performed for several minutes in an electric furnace maintained at. This is performed for the purpose of alloying the electrode material and the semiconductor to obtain ohmic contact. The heat treatment may be performed in the same vacuum device immediately after sputtering the electrode material. If the latter method is used, there is a possibility that it will occur between the electrode formation and the heat treatment.
There is no need to worry about As surface oxidation. As described above, N
It is possible to form the electrode 8 having good ohmic characteristics and adhesion characteristics with respect to the GaAlAs of the mold. In the above-described first embodiment, the N electrode is formed on the N-type GaAlAs, but even when the conductivity type is the P-type, the P-type GaA is used.
It can be applied by using an electrode material capable of obtaining ohmic contact with lAs. FIG. 2 is a sectional view of a semiconductor device for explaining an electrode forming method of the semiconductor device according to the second embodiment of the present invention. First, a metalorganic vapor phase epitaxial method (MOCVD) is applied on a semiconductor insulating substrate 1 made of GaAs.
Method, Zn-doped (n≈5 × 10 17 cm −3 ) P-type G
A (1−X) Al X As layer (x≈0.45) 2 is formed to a thickness of 2 μm. On the other hand, after performing reverse sputtering similar to that of the first embodiment to remove the oxide on the surface of the GaAlAs layer 2,
The P-side electrode 9 is formed on the surface of the GaAlAs layer 2 set at 300 ° C. by a normal sputtering method in the same vacuum apparatus. The electrode material is Au-Be (1 wt%). However,
Any electrode material may be used as long as it can obtain ohmic contact with P-type GaAlAs. The temperature at this time is 200 ° C. or lower, and the voltage-current characteristic shows rectifying property, and at 550 ° C. or higher, A is observed from the GaAlAs crystal surface.
It is necessary to be in the range of 200 ° C. or higher and 550 ° C. or lower because s is desorbed and defects are induced to cause crystal deterioration. In this way, the GaAlAs crystal surface is kept at 200 ° C.
When the electrode material is formed while maintaining the temperature above 550 ° C.,
Since the alloying reaction between the electrode material and the semiconductor occurs at the same time when the electrode material is deposited and ohmic contact is obtained, the heat treatment by the electric furnace or the like performed in the first embodiment is unnecessary. In addition, there is a possibility that GaAlAs due to oxygen that has entered through pinholes or the like of the electrode material that may occur between electrode formation and heat treatment.
No need to worry about oxidation of the surface. As described above, the electrode 9 having good ohmic characteristics and adhesion characteristics with respect to the P-type GaAlAs can be formed. In the second embodiment described above, formation of the P electrode on the P-type GaAlAs is shown. However, even when the conductivity type is N-type, N-type GaAlA
It can be applied by using an electrode material capable of obtaining ohmic contact with s. In the first and second embodiments described above, G
Although aAlAs is used, the same effect can be obtained by applying it to another III-V group compound semiconductor containing Al. In addition to the above-described embodiments, the present invention can be applied to the fabrication of semiconductor devices, such as light emitting diodes, laser diodes, and hetero bipolar transistors, which require the formation of ohmic electrodes in III-V group compound semiconductors containing Al. Is something that can be done.

【発明の効果】以上説明したように、本発明の半導体装
置の電極形成方法によれば、Alを含むIII−V族化合物
半導体結晶面にオーミック電極を極めて容易に作製する
ことができる。また、結晶表面の酸化の影響を十分に排
除できるためオーミック接触が均一となり、微小面積の
電極を形成しても良好なオーミック特性および付着特性
が得られるとともに電極抵抗のばらつきも低減される。
これらにより、電極の生産性および信頼性が向上する。
さらにまた、結晶表面の酸化膜を逆スパッタ法で除去し
たのち電極材を形成するため、従来行ってきた酸化膜除
去のための繁雑で複雑な薬品等による前処理が不要にな
り、工程の簡略化が図れるものである。
As described above, according to the method for forming an electrode of a semiconductor device of the present invention, an ohmic electrode can be extremely easily formed on a crystal plane of a III-V group compound semiconductor containing Al. Further, since the effect of oxidation on the crystal surface can be sufficiently eliminated, the ohmic contact becomes uniform, and even if an electrode having a small area is formed, good ohmic characteristics and adhesion characteristics can be obtained, and variations in electrode resistance are reduced.
These improve the productivity and reliability of the electrode.
Furthermore, the oxide film on the crystal surface is removed by the reverse sputtering method, and then the electrode material is formed, eliminating the need for complicated pretreatments such as complicated chemicals for removing the oxide film, which is conventionally required. It can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である半導体装置の電極
形成方法を説明するための半導体装置の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor device for explaining an electrode forming method for a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例である半導体装置の電極
形成方法を説明するための半導体装置の断面図である。
FIG. 2 is a cross-sectional view of a semiconductor device for explaining an electrode forming method of the semiconductor device according to the second embodiment of the present invention.

【図3】従来例の電極形成方法の説明図である。FIG. 3 is an explanatory diagram of a conventional electrode forming method.

【図4】他の従来例の電極形成方法の説明図である。FIG. 4 is an explanatory diagram of another conventional electrode forming method.

【符号の説明】[Explanation of symbols]

1 半導体絶縁基板 2 GaAlAs層 3 AuGeNi電極 4 Pd層 5 AuGe層 6 Ag層 7 Au層 8 電極 9 電極 1 Semiconductor Insulating Substrate 2 GaAlAs Layer 3 AuGeNi Electrode 4 Pd Layer 5 AuGe Layer 6 Ag Layer 7 Au Layer 8 Electrode 9 Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Alを含むIII−V族化合物半導体からなる
結晶の表面上へのオーミック接触電極の形成において、
真空装置内で該結晶の表面をスパッタ法で処理して酸化
物を除去した後、該結晶を該真空装置内から取り出すこ
となく該結晶の表面にオーミック接触を得る電極材を形
成することを特徴とする半導体装置の電極形成方法。
1. Forming an ohmic contact electrode on the surface of a crystal composed of a III-V group compound semiconductor containing Al,
A method of forming an electrode material for obtaining ohmic contact on the surface of the crystal without removing the crystal from the inside of the vacuum apparatus after treating the surface of the crystal by a sputtering method in a vacuum apparatus to remove oxides. Method for forming electrode of semiconductor device.
【請求項2】請求項1記載の半導体装置の電極形成方法
において、電極材を200℃以上550℃以下の温度の
結晶表面に形成することを特徴とする半導体装置の製造
方法。
2. A method for manufacturing a semiconductor device according to claim 1, wherein the electrode material is formed on the crystal surface at a temperature of 200 ° C. or higher and 550 ° C. or lower.
JP33213992A 1992-09-30 1992-09-30 Forming of electrode of semiconductor device Pending JPH06120163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33213992A JPH06120163A (en) 1992-09-30 1992-09-30 Forming of electrode of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33213992A JPH06120163A (en) 1992-09-30 1992-09-30 Forming of electrode of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06120163A true JPH06120163A (en) 1994-04-28

Family

ID=18251577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33213992A Pending JPH06120163A (en) 1992-09-30 1992-09-30 Forming of electrode of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06120163A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080426A (en) * 2004-09-13 2006-03-23 Sharp Corp Light emitting diode
JP2007103538A (en) * 2005-09-30 2007-04-19 Toshiba Corp Light emitting diode and method of manufacturing same
JP2007194386A (en) * 2006-01-19 2007-08-02 Sharp Corp Optical semiconductor device, its manufacturing method, optical disc device, and optical transmission system
JP2007220756A (en) * 2006-02-14 2007-08-30 Sumitomo Electric Ind Ltd Semiconductor device and its manufacturing method
WO2009005126A1 (en) * 2007-07-04 2009-01-08 Showa Denko K.K. Iii nitride semiconductor light emitting element, method for manufacturing the iii nitride semiconductor light emitting element, and lamp
CN114122166A (en) * 2021-11-30 2022-03-01 淮阴师范学院 N-type GaAs ohmic contact electrode material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080426A (en) * 2004-09-13 2006-03-23 Sharp Corp Light emitting diode
JP2007103538A (en) * 2005-09-30 2007-04-19 Toshiba Corp Light emitting diode and method of manufacturing same
JP2007194386A (en) * 2006-01-19 2007-08-02 Sharp Corp Optical semiconductor device, its manufacturing method, optical disc device, and optical transmission system
JP2007220756A (en) * 2006-02-14 2007-08-30 Sumitomo Electric Ind Ltd Semiconductor device and its manufacturing method
US7833882B2 (en) 2006-02-14 2010-11-16 Sumitomo Electric Industries, Ltd. Method of producing a semiconductor device by forming an oxide film on a resin layer
JP4692314B2 (en) * 2006-02-14 2011-06-01 住友電気工業株式会社 Manufacturing method of semiconductor device
WO2009005126A1 (en) * 2007-07-04 2009-01-08 Showa Denko K.K. Iii nitride semiconductor light emitting element, method for manufacturing the iii nitride semiconductor light emitting element, and lamp
US8674398B2 (en) 2007-07-04 2014-03-18 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light emitting device and production method thereof, and lamp
CN114122166A (en) * 2021-11-30 2022-03-01 淮阴师范学院 N-type GaAs ohmic contact electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3160914B2 (en) Gallium nitride based compound semiconductor laser diode
JP3365607B2 (en) GaN-based compound semiconductor device and method of manufacturing the same
JP3688843B2 (en) Nitride semiconductor device manufacturing method
JP2000164928A (en) Semiconductor light emitting device and its manufacture
JP2000286449A (en) Iii nitride compound semiconductor device and its manufacture
US7964424B2 (en) Method for manufacturing nitride semiconductor light-emitting element
JPH1022494A (en) Ohmic electrode and forming method therefor
CA1177149A (en) Light source with a semiconductor junction, particularly a laser source and a process for producing such a source
JPH11177134A (en) Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element
US6960482B2 (en) Method of fabricating nitride semiconductor and method of fabricating semiconductor device
JPH06120163A (en) Forming of electrode of semiconductor device
US5919715A (en) Method for cleaning a semiconductor surface
EP0825652B1 (en) Ohmic electrode and method of forming the same
JPH11204833A (en) Manufacture of semiconductor light emitting device
JPS62502643A (en) Semiconductor device fabrication process including vapor phase etching
JP3403665B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4043600B2 (en) Schottky barrier forming electrode
JPS63178574A (en) Manufacture of semiconductor laser device
JPH11186605A (en) Electrode forming method of gallium nitride based compound semiconductor and manufacture of element
JPH11346035A (en) Manufacture of gallium nitride family compound semiconductor light emitting device
JP3348015B2 (en) Method for producing electrode contact layer for non-alloy
JP2002353570A (en) Iii nitride-based compound semiconductor device and manufacturing method therefor
JP2000232094A (en) Dry etching method for compound semiconductor and compound semiconductor element
JPH06164057A (en) Emiconductor laser and its manufacture
JPH10242520A (en) Gallium nitride compound semiconductor element and its manufacture