JPH06275868A - Formation of electrode of gallium nitride-based compound semiconductor - Google Patents

Formation of electrode of gallium nitride-based compound semiconductor

Info

Publication number
JPH06275868A
JPH06275868A JP8549293A JP8549293A JPH06275868A JP H06275868 A JPH06275868 A JP H06275868A JP 8549293 A JP8549293 A JP 8549293A JP 8549293 A JP8549293 A JP 8549293A JP H06275868 A JPH06275868 A JP H06275868A
Authority
JP
Japan
Prior art keywords
gallium nitride
compound semiconductor
based compound
type
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8549293A
Other languages
Japanese (ja)
Other versions
JP2803741B2 (en
Inventor
Motokazu Yamada
元量 山田
Masayuki Senoo
雅之 妹尾
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13860438&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06275868(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP8549293A priority Critical patent/JP2803741B2/en
Publication of JPH06275868A publication Critical patent/JPH06275868A/en
Application granted granted Critical
Publication of JP2803741B2 publication Critical patent/JP2803741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide the formation method, of an electrode, wherein the n-type layer and the p-type layer of a p-n junction-type gallium nitride-based compound semiconductor as well as an ohmic contact are obtained in order to enhance the light-emitting output and the light-emitting efficiency of a light-emitting element which utilizes the gallium nitride-based compound semiconductor. CONSTITUTION:An alloy which contains chromium and/or nickel or the metals are applied to an n-type gallium nitride-based compound semiconductor at an electron carrier concentration of 1X10<17>/cm<3> or higher or to a p-type gallium nitride-based compound semiconductor at an electron carrier concentration of 1X10<15>/cm<3> or higher, and an annealing operation is then performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一般式InXAlYGa
1-X-YN(0≦X<1、0≦Y<1)で表される窒化ガリ
ウム系化合物半導体の電極形成方法に係り、特にn型窒
化ガリウム系化合物半導体、およびp型窒化ガリウム系
化合物半導体とオーミック接触が得られる電極の形成方
法に関する。
The present invention relates to the general formula In X Al Y Ga
The present invention relates to a method for forming an electrode of a gallium nitride-based compound semiconductor represented by 1-XY N (0 ≦ X <1, 0 ≦ Y <1), and particularly to an n-type gallium nitride-based compound semiconductor and a p-type gallium nitride-based compound semiconductor The present invention relates to a method for forming an electrode that can achieve ohmic contact with

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は{InX
AlYGa1-X-YN(0≦X<1、0≦Y<1)}は直接遷
移を有し、バンドギャップが1.95eV〜6eVまで
変化するため、発光ダイオード、レーザダイオード等、
発光素子の材料として有望視されている。この材料はノ
ンドープの状態、またはSi、Ge等のn型ドーパント
をドープすることによりn型特性を示すことが知られて
いる。一方、p型特性に関しては、最近になってp型ド
ーパントをドープした窒化ガリウム系化合物半導体をp
型とする技術が開発されp型窒化ガリウム系化合物半導
体が実現できるようになってきた。(例えば、特開平2
−257679号公報、特開平3−218325号公
報)
2. Description of the Related Art GaN, GaAlN, InGaN, In
Gallium nitride-based compound semiconductors such as AlGaN are {In x
Al Y Ga 1-XY N (0 ≦ X <1, 0 ≦ Y <1)} has a direct transition, and the band gap changes from 1.95 eV to 6 eV, so that a light emitting diode, a laser diode, etc.
It is regarded as a promising material for light emitting devices. It is known that this material exhibits an n-type characteristic in a non-doped state or by being doped with an n-type dopant such as Si or Ge. On the other hand, regarding p-type characteristics, recently, gallium nitride-based compound semiconductors doped with p-type dopants
With the development of p-type gallium nitride-based compound semiconductors, it has become possible to realize p-type gallium nitride compound semiconductors. (For example, Japanese Patent Laid-Open No.
-257679, JP-A-3-218325)

【0003】前記したようにp型窒化ガリウム系化合物
半導体が実現可能となると、発光出力の高いp−n接合
型の発光素子が求められる。p−n接合型の発光素子と
した場合、n型窒化ガリウム系化合物半導体、およびp
型窒化ガリウム系化合物半導体に形成される電極が、そ
れらの窒化ガリウム系化合物半導体とオーミック接触し
ていることが必要不可欠である。しかしながら、窒化ガ
リウム系化合物半導体の物性は、未だよく解明されてお
らず、オーミック接触が得ることのできる電極材料は未
だ知られていないのが実状である。
As described above, if a p-type gallium nitride compound semiconductor can be realized, a pn junction type light emitting device having a high light emission output is required. In the case of a pn junction type light emitting device, an n-type gallium nitride-based compound semiconductor, and p
It is essential that the electrodes formed on the gallium nitride-based compound semiconductor have ohmic contact with those gallium nitride-based compound semiconductors. However, the physical properties of gallium nitride-based compound semiconductors have not yet been clarified, and the reality is that no electrode material capable of obtaining ohmic contact has yet been known.

【0004】[0004]

【発明が解決しようとする課題】そのため、本発明はこ
のような事情を鑑み成されたものであり、その目的とす
るところは、p−n接合型の窒化ガリウム系化合物半導
体を利用した発光素子の発光出力、発光効率を向上させ
るため、窒化ガリウム系化合物半導体のn型層、および
p型層とオーミック接触が得られる電極の形成方法を提
供することにある。
Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a light emitting device using a pn junction type gallium nitride compound semiconductor. In order to improve the light emission output and the light emission efficiency, the method for forming an electrode capable of obtaining ohmic contact with the n-type layer and the p-type layer of a gallium nitride-based compound semiconductor is provided.

【0005】[0005]

【課題を解決するための手段】本発明の電極形成方法
は、電子キャリア濃度1×1017/cm3以上のn型窒化
ガリウム系化合物半導体、または正孔キャリア濃度1×
1015/cm3以上のp型窒化ガリウム系化合物半導体
に、クロムおよび/またはニッケルを含む合金、または
該金属を付着した後、アニーリングすることを特徴とす
る。
The electrode forming method of the present invention comprises an n-type gallium nitride compound semiconductor having an electron carrier concentration of 1 × 10 17 / cm 3 or more, or a hole carrier concentration of 1 ×
It is characterized in that an alloy containing chromium and / or nickel or the metal is adhered to a p-type gallium nitride compound semiconductor of 10 15 / cm 3 or more and then annealed.

【0006】本発明の電極形成方法において、特に重要
なことは、電極を形成するn型窒化ガリウム系化合物半
導体の電子キャリア濃度は1×1017/cm3以上必要と
することである。その濃度が1×1017/cm3より少な
いと、n型層と良好なオーミック接触が得られない。ま
た同じく、電極を形成するp型窒化ガリウム系化合物半
導体の正孔キャリア濃度は1×1015/cm3以上必要と
する。1×1015/cm3よりも少ないと同じくp型層と
良好なオーミック接触が得られない。
In the electrode forming method of the present invention, what is particularly important is that the electron carrier concentration of the n-type gallium nitride compound semiconductor forming the electrode needs to be 1 × 10 17 / cm 3 or more. If the concentration is less than 1 × 10 17 / cm 3 , good ohmic contact with the n-type layer cannot be obtained. Similarly, the hole carrier concentration of the p-type gallium nitride-based compound semiconductor forming the electrode must be 1 × 10 15 / cm 3 or more. If it is less than 1 × 10 15 / cm 3 , good ohmic contact with the p-type layer cannot be obtained.

【0007】次に、n型窒化ガリウム系化合物半導体、
およびp型窒化ガリウム系化合物半導体に付着する電極
材料は、クロムおよび/またはニッケルを含む合金、ま
たはその金属にする必要がある。具体的な金属としては
Cr、Niそれぞれ単独、合金としてはAu、Pt、M
o、Ti、In、Gaより選択された少なくとも一種の
金属と、Crとの合金、またはNiとの合金、あるいは
Cr−Ni合金を使用することができ、特にCr、Ni
単独、またはCr−Ni合金、Cr−Au合金、Ni−
Au合金が好ましい。合金のCr、Niの含有率は特に
限定しないが、Cr、Niが多いほど好ましい。
Next, an n-type gallium nitride compound semiconductor,
The electrode material attached to the p-type gallium nitride compound semiconductor must be an alloy containing chromium and / or nickel, or a metal thereof. Specific metals are Cr and Ni alone, and alloys are Au, Pt, and M.
An alloy of at least one metal selected from o, Ti, In, and Ga and Cr, an alloy of Ni, or a Cr—Ni alloy can be used, and especially Cr, Ni.
Alone or Cr-Ni alloy, Cr-Au alloy, Ni-
Au alloys are preferred. The Cr and Ni contents of the alloy are not particularly limited, but the higher the Cr and Ni contents, the more preferable.

【0008】上記電極材料を窒化ガリウム系化合物半導
体に付着させるには、蒸着法を好ましく用いることがで
き、予め合金化しておいた金属、金属単体を蒸着材料と
して付着させることができる。
To deposit the above electrode material on the gallium nitride-based compound semiconductor, a vapor deposition method can be preferably used, and a metal or a metal simple substance which has been alloyed in advance can be deposited as a vapor deposition material.

【0009】アニーリングは電極材料と窒化ガリウム系
化合物半導体とをなじませるために行い、好ましく40
0℃以上の温度で行うことにより、上記電極材料をオー
ミック接触させることができる。またアニーリングは好
ましく窒素雰囲気中で行うことにより、窒化ガリウム系
化合物半導体中の窒素が分解して出て行くのを防ぐこと
ができ、結晶性を保つことができる。アニーリング温度
の上限は特に限定しないが、通常1100℃以下で行う
ことが好ましい。1100℃を超えると前記のように窒
化ガリウム系化合物半導体が分解しやすい傾向にあるか
らである。また、p型窒化ガリウム系化合物半導体は、
幅20μm以下で電極材料を付着した後、400℃以上
でアニーリングを行うことにより、p型窒化ガリウム系
化合物半導体の抵抗率が下がり、より好ましいp型を得
ることができる。
Annealing is performed to make the electrode material and the gallium nitride-based compound semiconductor conform to each other, and preferably 40
By carrying out at a temperature of 0 ° C. or higher, the above electrode material can be brought into ohmic contact. In addition, annealing is preferably performed in a nitrogen atmosphere, whereby nitrogen in the gallium nitride-based compound semiconductor can be prevented from decomposing and flowing out, and crystallinity can be maintained. The upper limit of the annealing temperature is not particularly limited, but it is usually preferably 1100 ° C. or lower. This is because when the temperature exceeds 1100 ° C, the gallium nitride-based compound semiconductor tends to decompose as described above. Further, the p-type gallium nitride compound semiconductor is
By depositing the electrode material with a width of 20 μm or less and then performing annealing at 400 ° C. or higher, the resistivity of the p-type gallium nitride compound semiconductor is lowered, and a more preferable p-type can be obtained.

【0010】[0010]

【作用】図1は、それぞれ電子キャリア濃度の異なるS
iドープn型GaN層にCr−Ni合金よりなる電極を
付着して、500℃で15分間アニーリングした後、そ
れぞれのCr−Ni電極間の電流電圧特性を測定して、
n型GaN層と電極とのオーミック接触を調べた結果を
比較して示す図である。Aは2×1019/cm3、Bは1
×1018/cm3、Cは1×1017/cm3、Dは6×1016
/cm3の電子キャリア濃度を有するn型GaN層であ
る。A〜Dを比較してもわかるように、電子キャリア濃
度が高いn型GaN層では容易にオーミック接触が得ら
れ、1×1017/cm3ではまだオーミック接触が得られ
ているが、6×1016/cm3では完全に電圧と電流とが
直線関係になく、オーミック接触していないことがわか
る。
Operation: FIG. 1 shows S having different electron carrier concentrations.
An electrode made of a Cr—Ni alloy was attached to the i-doped n-type GaN layer, annealed at 500 ° C. for 15 minutes, and then the current-voltage characteristics between the respective Cr—Ni electrodes were measured.
It is a figure which compares and shows the result of having investigated the ohmic contact of an n-type GaN layer and an electrode. A is 2 × 10 19 / cm 3 , B is 1
× 10 18 / cm 3 , C is 1 × 10 17 / cm 3 , D is 6 × 10 16.
An n-type GaN layer having an electron carrier concentration of / cm 3 . As can be seen by comparing A to D, ohmic contact is easily obtained in the n-type GaN layer having a high electron carrier concentration, and ohmic contact is still obtained at 1 × 10 17 / cm 3 , but 6 × At 10 16 / cm 3 , it can be seen that the voltage and the current are not completely in a linear relationship and no ohmic contact is made.

【0011】また、図2は、それぞれ正孔キャリア濃度
の異なるMgドープp型GaN層にCr−Ni合金より
なる電極を付着して、同じく500℃で15分間アニー
リングした後、それぞれのCr−Ni電極間の電流電圧
特性を測定して、p型GaN層と電極とのオーミック接
触を調べた結果を比較して示す図である。Eは1×10
17/cm3、Fは1×1016/cm3、Gは1×1015/c
m3、Hは5×1014/cm3の正孔キャリア濃度を有する
p型GaN層である。この図も同様に正孔キャリア濃度
1×1015/cm3付近にオーミック接触の限界値があ
り、それを下回るとオーミック接触を得ることが困難で
あることを示している。
Further, in FIG. 2, electrodes made of a Cr-Ni alloy are adhered to Mg-doped p-type GaN layers having different hole carrier concentrations, each is annealed at 500 ° C. for 15 minutes, and then each Cr-Ni is deposited. It is a figure which compares and shows the result of having measured the current voltage characteristic between electrodes, and checking the ohmic contact of a p-type GaN layer and an electrode. E is 1 × 10
17 / cm 3 , F is 1 × 10 16 / cm 3 , G is 1 × 10 15 / c
m 3 and H are p-type GaN layers having a hole carrier concentration of 5 × 10 14 / cm 3 . This figure also shows that there is a limit value of ohmic contact in the vicinity of the hole carrier concentration of 1 × 10 15 / cm 3 , and it is difficult to obtain ohmic contact below the limit value.

【0012】さらに図3は、正孔キャリア濃度4×10
16/cm3のMgドープp型GaN層にNi−Cr合金を
付着した後、温度を変えて15分間アニーリングした場
合に、そのアニーリング温度によるp型GaN層と、電
極との電流電圧特性の関係をそれぞれ比較して示す図で
ある。Iはアニーリング前、Jは200℃、Kは300
℃、Lは400℃のアニーリング温度を示している。I
〜Lはアニーリング温度とp型GaN層とのオーミック
接触を示す図であるが、アニーリング温度によりp型G
aN層と電極との接触抵抗が減少し傾きが大きくなり、
また電圧に比例して電流値が増加しオーミック接触が得
られていることがわかる。従って、好ましいアニーリン
グ温度は400℃以上である。
Further, FIG. 3 shows that the hole carrier concentration is 4 × 10.
When a Ni-Cr alloy is deposited on a Mg-doped p-type GaN layer of 16 / cm 3 and then annealed for 15 minutes at different temperatures, the relationship between the current-voltage characteristics of the p-type GaN layer and the electrode due to the annealing temperature. It is a figure which compares and shows each. I is before annealing, J is 200 ° C, K is 300
C and L indicate the annealing temperature of 400 ° C. I
~ L is a diagram showing the ohmic contact between the annealing temperature and the p-type GaN layer, the p-type G depending on the annealing temperature.
The contact resistance between the aN layer and the electrode decreases and the inclination increases,
Further, it can be seen that the current value increases in proportion to the voltage and ohmic contact is obtained. Therefore, the preferable annealing temperature is 400 ° C. or higher.

【0013】[0013]

【実施例】[実施例1]MOCVD法を用い、サファイ
ア基板の上にGaNよりなるバッファ層を約200オン
グストロームと、その上にノンドープのGaN層を2μ
mの膜厚で成長させ、そのGaN層の上にMgをドープ
したGa0.9Al0.1N層を0.2μm成長させる。Mg
ドープGa0.9Al0.1N層成長後、基板をアニーリング
装置に入れ、窒素雰囲気中700℃で10分間アニーリ
ングし、MgドープGa0.9Al0.1N層をさらに低抵抗
化してp型とする。ホール測定の結果、このMgドープ
p型Ga0.9Al0.1N層の正孔キャリア濃度は1×10
17/cm3であった。
EXAMPLES Example 1 Using a MOCVD method, a GaN buffer layer having a thickness of about 200 Å is formed on a sapphire substrate, and a non-doped GaN layer having a thickness of 2 μm is formed thereon.
Then, a Ga0.9Al0.1N layer doped with Mg is grown to a thickness of 0.2 μm on the GaN layer. Mg
After the growth of the doped Ga0.9Al0.1N layer, the substrate is placed in an annealing apparatus and annealed at 700 ° C. for 10 minutes in a nitrogen atmosphere to further reduce the resistance of the Mg-doped Ga0.9Al0.1N layer to p-type. As a result of hole measurement, the hole carrier concentration of this Mg-doped p-type Ga0.9Al0.1N layer is 1 × 10.
It was 17 / cm 3 .

【0014】次に前記p型Ga0.9Al0.1N層表面にN
i−Au合金を蒸着した後、基板を同じくアニーリング
装置に入れ、窒素雰囲気中、500℃で10分間アニー
リングを行う。アニーリング終了後、電極間の電流電圧
特性を測定して、p型Ga0.9Al0.1N層と電極とのオ
ーミック接触を調べると、図2、Eと同一の直線が得ら
れ、オーミック接触が得られていることが確認された。
Next, N is formed on the surface of the p-type Ga0.9Al0.1N layer.
After depositing the i-Au alloy, the substrate is also placed in an annealing apparatus and annealed at 500 ° C. for 10 minutes in a nitrogen atmosphere. After the annealing was completed, the current-voltage characteristics between the electrodes were measured, and when the ohmic contact between the p-type Ga0.9Al0.1N layer and the electrodes was examined, the same straight line as in Fig. 2 and E was obtained, and ohmic contact was obtained. Was confirmed.

【0015】[実施例2]実施例1において、p型Ga
0.9Al0.1N層に蒸着する電極材料をCr−Au合金と
する他は同様にして電極を形成し、電流電圧特性を測定
したところ、同じく、図2、Eと同一の直線が得られ、
オーミック接触が確認された。
[Embodiment 2] In Embodiment 1, p-type Ga is used.
An electrode was formed in the same manner except that the electrode material deposited on the 0.9Al0.1N layer was a Cr-Au alloy, and the current-voltage characteristics were measured. Similarly, the same straight line as in FIGS. 2 and E was obtained.
Ohmic contact was confirmed.

【0016】[実施例3]実施例1のノンドープGaN
層の上に、Siをドープしたn型In0.1Ga0.9N層を
0.2μm成長させた後、その上にNiの合金を蒸着し
て電極を付着する。なおこのSiドープIn0.1Ga0.9
N層の電子キャリア濃度は2×1019/cm3であった。
後は実施例1と同様にアニーリングした後、電極間の電
流電圧特性を測定して、Siドープn型In0.1Ga0.9
N層と電極とのオーミック接触を調べたところ、図1、
Aと同一の直線が得られ、オーミック接触が確認され
た。
[Embodiment 3] Non-doped GaN of Embodiment 1
An n-type In0.1Ga0.9N layer doped with Si is grown to a thickness of 0.2 μm on the layer, and then an alloy of Ni is vapor-deposited thereon to attach an electrode. This Si-doped In0.1Ga0.9
The electron carrier concentration of the N layer was 2 × 10 19 / cm 3 .
After that, after annealing as in Example 1, the current-voltage characteristics between the electrodes were measured, and Si-doped n-type In0.1Ga0.9 was measured.
When the ohmic contact between the N layer and the electrode was examined, FIG.
The same straight line as in A was obtained, and ohmic contact was confirmed.

【0017】[実施例4]実施例3において、Siドー
プn型In0.1Ga0.9N層中のSiドープ量を変え、そ
の電子キャリア濃度を1×1018/cm3とする他は同様
にしてNi電極を形成し、電流電圧特性を測定したとこ
ろ図1、Bと同一の直線が得られ、オーミック接触が確
認された。
[Embodiment 4] The same operation as in Embodiment 3 is performed except that the Si doping amount in the Si-doped n-type In0.1Ga0.9N layer is changed so that the electron carrier concentration is 1 × 10 18 / cm 3. When a Ni electrode was formed and the current-voltage characteristics were measured, the same straight line as in FIG. 1B was obtained, and ohmic contact was confirmed.

【0018】[0018]

【発明の効果】以上説明したように本発明の方法による
と、n型及びp型の窒化ガリウム系化合物半導体と電極
とのオーミック接触が得られるため、窒化ガリウム系化
合物半導体を積層してp−n接合の発光ダイオード、レ
ーザーダイオード等の発光素子を作成する際、その発光
素子の順方向電圧を下げ、発光効率を向上させることが
でき、産業上の利用価値は多大である。
As described above, according to the method of the present invention, ohmic contact between the n-type and p-type gallium nitride-based compound semiconductors and the electrodes can be obtained. When producing a light emitting element such as an n-junction light emitting diode or a laser diode, the forward voltage of the light emitting element can be lowered and the light emission efficiency can be improved, which is of great industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 電子キャリア濃度が異なるn型GaN層と電
極との電流電圧特性の関係を比較して示す図。
FIG. 1 is a diagram showing a comparison of current-voltage characteristics between an n-type GaN layer having a different electron carrier concentration and an electrode.

【図2】 正孔キャリア濃度が異なるMgドープp型G
aN層と電極との電流電圧特性の関係を比較して示す
図。
FIG. 2 Mg-doped p-type G having different hole carrier concentrations
The figure which compares and shows the relationship of the current voltage characteristic of an aN layer and an electrode.

【図3】 アニーリング温度によるp型GaN層と電極
との電流電圧特性の関係を比較して示す図。
FIG. 3 is a diagram showing a comparison of current-voltage characteristics between a p-type GaN layer and an electrode depending on an annealing temperature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子キャリア濃度1×1017/cm3以上
のn型窒化ガリウム系化合物半導体、または正孔キャリ
ア濃度1×1015/cm3以上のp型窒化ガリウム系化合
物半導体に、クロムおよび/またはニッケルを含む合
金、または該金属を付着した後、アニーリングすること
を特徴とする窒化ガリウム系化合物半導体の電極形成方
法。
1. An n-type gallium nitride-based compound semiconductor having an electron carrier concentration of 1 × 10 17 / cm 3 or more or a p-type gallium nitride-based compound semiconductor having a hole carrier concentration of 1 × 10 15 / cm 3 or more, and chromium and And / or an alloy containing nickel, or a method of forming an electrode of a gallium nitride-based compound semiconductor, which comprises depositing the metal and then annealing.
【請求項2】 前記アニーリング温度は400℃以上で
あることを特徴とする請求項1に記載の窒化ガリウム系
化合物半導体の電極形成方法。
2. The method for forming an electrode of a gallium nitride-based compound semiconductor according to claim 1, wherein the annealing temperature is 400 ° C. or higher.
JP8549293A 1993-03-19 1993-03-19 Gallium nitride based compound semiconductor electrode forming method Expired - Lifetime JP2803741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8549293A JP2803741B2 (en) 1993-03-19 1993-03-19 Gallium nitride based compound semiconductor electrode forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8549293A JP2803741B2 (en) 1993-03-19 1993-03-19 Gallium nitride based compound semiconductor electrode forming method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10099585A Division JPH10270757A (en) 1998-04-10 1998-04-10 Electrode for gallium nitride compound semiconductor

Publications (2)

Publication Number Publication Date
JPH06275868A true JPH06275868A (en) 1994-09-30
JP2803741B2 JP2803741B2 (en) 1998-09-24

Family

ID=13860438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8549293A Expired - Lifetime JP2803741B2 (en) 1993-03-19 1993-03-19 Gallium nitride based compound semiconductor electrode forming method

Country Status (1)

Country Link
JP (1) JP2803741B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622858A3 (en) * 1993-04-28 1995-05-17 Nichia Kagaku Kogyo Kk Gallium nitride-based III-V group compound semiconductor device and method of producing the same.
JPH1041254A (en) * 1996-07-24 1998-02-13 Sony Corp Ohmic electrode and forming method thereof
JPH10189479A (en) * 1996-12-26 1998-07-21 Matsushita Electron Corp Semiconductor device
US6117700A (en) * 1998-09-09 2000-09-12 Matsushita Electronics Corporation Method for fabricating semiconductor device having group III nitride
JP2002353570A (en) * 2001-05-29 2002-12-06 Sharp Corp Iii nitride-based compound semiconductor device and manufacturing method therefor
US6734468B2 (en) 1996-05-31 2004-05-11 Toyoda Gosei Co., Ltd. Devices related to electrode pads for p-type group III nitride compound semiconductors
US7525123B2 (en) 2004-09-28 2009-04-28 Nichia Corporation Semiconductor device
JP2010147205A (en) * 2008-12-18 2010-07-01 Toyota Central R&D Labs Inc Laminated electrode forming method and semiconductor device equipped with laminated electrode
WO2011010654A1 (en) * 2009-07-22 2011-01-27 独立行政法人産業技術総合研究所 Ohmic electrode for diamond semiconductor device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2017163021A (en) * 2016-03-10 2017-09-14 豊田合成株式会社 Semiconductor device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507041B2 (en) 1993-04-28 2003-01-14 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor
EP0622858A3 (en) * 1993-04-28 1995-05-17 Nichia Kagaku Kogyo Kk Gallium nitride-based III-V group compound semiconductor device and method of producing the same.
US6610995B2 (en) 1993-04-28 2003-08-26 Nichia Corporation Gallium nitride-based III-V group compound semiconductor
US5877558A (en) * 1993-04-28 1999-03-02 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor
US6093965A (en) * 1993-04-28 2000-07-25 Nichia Chemical Industries Ltd. Gallium nitride-based III-V group compound semiconductor
US6204512B1 (en) 1993-04-28 2001-03-20 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor device and method of producing the same
US6998690B2 (en) 1993-04-28 2006-02-14 Nichia Corporation Gallium nitride based III-V group compound semiconductor device and method of producing the same
US5652434A (en) * 1993-04-28 1997-07-29 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor
US5767581A (en) * 1993-04-28 1998-06-16 Nichia Chemical Industries, Ltd. Gallium nitride-based III-V group compound semiconductor
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6955936B2 (en) 1996-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Methods and devices related to electrode pads for p-type Group III nitride compound semiconductors
US6734468B2 (en) 1996-05-31 2004-05-11 Toyoda Gosei Co., Ltd. Devices related to electrode pads for p-type group III nitride compound semiconductors
JPH1041254A (en) * 1996-07-24 1998-02-13 Sony Corp Ohmic electrode and forming method thereof
JPH10189479A (en) * 1996-12-26 1998-07-21 Matsushita Electron Corp Semiconductor device
US6117700A (en) * 1998-09-09 2000-09-12 Matsushita Electronics Corporation Method for fabricating semiconductor device having group III nitride
JP2002353570A (en) * 2001-05-29 2002-12-06 Sharp Corp Iii nitride-based compound semiconductor device and manufacturing method therefor
US7525123B2 (en) 2004-09-28 2009-04-28 Nichia Corporation Semiconductor device
JP2010147205A (en) * 2008-12-18 2010-07-01 Toyota Central R&D Labs Inc Laminated electrode forming method and semiconductor device equipped with laminated electrode
WO2011010654A1 (en) * 2009-07-22 2011-01-27 独立行政法人産業技術総合研究所 Ohmic electrode for diamond semiconductor device
JP5488602B2 (en) * 2009-07-22 2014-05-14 独立行政法人産業技術総合研究所 Ohmic electrodes for semiconductor diamond devices
JP2017163021A (en) * 2016-03-10 2017-09-14 豊田合成株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2803741B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
JP2803741B2 (en) Gallium nitride based compound semiconductor electrode forming method
KR100879414B1 (en) Group nitride semiconductor with low-impedance ohmic contact
CA2220031C (en) Double heterojunction light emitting diode with gallium nitride active layer
JPH05291621A (en) Electrode material of gallium nitride compound semiconductor
US20080048172A1 (en) Gallium Nitride-Based Compound Semiconductor Light-Emitting Device
JP2783349B2 (en) Electrode of n-type gallium nitride-based compound semiconductor layer and method of forming the same
WO2003107442A2 (en) Electrode for p-type gallium nitride-based semiconductors
EP1561247A1 (en) Light emitting device and fabrication method thereof
US6734091B2 (en) Electrode for p-type gallium nitride-based semiconductors
US6307219B1 (en) Light-emitting device comprising gallium-nitride-group compound semiconductor
JPH06260680A (en) Gallium nitride compound semiconductor light emitting element
JP3289617B2 (en) Manufacturing method of GaN-based semiconductor device
US7005681B2 (en) Radiation-emitting semiconductor component and method for making same
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3812366B2 (en) Method for producing group III nitride compound semiconductor device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
US6410944B1 (en) Epitaxial structure for low ohmic contact resistance in p-type GaN-based semiconductors
US20050179046A1 (en) P-type electrodes in gallium nitride-based light-emitting devices
JP2001119065A (en) P-type nitride semiconductor and producing method thereof
JP2809045B2 (en) Nitride semiconductor light emitting device
US7190076B2 (en) Electrode for p-type Group III nitride compound semiconductor layer and method for producing the same
WO2002093658A1 (en) Nitride semiconductor led with tunnel junction
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JPH09293898A (en) Electrode and nitride semiconductor
JPH10270757A (en) Electrode for gallium nitride compound semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 15

EXPY Cancellation because of completion of term