JP2002353570A - Iii nitride-based compound semiconductor device and manufacturing method therefor - Google Patents

Iii nitride-based compound semiconductor device and manufacturing method therefor

Info

Publication number
JP2002353570A
JP2002353570A JP2001159779A JP2001159779A JP2002353570A JP 2002353570 A JP2002353570 A JP 2002353570A JP 2001159779 A JP2001159779 A JP 2001159779A JP 2001159779 A JP2001159779 A JP 2001159779A JP 2002353570 A JP2002353570 A JP 2002353570A
Authority
JP
Japan
Prior art keywords
layer
electrode
iii nitride
group iii
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001159779A
Other languages
Japanese (ja)
Inventor
Kunihiro Takatani
邦啓 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001159779A priority Critical patent/JP2002353570A/en
Publication of JP2002353570A publication Critical patent/JP2002353570A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem of nonuniformity occurring in the thickness or composition ratio of element in a Pd-Ga compound layer and increases the contact resistance of an electrode, having an Au/Pd/Pd-Ga compound structure and used as the p-type electrode of a III nitride-based compound semiconductor element, when an electrode thermal treating step is performed in the course of forming the electrode, and in addition, the nonuniformity produces recessed and projecting sections on the surface of the electrode, causing peeling off, etc., and lowering the production yield of a III nitride-based compound semiconductor device, because no sufficient adhesive strength is obtained at mounting of the semiconductor element on a stem or wiring bonding is made to an electrode portion. SOLUTION: An Mo layer is interposed between Au and Pd, constituting the p-type electrode. The Mo layer has the effect of uniformly forming a Pd-Ga compound to be formed between a III nitride-based compound semiconductor layer which constitutes a base and a Pd layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体の電
極構造に関する。
The present invention relates to a compound semiconductor electrode structure.

【0002】[0002]

【従来の技術】InxGayAlzN(ただしx+y+z
=1、0≦x,y,z≦1)で表わされるIII族窒化
物系半導体は大きなエネルギーバンドギャップや高い熱
安定性を有し、短波長発光素子や高温デバイスを初めと
して様々な応用展開が可能な有望な材料系である。特に
発光素子としては、青〜緑の波長域で数cdの光出力を
有する発光ダイオード(Light Emitting
Diode;LED)が既に実用化されており、同材
料系を用いたレーザダイオード(Laser Diod
e;LD)の実用化も間近である。
BACKGROUND ART In x Ga y Al z N (provided that x + y + z
= 1, 0 ≦ x, y, z ≦ 1) Group III nitride-based semiconductors have a large energy band gap and high thermal stability, and are used in various applications including short-wavelength light-emitting devices and high-temperature devices. Is a promising material system. In particular, as a light emitting element, a light emitting diode (Light Emitting) having an optical output of several cds in a blue to green wavelength range is used.
Diode (LED) has already been put to practical use, and a laser diode (Laser Diode) using the same material system is used.
e; LD) is about to be put to practical use.

【0003】これらのIII族窒化物系半導体素子を実
際の各種機器に搭載して使用する場合には、素子自体が
消費する電力、動作する電圧を十分に低くする必要があ
る。このようなIII族窒化物系半導体素子に適した低
抵抗p型電極として、Au/Pd/Pd−Ga化合物電
極が提案されている。(特開平10−303504号公
報)。
When these group III nitride-based semiconductor devices are used by mounting them on actual various devices, it is necessary to sufficiently reduce the power consumed by the devices themselves and the operating voltage. An Au / Pd / Pd-Ga compound electrode has been proposed as a low-resistance p-type electrode suitable for such a group III nitride semiconductor device. (JP-A-10-303504).

【0004】このAu/Pd/Pd−Ga化合物電極を
使用することにより、p型電極と半導体コンタクト層と
の間に生じるコンタクト抵抗を1×10-4Ωcm2レベ
ルに抑えることができ、従来よく用いられているAu/
Ni電極に比べて低く抑えることができる。従ってGa
N系半導体素子の動作電圧を少なくすることができるの
で、素子動作電力の低減や発熱量の低減を達成すること
ができ、素子の寿命や特性をより向上させることが可能
になる。
By using this Au / Pd / Pd-Ga compound electrode, the contact resistance generated between the p-type electrode and the semiconductor contact layer can be suppressed to a level of 1 × 10 −4 Ωcm 2 , which has conventionally been improved. Au / used
It can be suppressed lower than the Ni electrode. Therefore Ga
Since the operating voltage of the N-based semiconductor element can be reduced, it is possible to achieve a reduction in element operating power and a reduction in heat generation, and it is possible to further improve the life and characteristics of the element.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、p型電
極として上記のAu/Pd/Pd−Ga化合物電極を適
用した半導体素子では、ウェハロット毎に生じる動作電
圧のばらつきや大電流注入で素子を長時間駆動したとき
などに動作電圧が上昇して素子が劣化するといった問題
が生じ、また、素子をステムなどにマウントする際や給
電線を電極に圧着する際の密着性がしばしば低下して生
産歩留まりが落ちるといった問題が生じていた。
However, in the case of a semiconductor device using the above Au / Pd / Pd-Ga compound electrode as a p-type electrode, the device has to be operated for a long time due to variations in operating voltage for each wafer lot or large current injection. There is a problem that the operating voltage rises when driving and the element is degraded.In addition, when mounting the element on a stem or the like and when crimping the power supply line to the electrode, the adhesion often decreases, and the production yield is reduced. There was a problem of falling.

【0006】このような問題の原因について調べてみた
ところ、Au/Pd/Pd−Ga化合物電極は素子動作
電圧の低減に大きな効果があると同時に上記の問題点の
原因を内包することが明らかになってきた。
Examination of the cause of such a problem reveals that the Au / Pd / Pd-Ga compound electrode has a great effect on reducing the device operating voltage and at the same time includes the cause of the above problem. It has become.

【0007】Au/Pd/Pd−Ga化合物電極の形成
に際しては、例えばGaNからなるコンタクト層に対し
ては、Au/Pd/GaNコンタクト層構造を形成した
後に熱処理によりPd−Ga化合物層を形成してAu/
Pd/Pd−Ga化合物電極構造を完成させる方法や、
あるいはGaNコンタクト層上に直接Pd−Ga化合物
層、Pd層、Au層を適当な成膜方法により順次形成し
てAu/Pd/Pd−Ga化合物電極構造を完成させる
方法がある。
In forming an Au / Pd / Pd-Ga compound electrode, for example, for a GaN contact layer, a Pd-Ga compound layer is formed by heat treatment after forming an Au / Pd / GaN contact layer structure. Au /
A method of completing a Pd / Pd-Ga compound electrode structure,
Alternatively, there is a method in which a Pd-Ga compound layer, a Pd layer, and an Au layer are sequentially formed directly on the GaN contact layer by an appropriate film forming method to complete an Au / Pd / Pd-Ga compound electrode structure.

【0008】前者の方法でAu/Pd/Pd−Ga化合
物電極を形成した場合、電極を形成した段階で良好な電
極が形成されていたとしても、半導体素子の使用に際し
て電流注入を行うと、Pd−Ga化合物層とGaNコン
タクト層の間、あるいはPd層とPd−Ga化合物層の
間で、反応が進行し、その結果Pd−Ga化合物層が不
均一になってしまう。
In the case where an Au / Pd / Pd-Ga compound electrode is formed by the former method, even if a good electrode is formed at the stage of forming the electrode, if a current is injected when a semiconductor element is used, Pd may be reduced. The reaction proceeds between the -Ga compound layer and the GaN contact layer or between the Pd layer and the Pd-Ga compound layer, and as a result, the Pd-Ga compound layer becomes non-uniform.

【0009】一方、後者の方法でAu/Pd/Pd−G
a化合物電極を形成した場合には、問題はもっと顕著に
なる。前記の熱処理工程は、真空あるいは不活性ガス雰
囲気下で500〜900℃の温度で実施することが多
い。Au/Pd/Pd−Ga化合物電極構造が有する課
題の一つは、この熱処理工程において、GaNコンタク
ト層の表面状態、例えば酸化膜の存在などにより、Pd
層−GaN層間の界面反応にウェハ面内で不均一性が生
じることがあるということである。
On the other hand, Au / Pd / Pd-G
The problem becomes more pronounced when an a-compound electrode is formed. The heat treatment step is often performed at a temperature of 500 to 900 ° C. in a vacuum or an inert gas atmosphere. One of the problems of the Au / Pd / Pd-Ga compound electrode structure is that, in this heat treatment step, the surface state of the GaN contact layer, such as the presence of an oxide film, causes Pd
This means that the interface reaction between the layer and the GaN layer may cause non-uniformity in the wafer plane.

【0010】このような不均一性は、Pd−Ga化合物
層の厚さや元素構成比のばらつき、あるいはPd層とG
aN層の接触具合のばらつきにつながる。その結果とし
て、本来電極面内で一様であるはずの電極のコンタクト
抵抗が部分的に極めて大きくなるといった特性分布が生
じ、電極全体として捉えた場合にコンタクト抵抗が増大
し、素子の動作電圧の上昇を招くといった弊害につなが
っていた。
[0010] Such non-uniformity is caused by variations in the thickness of the Pd-Ga compound layer and element composition ratio, or in the Pd-Ga compound layer and the Gd.
This leads to variation in the contact condition of the aN layer. As a result, a characteristic distribution occurs in which the contact resistance of the electrode, which should be uniform in the electrode plane, becomes extremely large in part, and the contact resistance increases when viewed as the entire electrode, and the operating voltage of the element increases. This has led to adverse effects such as a rise.

【0011】また、Au/Pd/Pd−Ga化合物電極
構造が有するもうひとつの課題として、前記の熱処理工
程において、電極表面に凹凸が生じてしまうという現象
が確認された。先に述べた熱処理工程時に生じるPd層
−GaN層間の界面反応の不均一性により、この界面に
凹凸、あるいは形成されるPd−Ga化合物層の厚さに
変動が生じる。この凹凸を起源として、Pd層の上部に
Au層が積層された後も、電極表面に凹凸が形成されて
しまう。通常、半導体素子の電極に対する給電方法とし
ては、Al線やAu線を電極表面に圧着するワイヤボン
ディングや、電極面を直接ステム面に溶着するステムマ
ウントといった手法がよく用いられるのであるが、電極
表面に凹凸が存在すると、ボンディングの容易性(ボン
ダビリティ)が低下してしまうという問題につながり、
最終的に製品の歩留まりを下げるという弊害をもたらし
ていることが分かった。
As another problem of the Au / Pd / Pd-Ga compound electrode structure, it has been confirmed that in the above-mentioned heat treatment step, irregularities are generated on the electrode surface. Due to the non-uniformity of the interface reaction between the Pd layer and the GaN layer that occurs during the heat treatment step described above, unevenness occurs at this interface or the thickness of the formed Pd-Ga compound layer varies. Due to the irregularities, irregularities are formed on the electrode surface even after the Au layer is laminated on the Pd layer. Usually, as a method of supplying power to the electrodes of the semiconductor element, there are often used methods such as wire bonding in which an Al wire or an Au wire is pressure-bonded to the electrode surface, and a stem mount in which the electrode surface is directly welded to the stem surface. If there are irregularities in the surface, it will lead to the problem that the ease of bonding (bondability) will decrease,
Ultimately, it was found that this had the adverse effect of lowering the product yield.

【0012】このような、電極熱処理工程により生じる
Pd−Ga界面の不均一性を起源とする弊害のうち、ボ
ンダビリティの低下を回避するためには、最も単純な手
法としてはAu層あるいはPd層をμmオーダにまで十
分厚く成膜して、凹凸の影響を最小化するという手法が
ある。しかし各層の膜厚を単純に厚くしただけでは、金
属膜の剥離が生じやすくなり電極の機械的強度が低下す
る。さらに、AuやPdは高価であり、電極部分に大量
に使用することは半導体素子のチップコストを上昇させ
る一因となるため、好ましくない。また、p型電極の特
性劣化に関しては、これまで有効かつ単純な解決手法が
見出されていなかった。
Among the problems caused by the non-uniformity of the Pd-Ga interface caused by the electrode heat treatment process, the simplest method for avoiding a decrease in bondability is an Au layer or a Pd layer. Is formed sufficiently thick to the order of μm to minimize the influence of unevenness. However, if the thickness of each layer is simply increased, the metal film is easily peeled off, and the mechanical strength of the electrode is reduced. Further, Au and Pd are expensive, and it is not preferable to use them in a large amount for the electrode portion, which may increase the chip cost of the semiconductor element. As for the deterioration of the characteristics of the p-type electrode, no effective and simple solution has been found so far.

【0013】[0013]

【課題を解決するための手段】本発明のIII族窒化物
系化合物半導体装置は、p型不純物を含むIII族窒化
物系半導体層とIII族窒化物系半導体層に接するp型
電極を備えたIII族窒化物系化合物半導体装置におい
て、p型電極はIII族窒化物系半導体層と接する部分
から順に、第1の金属とガリウムの化合物からなる第1
層、第1の金属からなる第2層、第2の金属からなる第
3層、第3の金属からなる第4層からなることを特徴と
する。
A group III nitride compound semiconductor device according to the present invention comprises a group III nitride semiconductor layer containing a p-type impurity and a p-type electrode in contact with the group III nitride semiconductor layer. In the group III nitride compound semiconductor device, the p-type electrode is formed of a first metal and a compound of gallium in order from a portion in contact with the group III nitride semiconductor layer.
A second layer made of a first metal, a third layer made of a second metal, and a fourth layer made of a third metal.

【0014】本発明のIII族窒化物系化合物半導体装
置の前記第1の金属は、Pd、Pt、Ni、Ir、O
s、Rh、Ruのうち少なくとも一種類を含むことを特
徴とする。
In the group III nitride compound semiconductor device according to the present invention, the first metal is Pd, Pt, Ni, Ir, O
It is characterized by including at least one of s, Rh, and Ru.

【0015】本発明のIII族窒化物系化合物半導体装
置の前記第2層の厚さは、3nm以上であることを特徴
とする。
In the group III nitride compound semiconductor device of the present invention, the thickness of the second layer is 3 nm or more.

【0016】本発明のIII族窒化物系化合物半導体装
置の前記第3層は、Mo、W、Ir、Rh、Ruのうち
少なくとも1種類を含むことを特徴とする。
The third layer of the group III nitride compound semiconductor device according to the present invention is characterized in that the third layer contains at least one of Mo, W, Ir, Rh and Ru.

【0017】本発明のIII族窒化物系化合物半導体装
置の前記第3層の厚さは、3nm以上、50nm以下で
あることを特徴とする。
The third layer of the group III nitride compound semiconductor device according to the present invention is characterized in that the thickness of the third layer is 3 nm or more and 50 nm or less.

【0018】本発明のIII族窒化物系化合物半導体装
の製造方法は、p型不純物を含むIII族窒化物系半導
体とp型電極を含むIII族窒化物系化合物半導体装の
製造方法であって、前記p型不純物を含むIII族窒化
物系半導体層上に、第1の金属からなる第2層と、第2
の金属からなる第3層と、第3の金属からなる第4層を
順次形成する工程と、その後、500℃〜900℃の熱
処理によりIII族窒化物系半導体と第2層の間に、第
1の金属とガリウムの化合物からなる第1層を形成する
工程を含むことを特徴とする。
The method of manufacturing a group III nitride compound semiconductor device according to the present invention is a method of manufacturing a group III nitride compound semiconductor device including a p-type impurity and a group III nitride compound semiconductor device including a p-type electrode. A second layer made of a first metal on the group III nitride semiconductor layer containing the p-type impurity;
Forming a third layer of a third metal and a fourth layer of a third metal in sequence, and then performing a heat treatment at 500 ° C. to 900 ° C. to form a third layer between the group III nitride-based semiconductor and the second layer. Forming a first layer made of a compound of one metal and gallium.

【0019】本発明のIII族窒化物系化合物半導体装
の製造方法は、p型不純物を含むIII族窒化物系半導
体とp型電極を含むIII族窒化物系化合物半導体装の
製造方法であって、前記p型不純物を含むIII族窒化
物系半導体層上に第1の金属とガリウムの化合物からな
る第1層、第1の金属からなる第2層、第2の金属から
なる第3層、第3の金属からなる第4層を順次形成する
ことを特徴とする。
The method for manufacturing a group III nitride compound semiconductor device according to the present invention is a method for manufacturing a group III nitride compound semiconductor device including a p-type impurity and a group III nitride compound semiconductor device including a p-type electrode. A first layer made of a compound of a first metal and gallium, a second layer made of a first metal, a third layer made of a second metal, on the group III nitride-based semiconductor layer containing the p-type impurity, A fourth layer made of a third metal is sequentially formed.

【0020】[0020]

【発明の実施の形態】以下に、本発明を実施した例につ
いて図面を参照しながら記載する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】第1図及び第2図は、本発明を実施した電
極構造の断面模式図である。本実施例の電極構造は以下
の方法により製作された。
FIG. 1 and FIG. 2 are schematic sectional views of an electrode structure embodying the present invention. The electrode structure of this example was manufactured by the following method.

【0022】最初に、有機金属気相成長(MOCVD)
法によりサファイア基板101上にIII族窒化物系半
導体層としてp型GaN層102をエピタキシャル成長
し、電極構造の下地となる半導体コンタクト層を形成し
た。p型GaN層102には、5×1017cm-3のキャ
リア濃度を有するようにMgが1020cm-3の濃度でド
ーピングされている。更に、p型GaN層102の表面
をアセトンで超音波洗浄した後、エタノールまたはメタ
ノール中で超音波洗浄し、エピタキシャル層表面に付着
している有機系不純物の除去を行った。
First, metal organic chemical vapor deposition (MOCVD)
A p-type GaN layer 102 was epitaxially grown as a group III nitride semiconductor layer on a sapphire substrate 101 by a method to form a semiconductor contact layer serving as a base of the electrode structure. The p-type GaN layer 102 is doped with Mg at a concentration of 10 20 cm −3 so as to have a carrier concentration of 5 × 10 17 cm −3 . Further, after ultrasonically cleaning the surface of the p-type GaN layer 102 with acetone, ultrasonic cleaning was performed in ethanol or methanol to remove organic impurities attached to the surface of the epitaxial layer.

【0023】次に、HClと脱イオン水を体積比1:1
で混合したエッチャントに約3分間浸漬し、p型GaN
層102表面に吸着した水分及び表面に形成された酸化
物層を除去した。
Next, HCl and deionized water are mixed at a volume ratio of 1: 1.
Dipped in an etchant mixed for 3 minutes with p-type GaN
The moisture adsorbed on the surface of the layer 102 and the oxide layer formed on the surface were removed.

【0024】続いて、HFと脱イオン水を体積比1:1
で混合したエッチャントに約3分間浸漬し、p型GaN
層102表面に付着した炭素を含む不純物を除去した。
Subsequently, HF and deionized water were mixed at a volume ratio of 1: 1.
Dipped in an etchant mixed for 3 minutes with p-type GaN
The impurities including carbon attached to the surface of the layer 102 were removed.

【0025】以上の手順でp型GaN層102の表面を
清浄化した後、電子ビーム(EB)蒸着法により、p型
電極の第2層としてPd層104、第3層としてMo層
105、第4層としてAu層106を成膜した。各金属
層の膜厚についてはそれぞれ50nm、15nm、20
0nmとした。また、Pd層104の成膜に先立ち、金
属層のp型GaN層102に対する密着性を高める目的
で、真空チャンバ内で約80〜100℃に加熱した。
After the surface of the p-type GaN layer 102 is cleaned by the above procedure, the Pd layer 104 as the second layer, the Mo layer 105 as the third layer, the Mo layer 105 as the third layer are formed by electron beam (EB) evaporation. An Au layer 106 was formed as four layers. The thickness of each metal layer is 50 nm, 15 nm, 20 nm, respectively.
It was set to 0 nm. Prior to the formation of the Pd layer 104, the metal layer was heated to about 80 to 100 ° C. in a vacuum chamber in order to increase the adhesion of the metal layer to the p-type GaN layer 102.

【0026】最後に、このようにして製作した電極構造
に対してN2雰囲気中もしくは1×10-6Torr程度
の真空雰囲気中で600℃で熱処理工程を施した。
Finally, the electrode structure thus manufactured was subjected to a heat treatment at 600 ° C. in an N 2 atmosphere or a vacuum atmosphere of about 1 × 10 −6 Torr.

【0027】この熱処理工程を経ることにより、p型G
aN層102とPd層104が反応し、p型電極の第1
層であるPd−Ga化合物層103が形成され、図2に
示すような電極構造が完成した。以下では説明の便宜
上、この電極を電極構造Aと呼称することにする。
Through the heat treatment step, the p-type G
The aN layer 102 and the Pd layer 104 react, and the first p-type electrode
A Pd—Ga compound layer 103 as a layer was formed, and an electrode structure as shown in FIG. 2 was completed. Hereinafter, this electrode is referred to as an electrode structure A for convenience of description.

【0028】以上のような工程で製作された電極構造A
のコンタクト抵抗を測定したところ、約4×10-4Ωc
2の値が得られた。
The electrode structure A manufactured by the above steps
When the contact resistance was measured, about 4 × 10 -4 Ωc
A value of m 2 was obtained.

【0029】図3には、p型電極の第3層であるMo層
105を有さない従来型の電極構造の断面模式図を示
す。図3の電極構造の製作手順は図2に示した電極に準
じており、サファイア基板301上にエピタキシャル成
長したp型GaN層302の表面を清浄化した後、Pd
層304、Au層305をEB蒸着法により順次成膜
し、前記の熱処理工程を施すことによりPd−Ga化合
物層303を形成した。p型GaN層302のMgドー
ピング濃度は電極構造Aと同じ1020Ωcm-3、キャリ
ア濃度は5×1017cm-3である。また、各金属層の膜
厚については、Pd層304を50nm、Au層304
を200nmとした。以下では説明の便宜上、この電極
を電極構造Bと呼称することにする。
FIG. 3 is a schematic cross-sectional view of a conventional electrode structure having no Mo layer 105 as the third layer of the p-type electrode. The manufacturing procedure of the electrode structure of FIG. 3 is similar to that of the electrode shown in FIG. 2, and after cleaning the surface of the p-type GaN layer 302 epitaxially grown on the sapphire substrate 301,
The layer 304 and the Au layer 305 were sequentially formed by the EB evaporation method, and the Pd-Ga compound layer 303 was formed by performing the heat treatment described above. The Mg doping concentration of the p-type GaN layer 302 is 10 20 Ωcm −3 , the same as that of the electrode structure A, and the carrier concentration is 5 × 10 17 cm −3 . Further, regarding the thickness of each metal layer, the Pd layer 304 is 50 nm, and the Au layer 304 is
Was set to 200 nm. Hereinafter, this electrode is referred to as an electrode structure B for convenience of description.

【0030】まず、前述の2種類の電極構造A、Bの電
流−電圧特性の測定結果を示す。
First, the measurement results of the current-voltage characteristics of the two types of electrode structures A and B will be described.

【0031】測定に用いた電極は図4の模式図に示した
ような構造であり、電極パッド403は一辺300μm
の正方形、電極間隔は50μmである。また図中のサフ
ァイア層401、p型GaN層402はそれぞれサファ
イア層101及び301、p型GaN層102及び30
2と同じものを指している。
The electrode used for the measurement has a structure as shown in the schematic diagram of FIG. 4, and the electrode pad 403 has a side length of 300 μm.
And the electrode spacing is 50 μm. Also, the sapphire layer 401 and the p-type GaN layer 402 in the figure are the sapphire layers 101 and 301 and the p-type GaN layers 102 and 30 respectively.
Refers to the same as 2.

【0032】図5には、2つの電極の製作直後の電流−
電圧特性を図示した。図5において、電極構造A(実線
で図示)に対して電極構造B(点線で図示)の特性が、
オーミック性ではあるがより高抵抗な特性を示している
が、これはPd−Ga化合物層303の形成が均一にな
っておらず、見かけのコンタクト抵抗が電極構造Aより
も増大してしまっていることが原因である。他方、電極
構造Aについては、本発明の特徴である反応均一化層と
して機能するp型電極の第3層であるMo層105の存
在によりPd−Ga化合物層103の形成が均一になっ
ており、電極特性は良好なオーミック特性を示してい
る。
FIG. 5 shows the current immediately after the fabrication of the two electrodes.
The voltage characteristics are illustrated. In FIG. 5, the characteristics of the electrode structure B (shown by a dotted line) with respect to the electrode structure A (shown by a solid line) are as follows.
Although it shows ohmic properties but higher resistance characteristics, the formation of the Pd—Ga compound layer 303 is not uniform, and the apparent contact resistance is higher than that of the electrode structure A. That is the cause. On the other hand, in the electrode structure A, the formation of the Pd—Ga compound layer 103 is uniform due to the presence of the Mo layer 105, which is the third layer of the p-type electrode that functions as a reaction uniformizing layer, which is a feature of the present invention. The electrode characteristics show good ohmic characteristics.

【0033】図6には、前記電極構造A及びBに10K
A/cm2の高密度の電流を注入しつづけたときのコン
タクト抵抗の変化を示している。約500時間経過時点
頃から電極構造Bのコンタクト抵抗が大きく上昇し始め
ている原因については、不均一に形成されたPd−Ga
化合物層への高密度の電流注入による該化合物層の変
成、あるいは見かけ上大きなコンタクト抵抗を有する界
面への電流注入による発熱の影響が考えられる。他方、
電極構造Aに関しては、初期特性から全く変化の兆しが
みられておらず、Pd−Ga化合物層を均一に形成する
ことが電極の信頼性向上につながっていることが示唆さ
れる。
FIG. 6 shows that the electrode structures A and B have 10K.
It shows a change in contact resistance when a high-density current of A / cm 2 is continuously injected. The reason why the contact resistance of the electrode structure B has started to increase significantly after about 500 hours has elapsed is that the non-uniformly formed Pd-Ga
The influence of denaturation of the compound layer due to high-density current injection into the compound layer or heat generation due to current injection to an interface having an apparently large contact resistance is considered. On the other hand,
Regarding the electrode structure A, no change was observed from the initial characteristics, suggesting that the uniform formation of the Pd—Ga compound layer leads to an improvement in the reliability of the electrode.

【0034】図7には、本実施例の電極構造Aにおいて
Mo層及びPd層の膜厚を様々に変化させて、オーミッ
ク性を損なわず且つ熱処理工程や電流注入によっても特
性が変化しないかどうかを判定した結果を図示する。図
中、●は結果が良好な条件、×はオーミック性の喪失か
ボンダビリティの低下のいずれかでも発生した条件を示
しており、ハッチング部は凡そ良好と思われる条件範囲
を示している。
FIG. 7 shows that the thickness of the Mo layer and the Pd layer in the electrode structure A of the present embodiment are variously changed so that the ohmic property is not impaired and the characteristics are not changed by the heat treatment step or current injection. Is illustrated. In the figure, ● shows the condition where the result was good, × shows the condition that occurred in either loss of the ohmic property or decrease in the bondability, and the hatched part shows the condition range considered to be almost good.

【0035】Mo層の膜厚に関しては、3nm〜50n
m程度の範囲で上記に示したように熱的安定性及び通電
耐性に優れた特性が得られた。Mo層の厚さを3nmよ
りも薄く、例えば1nmとした場合には、Mo層とPd
層とが部分的に反応したり、あるいはPd層の一部がM
o層を突き破ったりして、電極表面の凹凸の原因となる
ので望ましくない。また、Mo層の厚さを50nmより
も厚くした場合には、全製作工程後に電極の浮き上がり
や剥離が生じる傾向が観察された。電極を実際の素子に
使用していく上で重要な電極の機械的強度や密着性を考
慮すれば、Mo層の厚さの上限はおよそ50nm程度で
あると思われる。
The thickness of the Mo layer is 3 nm to 50 n.
In the range of about m, characteristics excellent in thermal stability and conduction resistance were obtained as described above. When the thickness of the Mo layer is smaller than 3 nm, for example, 1 nm, the Mo layer and the Pd
Layer partially reacts, or a part of the Pd layer
Undesirably, it breaks through the o layer and causes irregularities on the electrode surface. In addition, when the thickness of the Mo layer was set to be greater than 50 nm, a tendency was observed that electrodes would be lifted or peeled off after all the manufacturing steps. Considering the mechanical strength and adhesion of the electrode, which are important in using the electrode in an actual device, the upper limit of the thickness of the Mo layer seems to be about 50 nm.

【0036】Pd層の膜厚に関しては、Mo層の厚さが
3nm以上である場合には、3nm以上の膜厚で電極構
造Aとほぼ同じ良好な特性が得られた。Pd層の厚さを
3nmよりも薄く、例えば1nmとした場合には、電極
のコンタクト抵抗が増大する傾向がみられた。これはP
dの膜厚が十分に確保されていないため、電極の熱処理
工程によってPd層のほとんどが下地のp型GaNコン
タクト層表面から供給されるGaと反応するようにな
り、そうして形成されたPd−Ga化合物層が直接にM
o層と接触する構造となることによる。単体のMoはP
dと比較すると仕事関数がより小さいため、p型GaN
コンタクト層との間のエネルギー障壁高さが大きくな
り、そのことがPd膜厚が十分に確保され電極構造Aの
ような構造が形成された場合と比較して、コンタクト抵
抗の増大をもたらすものと推測される。
Regarding the thickness of the Pd layer, when the thickness of the Mo layer was 3 nm or more, almost the same good characteristics as those of the electrode structure A were obtained at a thickness of 3 nm or more. When the thickness of the Pd layer is smaller than 3 nm, for example, 1 nm, the contact resistance of the electrode tends to increase. This is P
Since the film thickness of d is not sufficiently ensured, most of the Pd layer reacts with Ga supplied from the surface of the underlying p-type GaN contact layer by the heat treatment step of the electrode, and the Pd thus formed -Ga compound layer is directly M
This is because the structure comes into contact with the o-layer. Mo is P
Since the work function is smaller than that of d, p-type GaN
The energy barrier height between the contact layer and the contact layer is increased, which leads to an increase in the contact resistance as compared with the case where the Pd film thickness is sufficiently ensured and a structure like the electrode structure A is formed. Guessed.

【0037】また、Pd層の上限については200nm
程度まで厚くしてもオーミック特性が失われたり、熱的
安定性や通電耐性が変化するということはなく、特に上
限値が存在するわけではないが、製造プロセス過程で電
極のリフトオフプロセスを実施することもあり、またP
d自体の価格が高価であることも考慮すると、闇雲に厚
くする必要はなく、50nm程度を目安とすればよいと
思われる。
The upper limit of the Pd layer is 200 nm.
Even if the thickness is increased to the extent, the ohmic characteristics are not lost, the thermal stability and the conduction resistance are not changed, and there is no particular upper limit, but the lift-off process of the electrode is performed in the manufacturing process. Sometimes, P
In view of the fact that the price of d itself is expensive, it is not necessary to make it thicker, and it may be sufficient to use about 50 nm as a guide.

【0038】最後に、図8に、上記の電極構造Aをp型
電極として適用したIII族窒化物系半導体LD素子の
断面構造を模式図として示す。図8のLD素子構造は以
下の手順に沿って製作された。
Finally, FIG. 8 is a schematic diagram showing a cross-sectional structure of a group III nitride semiconductor LD device in which the above electrode structure A is applied as a p-type electrode. The LD device structure of FIG. 8 was manufactured according to the following procedure.

【0039】最初に、{0001}面の面方位を有する
n型GaN基板701上に、n型GaNバッファ層70
2、n型AlGaNクラッド層703、n型GaN光ガ
イド層704、InGaAsPN多重量子井戸活性層7
05、p型GaN光ガイド層706、p型AlGaNク
ラッド層707、p型GaNコンタクト層708をMO
CVD法により順次エピタキシャル成長し、III族窒
化物系半導体積層構造を製作する(図8(a))。
First, an n-type GaN buffer layer 70 is placed on an n-type GaN substrate 701 having a {0001} plane orientation.
2. n-type AlGaN cladding layer 703, n-type GaN optical guide layer 704, InGaAsPN multiple quantum well active layer 7
05, p-type GaN optical guide layer 706, p-type AlGaN cladding layer 707, and p-type GaN contact layer 708
Epitaxial growth is sequentially performed by a CVD method to produce a group III nitride-based semiconductor multilayer structure (FIG. 8A).

【0040】次に、フォトリソグラフィ工程及びドライ
エッチング工程を用いて該半導体積層構造の上部にリッ
ジ構造を形成し、n型AlGaN埋込層709でリッジ
構造の周囲を埋め込む(図8(b))。
Next, a ridge structure is formed on the semiconductor laminated structure using a photolithography process and a dry etching process, and the periphery of the ridge structure is buried with an n-type AlGaN buried layer 709 (FIG. 8B). .

【0041】続いて、該リッジ構造の表面をアセトン及
びエタノールもしくはメタノールによる有機洗浄、HC
lと脱イオン水の混合エッチャント、HFと脱イオン水
の混合エッチャントに浸漬して清浄化した後、EB蒸着
法により、該リッジ構造の上面にp型電極として第2層
であるPd層710、第3層であるMo層711、第4
層であるAu層712を順次積層する。なお、Pd層7
10の成膜に先立ち、各金属層のp型GaN層708に
対する密着性を高める目的で、真空チャンバ内で約80
〜100℃に加熱した。また、Pd層、Mo層、Au層
の膜厚はそれぞれ50nm、15nm、200nmとし
た。
Subsequently, the surface of the ridge structure was organically washed with acetone and ethanol or methanol, and HC was washed.
1 and a mixed etchant of deionized water and HF and deionized water, and then cleaned by dipping, and then a Pd layer 710 as a second layer as a p-type electrode is formed on the upper surface of the ridge structure by EB evaporation. Mo layer 711 as the third layer, fourth layer
Au layers 712 as layers are sequentially stacked. The Pd layer 7
Prior to the formation of film No. 10, in order to increase the adhesion of each metal layer to the p-type GaN layer 708, about 80
Heated to ~ 100 <0> C. The thicknesses of the Pd layer, Mo layer and Au layer were 50 nm, 15 nm and 200 nm, respectively.

【0042】また、n型GaN基板701下面を上記と
同じ手法で清浄化した後、n型電極部としてTi層71
3、Al層714をEB蒸着法により順次積層する。T
i層及びAl層の膜厚はそれぞれ15nm、150nm
とした(図8(c))。
After the lower surface of the n-type GaN substrate 701 is cleaned by the same method as described above, the Ti layer 71 is used as an n-type electrode.
3. The Al layer 714 is sequentially laminated by the EB evaporation method. T
The thicknesses of the i layer and the Al layer are 15 nm and 150 nm, respectively.
(FIG. 8C).

【0043】最後に、図8(c)に示した積層構造を1
×10-6Torr程度の真空雰囲気において600℃で
熱処理し、p型電極の第1層であるPd−Ga化合物層
715を形成し、図9に示す半導体LD素子構造を完成
した。即ち、この半導体LD素子構造のp型電極は前記
電極構造Aと同じである。
Finally, the laminated structure shown in FIG.
A heat treatment was performed at 600 ° C. in a vacuum atmosphere of about × 10 −6 Torr to form a Pd—Ga compound layer 715 as the first layer of the p-type electrode, thereby completing the semiconductor LD device structure shown in FIG. That is, the p-type electrode of this semiconductor LD element structure is the same as the electrode structure A.

【0044】図10は、この半導体LD素子に100m
Aの電流注入を施した時の素子の動作電圧の経時的変化
を示したものである。比較例として、p型電極を前記電
極構造Bとした以外は上記半導体LD素子と同じ構造を
有するLD素子の特性を破線で示した。なお、両素子と
も、p型電極の電流注入部は幅2μm、長さ500μm
のストライプ形状を有している。
FIG. 10 shows that the semiconductor LD device has a length of 100 m.
7 shows a change with time of the operating voltage of the element when the current A is applied. As a comparative example, the characteristics of an LD element having the same structure as the above-described semiconductor LD element except that the p-type electrode was changed to the electrode structure B are indicated by broken lines. In both devices, the current injection part of the p-type electrode was 2 μm in width and 500 μm in length.
Has a stripe shape.

【0045】図中に示したように、電極構造Bを有する
比較用素子の動作電圧は、駆動時間が1000時間を越
えるあたりから徐々に増加を始める。この現象は既に図
6を用いて電極構造のみの例について説明したものと同
じで、不均一に形成されたPd−Ga化合物層への高密
度の電流注入による該化合物層の変成、あるいは界面で
の発熱の影響が原因であると考えられる。
As shown in the figure, the operating voltage of the comparative element having the electrode structure B gradually starts to increase when the driving time exceeds about 1000 hours. This phenomenon is the same as that already described for the example of only the electrode structure with reference to FIG. 6, and the denaturation of the non-uniformly formed Pd-Ga compound layer due to the current injection into the compound layer or the interface at the interface This is probably due to the effect of heat generation.

【0046】他方、電極構造Aを採用している図9に示
した半導体LD素子では、比較用素子にみられる動作電
圧の増加はほとんどみられず、本発明の特徴である反応
均一化層として機能するp型電極の第3層Mo層711
の存在が有効に働いていることを示唆している。
On the other hand, in the semiconductor LD device shown in FIG. 9 which employs the electrode structure A, the increase in operating voltage seen in the comparative device is hardly observed, and the reaction uniformizing layer which is a feature of the present invention is formed. Third layer Mo layer 711 of a functioning p-type electrode
Suggests that the existence is working effectively.

【0047】また、上記の二種類の半導体LD素子をL
D用ステムにマウントし、給電線としてAl線のボンデ
ィングを実施したが、電極構造Bを採用した比較用素子
ではしばしばAl線が剥れたり、あるいは電極とAl線
が接着しないといったボンディング不良が発生し、良品
歩留まりが低下した。前出のように、この現象の原因
は、LD素子構造の製作工程の最後に行う熱処理工程に
起因するPd−Ga化合物層の不均一性を起源とする電
極表面の凹凸にある。
Further, the above two types of semiconductor LD elements are represented by L
Mounting on the stem for D and bonding of the Al wire as the feeder line. However, in the comparative device employing the electrode structure B, bonding failure such as peeling of the Al wire or not bonding the electrode and the Al wire often occurs. As a result, the yield of non-defective products decreased. As described above, the cause of this phenomenon is unevenness on the electrode surface due to the non-uniformity of the Pd-Ga compound layer caused by the heat treatment performed at the end of the manufacturing process of the LD element structure.

【0048】他方、電極構造Aを採用したLD素子では
ボンディング不良などは一切発生せず、マウント工程に
投入した素子が全数良品となっており、ボンダビリティ
の点でも本発明の特徴である反応均一化層としてのMo
層の存在が有効に働いていることを示唆している。
On the other hand, in the LD element adopting the electrode structure A, no bonding failure or the like occurs at all, and all the elements put into the mounting process are non-defective, and the reaction uniformity which is a feature of the present invention in terms of bondability is also obtained. Mo as activated layer
The existence of the layer suggests that it is working effectively.

【0049】なお、上記のLD素子の例において、基板
として使用したn型GaN基板の面方位は{0001}
面であったが、他にも{1−100}面、{11−2
0}面、{1−101}面、{01−12}面、の各基
板、更にこれらの面方位から±2°ずれた基板について
も同様の実験を行ったが、いずれにおいても本発明に示
した障壁層の効果を確認することができた。
In the above example of the LD element, the plane orientation of the n-type GaN substrate used as the substrate is {0001}
Surface, but also {1-100} surface, {11-2}
Similar experiments were performed on each of the 0 ° plane, {1-101} plane, and {01-12} plane, and further, a substrate shifted ± 2 ° from these plane directions. The effect of the barrier layer shown could be confirmed.

【0050】また、p型GaNコンタクト層の間でPd
−Ga化合物を形成する第1金属Pdの代替として、P
t及びNi、Ir、Os、Rh、Ruでも上記と同様の
実験を試みたが、熱処理温度が500℃〜900℃まで
変化することや、熱処理時間、必要な層厚などに若干の
違いはあるものの、いずれの金属を使用してもPdを使
用した場合と同様な本発明の特徴である反応均一化層と
して機能するp型電極の第3層であるMo層の効果が確
認できた。ちなみに、上記実施例においては熱処理の雰
囲気を真空雰囲気としているが、N2やO2、Arなどの
ガス雰囲気下であっても、あるいはこれらの混合雰囲気
化であっても構わない。なお、p型電極の第3層である
Mo層の反応均一化層としての効果は、第1金属にP
d、Pt、Ni、Ir、Os、Rh、Ruの各単体金属
のみでなく数種類の金属を合金にした場合でも有効であ
った。
In addition, Pd is applied between the p-type GaN contact layers.
As an alternative to the first metal Pd forming the -Ga compound, P
The same experiments as above were attempted for t, Ni, Ir, Os, Rh, and Ru, but there were slight differences in the heat treatment temperature varying from 500 ° C. to 900 ° C., the heat treatment time, and the required layer thickness. However, the effect of the Mo layer, which is the third layer of the p-type electrode functioning as a uniform reaction layer, which is a feature of the present invention, similar to the case of using Pd, can be confirmed using any metal. Incidentally, in the above embodiment, the atmosphere of the heat treatment is a vacuum atmosphere, but may be a gas atmosphere of N 2 , O 2 , Ar or the like, or a mixed atmosphere thereof. The effect of the Mo layer, which is the third layer of the p-type electrode, as a uniform reaction layer is that the first metal has P
It was effective not only when each of the single metals d, Pt, Ni, Ir, Os, Rh, and Ru, but also when several kinds of metals were alloyed.

【0051】また、ここまでの実施例では反応均一化層
の材料となる第2の金属としてとしてMoを使用した
が、代替金属としてW、Ir、Rh、Ruでも上記と同
様の実験を試みた結果、いずれの金属を使用してもMo
の場合と同様に反応均一化層として有効に作用すること
が確認できた。なお、反応均一化層の効果は、Mo、
W、Ir、Rh、Ruの各単体金属のみでなく、数種類
の金属を合金にした場合でも有効であることも分かっ
た。ただし、Ir、Rh、Ruに関しては、同じ金属が
第1の金属として選択されているときに、第3層にも使
用すると、第2層と第3層との間で界面反応が進行して
しまい、第3層は界面反応均一化層としての効果を発揮
しえなかった。したがって、第3層にIr、Rh、Ru
を使用する際は第1の金属へ同時に選択されてはならな
い。
In the above examples, Mo was used as the second metal as the material of the reaction uniformizing layer. However, the same experiment as described above was attempted with W, Ir, Rh, and Ru as alternative metals. As a result, no matter which metal is used, Mo
In the same manner as in the above case, it was confirmed that the layer effectively acted as a uniform reaction layer. The effect of the reaction uniform layer is Mo,
It was also found that not only single metals of W, Ir, Rh, and Ru, but also alloys of several kinds of metals were effective. However, regarding Ir, Rh, and Ru, when the same metal is selected as the first metal, if the same metal is also used for the third layer, an interface reaction between the second layer and the third layer progresses. As a result, the third layer could not exhibit the effect as the interface reaction uniforming layer. Therefore, Ir, Rh, Ru are added to the third layer.
Must not be selected for the first metal at the same time.

【0052】また、本実施例ではp型電極の各金属の成
膜には真空蒸着法のひとつであるEB蒸着法を用いてい
るが、本発明の特徴は成膜方法に左右されるわけではな
く、化学気相成長法、高周波スパッタリング法など他の
薄膜形成方法を用いても何ら問題はない。
In this embodiment, the EB vapor deposition method, which is one of the vacuum vapor deposition methods, is used for depositing each metal of the p-type electrode. However, the characteristics of the present invention are not affected by the film deposition method. There is no problem even if other thin film forming methods such as a chemical vapor deposition method and a high frequency sputtering method are used.

【0053】また、上記の電極構造の例及び半導体LD
素子の例では、いずれもPd−Ga化合物層の形成に熱
処理工程を用いているが、Pd−Ga化合物を前記の真
空蒸着法、化学気相成長法、高周波スパッタリング法な
どの薄膜形成方法で直接成膜しても、本発明の特徴を損
なうことにはならない。
The above-described example of the electrode structure and the semiconductor LD
In each of the examples of the device, a heat treatment process is used for forming the Pd-Ga compound layer, but the Pd-Ga compound is directly applied to the thin film forming method such as the above-described vacuum deposition method, chemical vapor deposition method, and high-frequency sputtering method. The formation of the film does not impair the features of the present invention.

【0054】[0054]

【発明の効果】本発明によれば、III族窒化物系半導
体素子のp型低抵抗電極であるAu/Pd/Pd−Ga
化合物電極の熱的安定性及び通電耐性を向上させること
ができ、該電極が素子に適用され駆動された場合の電極
特性の経時的変化を抑制することができる。また、電極
部に対するワイヤボンディング時のボンダビリティの低
下を防ぎ、LDパッケージの良品率を向上させることが
可能になる。
According to the present invention, Au / Pd / Pd-Ga which is a p-type low resistance electrode of a group III nitride semiconductor device is provided.
It is possible to improve the thermal stability and the current-carrying resistance of the compound electrode, and it is possible to suppress a temporal change in the electrode characteristics when the electrode is applied to an element and driven. Further, it is possible to prevent a decrease in bondability at the time of wire bonding to the electrode portion, and to improve the yield rate of the LD package.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極構造の製造工程において、金属層
成膜の様子を示す断面概略図である。
FIG. 1 is a schematic cross-sectional view showing a state of forming a metal layer in a manufacturing process of an electrode structure of the present invention.

【図2】本発明の電極構造の製造工程において、熱処理
後の様子を示す断面概略図である。
FIG. 2 is a schematic cross-sectional view showing a state after a heat treatment in a manufacturing process of the electrode structure of the present invention.

【図3】本発明に対する従来例にあたる電極構造を示し
た断面該略図である。
FIG. 3 is a schematic sectional view showing an electrode structure according to a conventional example for the present invention.

【図4】本発明の電極構造の特性を評価するためのサン
プル構造を示した模式図である。
FIG. 4 is a schematic diagram showing a sample structure for evaluating characteristics of the electrode structure of the present invention.

【図5】本発明及び比較例の電極構造の、電流−電圧特
性を示す模式図である。
FIG. 5 is a schematic diagram showing current-voltage characteristics of the electrode structures of the present invention and a comparative example.

【図6】本発明及び比較例の電極構造に連続して電流注
入した時の、コンタクト抵抗の経時的変化を示す図であ
る。
FIG. 6 is a diagram showing a change over time in contact resistance when current is continuously injected into the electrode structures of the present invention and a comparative example.

【図7】本発明の電極構造の各層の膜厚を変化させた場
合の、電極の特性の良否を判定した模式図である。
FIG. 7 is a schematic diagram for judging the quality of electrode characteristics when the thickness of each layer of the electrode structure of the present invention is changed.

【図8】本発明の実施例のIII族窒化物系半導体LD
素子の製作過程を示す断面該略図である。
FIG. 8 shows a group III nitride semiconductor LD according to an embodiment of the present invention.
6 is a schematic cross-sectional view showing a process of manufacturing the element.

【図9】本発明の実施例に示したIII族窒化物系半導
体LD素子の構造を示す断面該略図である。
FIG. 9 is a schematic sectional view showing the structure of a group III nitride semiconductor LD device shown in an example of the present invention.

【図10】本発明の実施例に示したIII族窒化物系半
導体LD素子の、動作電圧の経時的変化を示した図であ
る。
FIG. 10 is a diagram showing a change over time of an operating voltage of the group III nitride semiconductor LD device shown in the example of the present invention.

【符号の説明】[Explanation of symbols]

101…サファイア基板 102…p型GaN層 103…Pd−Ga化合物層 104…Pd層 105…Mo層 106…Au層 401…サファイア基板 402…p型GaN層 403…p型電極構造 701…n型GaN基板 702…n型GaNバッファ層 703…n型AlGaNクラッド層 704…n型GaN光ガイド層 705…InGaAsPN多重量子井戸活性層 706…p型GaN光ガイド層 707…p型AlGaNクラッド層 708…p型GaNコンタクト層 709…n型AlGaN埋込層 710…Pd層 711…Mo層 712…Au層 713…Ti層 714…Al層 715…Pd−Ga化合物層 Reference Signs List 101 sapphire substrate 102 p-type GaN layer 103 Pd-Ga compound layer 104 Pd layer 105 Mo layer 106 Au layer 401 sapphire substrate 402 p-type GaN layer 403 p-type electrode structure 701 n-type GaN Substrate 702: n-type GaN buffer layer 703: n-type AlGaN cladding layer 704: n-type GaN light guide layer 705: InGaAsPN multiple quantum well active layer 706: p-type GaN light guide layer 707: p-type AlGaN cladding layer 708: p-type GaN contact layer 709 n-type AlGaN buried layer 710 Pd layer 711 Mo layer 712 Au layer 713 Ti layer 714 Al layer 715 Pd-Ga compound layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M104 AA04 AA10 BB04 BB05 BB07 BB14 CC01 DD22 DD23 DD35 DD37 DD78 DD83 FF02 FF17 GG04 HH15 HH20 5F073 AA07 AA74 CA20 CB02 CB05 CB07 CB22 EA28  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4M104 AA04 AA10 BB04 BB05 BB07 BB14 CC01 DD22 DD23 DD35 DD37 DD78 DD83 FF02 FF17 GG04 HH15 HH20 5F073 AA07 AA74 CA20 CB02 CB05 CB07 CB22 EA28

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 p型不純物を含むIII族窒化物系半導
体層とIII族窒化物系半導体層に接するp型電極を備
えたIII族窒化物系化合物半導体装置において、p型
電極はIII族窒化物系半導体層と接する部分から順
に、第1の金属とガリウムの化合物からなる第1層、第
1の金属からなる第2層、第2の金属からなる第3層、
第3の金属からなる第4層からなることを特徴とするI
II族窒化物系化合物半導体装置。
1. A group III nitride-based compound semiconductor device comprising a group III nitride-based semiconductor layer containing a p-type impurity and a p-type electrode in contact with the group III nitride-based semiconductor layer. A first layer made of a compound of a first metal and gallium, a second layer made of a first metal, a third layer made of a second metal,
I is characterized by comprising a fourth layer made of a third metal.
Group II nitride compound semiconductor device.
【請求項2】 前記第1の金属は、Pd、Pt、Ni、
Ir、Os、Rh、Ruのうち少なくとも一種類を含む
ことを特徴とする請求項1に記載のIII族窒化物系化
合物半導体装置。
2. The method according to claim 1, wherein the first metal is Pd, Pt, Ni,
2. The group III nitride-based compound semiconductor device according to claim 1, comprising at least one of Ir, Os, Rh, and Ru.
【請求項3】 前記第2層の厚さは、3nm以上である
ことを特徴とする請求項1に記載のIII族窒化物系化
合物半導体装置。
3. The group III nitride compound semiconductor device according to claim 1, wherein the thickness of the second layer is 3 nm or more.
【請求項4】 前記第3層は、Mo、W、Ir、Rh、
Ruのうち少なくとも1種類を含むことを特徴とする請
求項1に記載のIII族窒化物系化合物半導体装置。
4. The third layer comprises Mo, W, Ir, Rh,
The group III nitride compound semiconductor device according to claim 1, wherein at least one of Ru is included.
【請求項5】 前記第3層の厚さは、3nm以上、50
nm以下であることを特徴とする請求項1に記載のII
I族窒化物系化合物半導体装置。
5. The thickness of the third layer is 3 nm or more and 50
2. The compound according to claim 1, wherein the diameter is equal to or less than nm.
Group I nitride compound semiconductor device.
【請求項6】 p型不純物を含むIII族窒化物系半導
体とp型電極を含むIII族窒化物系化合物半導体装の
製造方法であって、前記p型不純物を含むIII族窒化
物系半導体層上に、第1の金属からなる第2層と、第2
の金属からなる第3層と、第3の金属からなる第4層を
順次形成する工程と、その後、500℃〜900℃の熱
処理によりIII族窒化物系半導体と第2層の間に、第
1の金属とガリウムの化合物からなる第1層を形成する
工程を含むことを特徴とするIII族窒化物系化合物半
導体装の製造方法。
6. A method of manufacturing a group III nitride-based semiconductor including a p-type impurity and a group III nitride-based compound semiconductor including a p-type electrode, wherein the group III nitride-based semiconductor layer includes a p-type impurity. A second layer made of a first metal and a second layer
Forming a third layer of a third metal and a fourth layer of a third metal in sequence, and then performing a heat treatment at 500 ° C. to 900 ° C. to form a third layer between the group III nitride-based semiconductor and the second layer. A method for manufacturing a group III nitride-based compound semiconductor device, comprising a step of forming a first layer made of a compound of metal and gallium.
【請求項7】 p型不純物を含むIII族窒化物系半導
体とp型電極を含むIII族窒化物系化合物半導体装の
製造方法であって、前記p型不純物を含むIII族窒化
物系半導体層上に第1の金属とガリウムの化合物からな
る第1層、第1の金属からなる第2層、第2の金属から
なる第3層、第3の金属からなる第4層を順次形成する
ことを特徴とするIII族窒化物系化合物半導体装の製
造方法。
7. A method for manufacturing a group III nitride-based semiconductor including a p-type impurity and a group III nitride-based compound semiconductor including a p-type electrode, wherein the group III nitride-based semiconductor layer includes a p-type impurity. Forming a first layer made of a compound of a first metal and gallium, a second layer made of a first metal, a third layer made of a second metal, and a fourth layer made of a third metal in this order; A method for manufacturing a group III nitride compound semiconductor device, comprising:
JP2001159779A 2001-05-29 2001-05-29 Iii nitride-based compound semiconductor device and manufacturing method therefor Pending JP2002353570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159779A JP2002353570A (en) 2001-05-29 2001-05-29 Iii nitride-based compound semiconductor device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159779A JP2002353570A (en) 2001-05-29 2001-05-29 Iii nitride-based compound semiconductor device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002353570A true JP2002353570A (en) 2002-12-06

Family

ID=19003302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159779A Pending JP2002353570A (en) 2001-05-29 2001-05-29 Iii nitride-based compound semiconductor device and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002353570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026389A (en) * 2003-07-01 2005-01-27 Sharp Corp Electrode structure on p-type iii-group nitride semiconductor layer and method of forming the same
JP2006128691A (en) * 2004-10-27 2006-05-18 Samsung Electronics Co Ltd Manufacturing method for tft, and display device
JP2011114013A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Apparatus and method for manufacturing semiconductor device
JP2012054409A (en) * 2010-09-01 2012-03-15 Sumitomo Electric Ind Ltd Semiconductor light-emitting device and method of manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275868A (en) * 1993-03-19 1994-09-30 Nichia Chem Ind Ltd Formation of electrode of gallium nitride-based compound semiconductor
JPH1012567A (en) * 1996-06-18 1998-01-16 Toyoda Gosei Co Ltd Electrode for iii group nitride semiconductor and device having the same
JPH1084160A (en) * 1996-09-06 1998-03-31 Toshiba Corp Gallium nitride system compound semiconductor light emitting device
JPH10303504A (en) * 1997-04-25 1998-11-13 Sharp Corp Gan compound semiconductor device and its manufacture
JPH11150302A (en) * 1997-11-14 1999-06-02 Nichia Chem Ind Ltd Nitride semiconductor light-emitting element
JPH11204887A (en) * 1998-01-19 1999-07-30 Toshiba Corp Semiconductor device having low resistance electrode
JPH11274469A (en) * 1998-03-25 1999-10-08 Mitsubishi Chemical Corp Iii-v compound semiconductor device
JPH11298040A (en) * 1998-04-10 1999-10-29 Sharp Corp Semiconductor light-emitting element and manufacture thereof
JP2000223742A (en) * 1999-01-29 2000-08-11 Toshiba Corp Nitrogen compound semiconductor element
JP2001085736A (en) * 1999-09-10 2001-03-30 Sharp Corp Method for manufacturing nitride semiconductor chip
JP2001127002A (en) * 1999-10-27 2001-05-11 Sony Corp Method for activating impurity in semiconductor and manufacturing method of semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275868A (en) * 1993-03-19 1994-09-30 Nichia Chem Ind Ltd Formation of electrode of gallium nitride-based compound semiconductor
JPH1012567A (en) * 1996-06-18 1998-01-16 Toyoda Gosei Co Ltd Electrode for iii group nitride semiconductor and device having the same
JPH1084160A (en) * 1996-09-06 1998-03-31 Toshiba Corp Gallium nitride system compound semiconductor light emitting device
JPH10303504A (en) * 1997-04-25 1998-11-13 Sharp Corp Gan compound semiconductor device and its manufacture
JPH11150302A (en) * 1997-11-14 1999-06-02 Nichia Chem Ind Ltd Nitride semiconductor light-emitting element
JPH11204887A (en) * 1998-01-19 1999-07-30 Toshiba Corp Semiconductor device having low resistance electrode
JPH11274469A (en) * 1998-03-25 1999-10-08 Mitsubishi Chemical Corp Iii-v compound semiconductor device
JPH11298040A (en) * 1998-04-10 1999-10-29 Sharp Corp Semiconductor light-emitting element and manufacture thereof
JP2000223742A (en) * 1999-01-29 2000-08-11 Toshiba Corp Nitrogen compound semiconductor element
JP2001085736A (en) * 1999-09-10 2001-03-30 Sharp Corp Method for manufacturing nitride semiconductor chip
JP2001127002A (en) * 1999-10-27 2001-05-11 Sony Corp Method for activating impurity in semiconductor and manufacturing method of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026389A (en) * 2003-07-01 2005-01-27 Sharp Corp Electrode structure on p-type iii-group nitride semiconductor layer and method of forming the same
JP2006128691A (en) * 2004-10-27 2006-05-18 Samsung Electronics Co Ltd Manufacturing method for tft, and display device
JP2011114013A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Apparatus and method for manufacturing semiconductor device
JP2012054409A (en) * 2010-09-01 2012-03-15 Sumitomo Electric Ind Ltd Semiconductor light-emitting device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3365607B2 (en) GaN-based compound semiconductor device and method of manufacturing the same
US7800105B2 (en) Ga2O3 semiconductor device
EP0805500A1 (en) Blue light emitting device and production method thereof
US5804839A (en) III-V nitride compound semiconductor device and method for fabricating the same
JP2002016311A (en) Gallium nitride based light emitting element
JP2002134822A (en) Semiconductor light emitting device and method of manufacturing the same
JP5103979B2 (en) Electrode forming method for group III nitride compound semiconductor and method for producing p-type group III nitride compound semiconductor
JP2007157853A (en) Semiconductor light-emitting element, and method of manufacturing same
JP3612985B2 (en) Gallium nitride compound semiconductor device and manufacturing method thereof
JP2005268581A (en) Gallium nitride family compound semiconductor light emitting device
JP3772098B2 (en) Nitride semiconductor light emitting device
JP2002164570A (en) Gallium nitride compound semiconductor device
JP3233139B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
WO2003077391A1 (en) Semiconductor laser and method for fabricating the same
US20060252165A1 (en) Electrode structure, semiconductor light-emitting device having the same and method of manufacturing the same
JP2001015852A (en) Electrode structure of p-type group iii nitride semiconductor layer and method for forming the same
JPH08274372A (en) Group iii nitride semiconductor light emitting element
US20030052322A1 (en) Nitride-based semiconductor light-emitting device and method of forming the same
JP2002353570A (en) Iii nitride-based compound semiconductor device and manufacturing method therefor
JPH11298040A (en) Semiconductor light-emitting element and manufacture thereof
JPH11204833A (en) Manufacture of semiconductor light emitting device
JP4508534B2 (en) Electrode structure for nitride semiconductor and method of manufacturing the same
JP4301784B2 (en) Method for producing laminated electrode on p-type group III nitride semiconductor contact layer and p-type laminated electrode
JP3214367B2 (en) Method for manufacturing semiconductor light emitting device
JP2000286412A (en) Structure of semiconductor device and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802