JPS59220641A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS59220641A
JPS59220641A JP58095167A JP9516783A JPS59220641A JP S59220641 A JPS59220641 A JP S59220641A JP 58095167 A JP58095167 A JP 58095167A JP 9516783 A JP9516783 A JP 9516783A JP S59220641 A JPS59220641 A JP S59220641A
Authority
JP
Japan
Prior art keywords
electrodes
sintered
electrode
oxide
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58095167A
Other languages
Japanese (ja)
Inventor
Nobuaki Shohata
伸明 正畑
Takaaki Nakanishi
中西 崇晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58095167A priority Critical patent/JPS59220641A/en
Publication of JPS59220641A publication Critical patent/JPS59220641A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To accelerate a response speed while attaining miniaturization and to attain to enhance reliability, by imparting a different kind of electrode materials to both surfaces of a sintered body used as an oxygen ion conductor having a special chemical formula while covering the sintered body and the electrodes with a porous protective layer. CONSTITUTION:A gas detecting element is prepared by such a method that a different kind of electrodes are baked to the upper and lower surfaces of a sintered disc body 3 by using a ceramic composition represented by chemical formula Y4(WxZr1-x)3O12 (wherein X is 0-0.5) to form electrodes 1, 2 and, after lead wires 4 are attached to both electrodes 1, 2, the sintered disc body and the electrodes are further covered with a porous protective layer 6. The oxide used as a stock material in fabricating the ceramic composition consists of yttrium oxide, tungsten oxide and zirconium oxide each of which has purity of 99.9% or more and a predetermined amount of said oxides are weighed, mixed, filtered, calcined and ground to obtain an oxide mixture which is, in turn, mixed with an about 5% polyvinyl alcohol solution as a binder to prepare a granulated powder. This powder is sintered while the sintered one is cut so as to obtain a thickness of 0.5mm. and, after a platinum electrode is baked to the single surface of each cut sintered electrode, a silver electrode is baked to the opposite surface thereof and the lead wire is connected. Further, alumina is plasma-sprayed to form a porous protective layer 6.

Description

【発明の詳細な説明】 本発明は還元性ガスないしは、可燃性ガス中において、
ガス濃度に依存した起電力を発生することでガスを検知
する固体電解質材料を用いたガス検知素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides the following methods:
The present invention relates to a gas detection element using a solid electrolyte material that detects gas by generating an electromotive force depending on the gas concentration.

従来の固体電解質材料を用いるガス検知素子としては、
カルシア(Cab)ないしはイツトリア(Y10*)等
で安定化したジルコニア(ZrO,)を用いた固体電解
質酸素センサが良く知られている。
As a gas sensing element using conventional solid electrolyte materials,
Solid electrolyte oxygen sensors using zirconia (ZrO,) stabilized with calcia (Cab) or yttoria (Y10*) are well known.

これは第1図に示すように固体電′lj4質によって作
られたパイプ3の内部および外部に多孔質白金層よシな
る電極1およびti2を付与し、さらにリード線4をも
うけた構造である。酸素濃度の測定にはZrO*パイプ
を被測定気体中に置きまたパイプの内部には、酸素分圧
が既知の気体例えば空気ないしは純酸素気体を満す。こ
のとき電極1および電極2間−に発生する起電力と酸素
分圧の関係は(1)式のネルンストの関係式で−与えら
れる。
As shown in Fig. 1, this has a structure in which electrodes 1 and ti2 made of porous platinum layers are provided inside and outside of a pipe 3 made of a solid electrolyte, and lead wires 4 are also provided. . To measure the oxygen concentration, a ZrO* pipe is placed in the gas to be measured, and the inside of the pipe is filled with a gas having a known oxygen partial pressure, such as air or pure oxygen gas. At this time, the relationship between the electromotive force generated between the electrodes 1 and 2 and the oxygen partial pressure is given by the Nernst relational expression (1).

F、−(RT/4F ) ln(Po2/Po5)  
     (1)仁こでPo2およびPopはそれぞれ
電極1および電極2が置かれた気体中の酸素分圧である
。この式に従って、固体電解質パイプの内外における酸
素分圧の差に基づいて発生する起電力の値から被測定気
体中の酸素濃度を求めることができる。
F, -(RT/4F) ln(Po2/Po5)
(1) Po2 and Pop are the partial pressures of oxygen in the gas in which electrode 1 and electrode 2 are placed, respectively. According to this equation, the oxygen concentration in the gas to be measured can be determined from the value of the electromotive force generated based on the difference in oxygen partial pressure inside and outside the solid electrolyte pipe.

この種の酸素濃淡電池を利用した酸素濃度計は、例えば
自動車排気ガス中の酸素濃変復1]定あるいは、溶融鋼
中の溶存酸素量制御等の用途に使用されている。
Oxygen concentration meters using this type of oxygen concentration battery are used, for example, to determine the oxygen concentration in automobile exhaust gas or to control the amount of dissolved oxygen in molten steel.

しかしながら、上述のような従来の固体電解質材料及び
これを用いたガス検知素子には、次の様な棟々の欠点が
ある。
However, the conventional solid electrolyte materials and gas sensing elements using the same as described above have the following drawbacks.

既ちカルシア(Cab)ないしはイツトリア(Y20 
m )等によって、安定化されだZrO2のパイプは、
1400℃以上の高温でなければ緻密な磁器として得ら
れず製造は容易ではない。更に第1図に記した電極1お
よび電極2とジルコニアパイプ3との接着面は熱ショッ
クに弱く、ジルコニアパイプそのものにもクランクが発
生しやすく、特性劣化を生じやすいという欠点があった
Already Calcia (Cab) or Ittria (Y20
The ZrO2 pipe stabilized by
Unless the temperature is 1400°C or higher, dense porcelain cannot be obtained and manufacturing is not easy. Furthermore, the bonding surfaces between the electrodes 1 and 2 shown in FIG. 1 and the zirconia pipe 3 are susceptible to thermal shock, and the zirconia pipe itself is also prone to cranking, resulting in characteristic deterioration.

寸だ酸素a度既知の気体例えば空気あるいは酸素などを
基準ガスとして一方の電極部分に供給する必要があるた
め形状が太きくなシ小型化しにくい欠点もあった。まだ
被検知気体の温度が数百度程度は必要であるためおのず
からその用途は限定されていた。
Since it is necessary to supply a gas having a known oxygen degree, such as air or oxygen, as a reference gas to one electrode portion, the shape is not large and it is difficult to miniaturize. Since the temperature of the gas to be detected still needs to be around several hundred degrees, its use has naturally been limited.

」−述の欠点を除去するものとして、第2図に示す様な
構造の素子が提案されている。即ち、安定化ジルコニア
の円板30表裏にPtの焼付は電極1および電極2をも
うけ、更に一方の電極上に触媒層5および電極リード線
4をもうけたものである。確かにこの様な構造によって
、素子の小型化は容易になった。しかしながら、ガス導
入後出力電圧が一定値に達するまでの時間即ち応答速度
はきわめて遅く、5分以上の時間を必要とする。また触
媒層の劣化によって出力電圧が低下するという問題もあ
った。
In order to eliminate the above-mentioned drawbacks, an element having a structure as shown in FIG. 2 has been proposed. That is, the stabilized zirconia disk 30 has electrodes 1 and 2 formed by baking Pt on the front and back surfaces thereof, and furthermore, a catalyst layer 5 and an electrode lead wire 4 are formed on one of the electrodes. It is true that such a structure makes it easier to miniaturize the device. However, the time required for the output voltage to reach a certain value after gas introduction, that is, the response speed, is extremely slow, requiring 5 minutes or more. There was also the problem that the output voltage decreased due to deterioration of the catalyst layer.

本発明の目的はこれらの欠点を除き、小型で応答速度が
速く、しかも信頼性の高いガス検知素子を提供すること
を目的としている。
An object of the present invention is to eliminate these drawbacks and provide a gas detection element that is small in size, has a fast response speed, and is highly reliable.

不発EII]ノカス検知素子は、’f4(WxZrt−
x )11012なる化学式で表わされ、0≦X≦05
なるXの範囲で示される磁器組成物を用い第3図に示す
様に前記組成の焼結体円板3の上下面にそれぞれ種類の
異る電極を焼付けて専権1および電極2となし、・リー
ド線4を取付け、更に多孔質保護層6で焼結体と電極を
被覆した構造を特徴としている。
Unexploded EII] The nocus detection element is 'f4(WxZrt-
x) is expressed by the chemical formula 11012, 0≦X≦05
As shown in FIG. 3, using a porcelain composition shown in the range of It is characterized by a structure in which a lead wire 4 is attached and the sintered body and electrode are further covered with a porous protective layer 6.

以下実施例に基づいて本発す」を詳細に述べる。−Y4
 (Wx Z rI−x ) so +sなる磁器組成
物を作製するために原料として用いた酸化物は純度99
9%以上の酸化イツト1,1ウム(Y2O2) 、 酸
化タングステン(Wow)  、m化ジルコニウム(Z
r0,2)をY4(WxZrt−x)setsなる化学
式でX=0.2となるようにそれぞfL所所定位置量、
純水とともにボールミルで46時間混合し、濾過乾燥し
た後1150℃で2時間仮焼を行いライカイ機で粉砕し
、は\゛5%のポリビニルアルコール液をバインダとし
て混合し造粒粉を製造した。こ′hを直径]−Q ax
φ長さ約5沼にプレス成形し、1000℃〜1600℃
で焼結した。
The present invention will be described in detail below based on examples. -Y4
The oxide used as a raw material to produce the ceramic composition (Wx Z rI-x ) so +s has a purity of 99
9% or more of 1,1 um oxide (Y2O2), tungsten oxide (Wow), zirconium mide (Z
r0,2) by the chemical formula Y4(WxZrt-x)sets, respectively fL predetermined position amount so that X=0.2,
The mixture was mixed with pure water in a ball mill for 46 hours, filtered and dried, calcined at 1150° C. for 2 hours, and pulverized in a Raikai machine, followed by mixing with 5% polyvinyl alcohol solution as a binder to produce granulated powder. This'h is the diameter] - Q ax
Press molded into a diameter of approximately 5 mm and heated at 1000℃ to 1600℃
Sintered with

さらに厚み0.511tに切断し、第3図に示したよう
に片面に白金電極を焼付けた後反対側の面に銀電極を焼
料け、リード線を接続した。更に多孔層保護層6として
、アルミナを溶射した。
It was further cut to a thickness of 0.511 t, and as shown in FIG. 3, a platinum electrode was baked on one side, a silver electrode was baked on the other side, and a lead wire was connected. Furthermore, alumina was sprayed as a porous protective layer 6.

測定には第4図に示すようにヒーター5を巻き付けた石
英パイプ7に先の方法で作製した試料を設置し、石英パ
イプ7中に濃度既知の気体を1分間約100CC流した
とき′It化1化量4間起される電圧を測定した。結果
を第5図〜第7図に示す。
For the measurement, as shown in Fig. 4, the sample prepared in the above method was placed on a quartz pipe 7 around which a heater 5 was wrapped, and when a gas of known concentration was flowed through the quartz pipe 7 at a rate of about 100 cc for 1 minute, it was converted to 'It'. The voltage generated for 4 hours was measured. The results are shown in FIGS. 5 to 7.

第5図は一酸化炭素(CO)を3000 ppm含む空
気を試料温度が400℃になるようにヒーターで加熱し
た石英パイプ中に流したときの起電力の時間変化である
。起電力はほぼ5秒以内に定常値の80%に達し、十分
早い応答速度を示した。被検気体を空気のみに切換えた
後の復帰性も良好で約1分以内に定常値に復帰し、実用
上十分々性能であることがわかった。
FIG. 5 shows the change in electromotive force over time when air containing 3000 ppm of carbon monoxide (CO) was flowed into a quartz pipe heated with a heater so that the sample temperature was 400°C. The electromotive force reached 80% of the steady value within approximately 5 seconds, indicating a sufficiently fast response speed. The recovery performance after switching the test gas to only air was also good, returning to a steady value within about 1 minute, and it was found that the performance was sufficient for practical use.

第6図は■(、(直線1)とインブタン(1−C4H,
。。
Figure 6 shows ■(, (straight line 1) and inbutane (1-C4H,
. .

直線2)の空気に対する混合比率を変えたときの測定値
である。起電力の値は、ガス−族が上昇すると、はソ直
線的に増加した。またガスの種類によってもその値に差
が生じガスに対する選択性が得られる事を示している。
These are the measured values when changing the mixing ratio of straight line 2) to air. The value of the electromotive force increased linearly as the gas family increased. The value also varies depending on the type of gas, indicating that selectivity to the gas can be obtained.

通常可燃性ガスの検知に要求される濃度は、爆発下限の
1/4〜”/100以下とされている。インブタンの場
合にこの値はおよそ1100ppから5000ppWj
であシ、この程度のイソブタン濃度に対し本発明になる
素子は約5omv程度以上の出力電圧があり、十分な有
効性があることが結論できる。
Normally, the concentration required to detect flammable gases is said to be 1/4 to 1/100 of the lower explosive limit. In the case of inbutane, this value is approximately 1100pp to 5000ppWj.
It can be concluded that the device according to the present invention has an output voltage of about 5 omv or more for this level of isobutane concentration, and is sufficiently effective.

寸た第3図に示した電極1および電極2として同一電極
材料を用すた場合には誘起電圧は1077!V以下とな
シ、ガス検知素子として有効な特性を示さない。また一
方の電極を銀とし、他方の電極をパラジウムとした場合
でも白金の場合と同様に良好な特性を示した。
When the same electrode material is used for electrode 1 and electrode 2 shown in FIG. 3, the induced voltage is 1077! If it is less than V, it will not exhibit effective characteristics as a gas detection element. Furthermore, even when one electrode was made of silver and the other electrode was made of palladium, good characteristics were shown as in the case of platinum.

第7図は、本発明のガス検知素子において、その焼結体
組成のタングステンとジルコニラムノ配合比率を変えた
ときの一酸化炭素CC0)a度3000ppmの空気中
でのガス検知素子の起電力を示している。
Figure 7 shows the electromotive force of the gas sensing element of the present invention in air with 3000 ppm of carbon monoxide CC0)a when the blending ratio of tungsten and zirconium lamino in the sintered body composition is changed. ing.

実用上10mV以下の起電力の検出法は回路構成上困難
が増加する。従ってできるだけ大きい起電力であること
が望ましく、50mV以上は必要である。本発明になる
Y4(WX zrI−x ) 4012テ示すしる磁器
組成物においてタングステンとジルコニウムの配合比の
範囲は0≦X<0.5であることが望ましいといえる。
In practice, a method for detecting an electromotive force of 10 mV or less is more difficult due to the circuit configuration. Therefore, it is desirable that the electromotive force be as large as possible, and 50 mV or more is necessary. In the Y4(WX zrI-x) 4012 ceramic composition according to the present invention, it is desirable that the blending ratio of tungsten and zirconium be in the range 0≦X<0.5.

以下に示す第1表は、本発明のガス検知素子を室温から
500℃に保持した電気炉中に5分間保持後、再び室温
に取シ出し20分間放置するとbう温度サイクル試験を
500回繰返した後の出力電圧の変化率を示す。
Table 1 below shows that a temperature cycle test was repeated 500 times in which the gas sensing element of the present invention was kept in an electric furnace kept at room temperature to 500°C for 5 minutes, then taken out to room temperature and left for 20 minutes. shows the rate of change in output voltage after

第1表中の従来菓子としては第2図に示しだ構造テカル
シア(CaO)で安定化したジルコニア(Zr O,ン
を用いて作製した。
The conventional confectionery shown in Table 1 was prepared using zirconia (ZrO,N) stabilized with tecalcia (CaO) having the structure shown in FIG.

第   1   表 試験の結果、従来素子は固体電解質と電極あるいは電極
と触媒層間が温度サイクルにょシハク離したシまたクラ
ックが発生したシして、出方電圧が大きく低下すること
が判明している。一方本発明になる素子は出力電圧の減
少は小さく安定な特性を示している。また多孔質保護層
は起電力の経時変化を小さくし、素子の安定化に効果が
あることも判明した。
As a result of the tests in Table 1, it has been found that in conventional devices, the solid electrolyte and the electrode or the electrode and the catalyst layer become separated due to temperature cycling, or cracks occur, resulting in a large drop in output voltage. On the other hand, the device according to the present invention exhibits stable characteristics with a small decrease in output voltage. It was also found that the porous protective layer is effective in reducing the change in electromotive force over time and stabilizing the device.

以上述べた様に本発明のガス検知素子は小型で焼結が容
易で温度サイクルにも強く十分な安定度を持ち応答速度
が速く、出力電圧が大きい等実用上有益な性能を示すこ
とが明らかである。
As described above, it is clear that the gas sensing element of the present invention is small and easy to sinter, is resistant to temperature cycles, has sufficient stability, has a fast response speed, and exhibits useful performance in practice, such as a large output voltage. It is.

丑だ本実施例では、電極材料として銀と白金及び銀とパ
ラジウムの組合せを示したが、他の組合わせ例えばニッ
ケルと酸化ニッケルの混合体を一方の電極とし、他方を
銀あるいは白金としても同様の特性が得られる。
In this example, combinations of silver and platinum and silver and palladium were shown as electrode materials, but other combinations, such as a mixture of nickel and nickel oxide, may be used for one electrode and silver or platinum for the other. The following characteristics are obtained.

【図面の簡単な説明】 第1図、第2図は従来のガス検知素子の構造図。 第3図は、本発明のガス検知素子の一実施例を示す構造
図。第4図は本発明のガス検知素子の実験装置図。第5
図、第6図は本発明のガス検知素子の特性図。第7図は
本発明のガス検知素子に用いる焼結体の組成比と起電力
との関係を示す図。 第1図において、1,2は白金電極、3は固体電解質の
パイプ、4はリード勝である。第2図において1.2は
白金電極、3は固体電解質の焼結体、4はリード線、5
は触媒層である。第3図。 第4図においで1.2は電極、3は固体電解質の焼結体
、4.4′はリード線、5はヒーター、6は多孔質保護
層、7は石英パイプである。 第1図 箇2図 第30 第4図 第5図 翁 向  (分) 第6図 4歴 (叶0) 第7図 Y4 (WX Z? 1−x )’30/20、j:)
            /、U×
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 and 2 are structural diagrams of a conventional gas detection element. FIG. 3 is a structural diagram showing one embodiment of the gas detection element of the present invention. FIG. 4 is a diagram of an experimental apparatus for the gas detection element of the present invention. Fifth
6 are characteristic diagrams of the gas detection element of the present invention. FIG. 7 is a diagram showing the relationship between the composition ratio of the sintered body used in the gas sensing element of the present invention and the electromotive force. In FIG. 1, 1 and 2 are platinum electrodes, 3 is a solid electrolyte pipe, and 4 is a lead wire. In Figure 2, 1.2 is a platinum electrode, 3 is a solid electrolyte sintered body, 4 is a lead wire, and 5 is a platinum electrode.
is the catalyst layer. Figure 3. In FIG. 4, 1.2 is an electrode, 3 is a sintered solid electrolyte, 4.4' is a lead wire, 5 is a heater, 6 is a porous protective layer, and 7 is a quartz pipe. Figure 1 Figure 2 Figure 30 Figure 4 Figure 5 Okina (minute) Figure 6 4 history (Kano 0) Figure 7 Y4 (WX Z? 1-x)'30/20, j:)
/, U×

Claims (1)

【特許請求の範囲】[Claims] 酸素イオン伝導性を有する焼結体の両面に電極を伺与し
、さらに該電極にリード線を取り付けてなるガス検知素
子において、焼結体としてY4(wXZr+−z )s
 O+s(0≦X≦o、 5)で示される酸素イオン伝
導体を用い、さらに焼結体両面にそれぞれ異なる種類の
電極材料を付与し、該焼結体及び電極を多孔質白金層で
被覆したことを特徴とするガス検知素子。
In a gas detection element in which electrodes are provided on both sides of a sintered body having oxygen ion conductivity and lead wires are attached to the electrodes, Y4(wXZr+-z)s is used as the sintered body.
Using an oxygen ion conductor represented by O+s (0≦X≦o, 5), different types of electrode materials were applied to both sides of the sintered body, and the sintered body and electrodes were covered with a porous platinum layer. A gas detection element characterized by:
JP58095167A 1983-05-30 1983-05-30 Gas detecting element Pending JPS59220641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095167A JPS59220641A (en) 1983-05-30 1983-05-30 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095167A JPS59220641A (en) 1983-05-30 1983-05-30 Gas detecting element

Publications (1)

Publication Number Publication Date
JPS59220641A true JPS59220641A (en) 1984-12-12

Family

ID=14130201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095167A Pending JPS59220641A (en) 1983-05-30 1983-05-30 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS59220641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2329256A1 (en) * 2008-09-16 2011-06-08 Robert Bosch GmbH Protective layers suitable for exhaust gases for high-temperature chemfet exhaust gas sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2329256A1 (en) * 2008-09-16 2011-06-08 Robert Bosch GmbH Protective layers suitable for exhaust gases for high-temperature chemfet exhaust gas sensors

Similar Documents

Publication Publication Date Title
EP1346210A2 (en) Gas sensor
EP0157328B1 (en) Exhaust gas sensor and process for producing same
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
JPH05119015A (en) Carbon dioxide gas detection element
JPS6317794B2 (en)
US4792752A (en) Sensor for measuring partial pressures of gases
US4162631A (en) Rare earth or yttrium, transition metal oxide thermistors
JPS6133132B2 (en)
JPS59220641A (en) Gas detecting element
US4485369A (en) Sensor for measuring air-fuel ratio
JPS6061654A (en) Method and apparatus for measuring partial pressure of oxygen and combustible gas
JPH0611400B2 (en) Combustion catalyst with deterioration detection function
JPS58201057A (en) Sensing element of gas
JPH0115016B2 (en)
JPS59120951A (en) Gas sensitive element
US4231254A (en) Rare earth or yttrium, transition metal oxide thermistors
JPS58123446A (en) Gas detecting element
JPH0114534B2 (en)
US4602955A (en) Composite material that can be used to make oxygen sensors
JPH022534B2 (en)
JPS628135B2 (en)
JPS59168359A (en) Gas-detecting element
JPH03120456A (en) Oxygen sensor
JP3669807B2 (en) Carbon monoxide detection sensor
JPS59168360A (en) Gas-detecting element