JPS58123446A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS58123446A
JPS58123446A JP57006371A JP637182A JPS58123446A JP S58123446 A JPS58123446 A JP S58123446A JP 57006371 A JP57006371 A JP 57006371A JP 637182 A JP637182 A JP 637182A JP S58123446 A JPS58123446 A JP S58123446A
Authority
JP
Japan
Prior art keywords
gas
electrode
baked
detecting element
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57006371A
Other languages
Japanese (ja)
Inventor
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57006371A priority Critical patent/JPS58123446A/en
Publication of JPS58123446A publication Critical patent/JPS58123446A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To provide a small size and high reliable gas detecting element which has a fast responsing speed and a high output voltage, by a method wherein the respective electrode materials being different in a type are applied to both surfaces of a specified sintered material, being used as an oxygen ion conductive material, and the sintered material and the electrode are covered with a porous protecting layer. CONSTITUTION:A raw material of a magnetic composition is oxides such as La2O3, WO3 and ZrO3 with a purity of not less than 99.8%, which are weighed so that they are brought to 0.4<=x<=1.0 by a chemical formula of La2(WxZr1-x)2)7, they are mixed by a ball mill for 46hr togetherwith pure water, the mixture is filtered and dried, and after it is temporarily burned at 1,200 deg.C for 2hr, it is repulverized by an attritor. A 5% alcohol liquid is then added to granulate it, the granulation is press-molded 10mm. in diameter and about 5mm. in length, and after the work is sintered at 1,200 deg.C for 1hr, it is cut to 0,5mm. in thickness. After a platinum electrode 2 is baked to one side of a sintered material 3, a silvere electrode 1 is baked to the opposite side thereof, and lead wires 4 and 4' are connected thereto. A glass paste is further coated as a porous protecting layer 6 to produce a baked glass detecting element at 500-700 deg.C. The element has a sufficiently fast answering speed to hydrogen, isobutane or the like, is excellent in returning property, is about linearly increased in a value of an electromotive force with the rise in gas concentration, and has an excellent selectivity to gas.

Description

【発明の詳細な説明】 かれると、ガス濃度に依存した起電力を発生し、ガスを
検知するガス検知素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas sensing element that detects gas by generating an electromotive force depending on gas concentration.

従来の固体電解質材料を用いるガス検知素子としては、
カルシア(C.O)ないしはイツトリア(聞方)等で安
定化したジルコニア(Zrω→ を用いた固体電解質酸
素センサがよく知られている。これは第1図に示すよう
に、固体電解質によって作られたパイ邦内部および外部
に多孔質白金層よりなる電極1および電極2を付与し、
かつ、リード線4、4′をもうけた構造である。酸素濃
度の測定は、ZrOzパイプを被測定気体中に置き、ま
た、パイプの内部には、酸素分圧が既知の気体例えば空
気ないしは純酸素気体を満して行なう。
As a gas sensing element using conventional solid electrolyte materials,
A solid electrolyte oxygen sensor using zirconia (Zrω→) stabilized with calcia (C.O) or ittria is well known. Electrodes 1 and 2 made of porous platinum layers are provided inside and outside the piezoelectric layer,
Moreover, it has a structure in which lead wires 4 and 4' are provided. The oxygen concentration is measured by placing a ZrOz pipe in the gas to be measured, and filling the inside of the pipe with a gas having a known oxygen partial pressure, such as air or pure oxygen gas.

このとき、電極1および電極2間に発生する起電力と酸
素分圧の間係a、(1)式のネルンストの関係式で与え
られる。
At this time, the relationship a between the electromotive force generated between electrode 1 and electrode 2 and the oxygen partial pressure is given by the Nernst relational expression (1).

E=(RT/4F)Jsc(PO−レPot (“))
  Q)ここでPot0’およびPot”’はそれぞれ
電極1および電極2が置かれた気体中の酸素分圧である
E=(RT/4F)Jsc(PO-RePot (“))
Q) Here, Pot0' and Pot"' are the partial pressures of oxygen in the gas in which electrode 1 and electrode 2 are placed, respectively.

従って、固体電解質パイプの内外における酸素分圧の差
に基づいて、発生する起電力の値から、被測定気体中の
酸素濃度を求めることができる。
Therefore, the oxygen concentration in the gas to be measured can be determined from the value of the electromotive force generated based on the difference in oxygen partial pressure inside and outside the solid electrolyte pipe.

この種の酸素濃淡電池を利用した酸素濃度計は、例えば
自動・車排気ガス中の酸素濃度測定ある.染は、l溶融
鋼中の溶存11!素量制御等の用途に使用されている。
An example of an oxygen concentration meter using this type of oxygen concentration battery is the measurement of oxygen concentration in automobile exhaust gas. The dye is 11 dissolved in molten steel! It is used for purposes such as quantity control.

しかしながら、上述の従来の固体電解質材料及びこれを
用いたガス検知素子には、次の様な種々の欠点がある。
However, the above-mentioned conventional solid electrolyte materials and gas sensing elements using the same have various drawbacks as follows.

即ち、カルシア(C,0)ないしはイツトリア(’b 
Om )等によって、安定化されたジルコニアのパイプ
は、1400℃以上の高温でなければち密な磁器パイプ
として、得られず、製造は容易ではない。更に第1図に
記した電極1および電極2とジルコニアパイプ3との接
着面紘熱シ1.りに弱く、またジルコニアパイプそのも
のにもクラックが発生しゃすく、特性劣化を生じやすい
という欠点がある。
That is, Calcia (C,0) or Ittria ('b
Stabilized zirconia pipes such as Om) cannot be obtained as dense porcelain pipes unless at a high temperature of 1400° C. or higher, and manufacturing is not easy. Furthermore, the adhesive surfaces of the electrodes 1 and 2 and the zirconia pipe 3 shown in FIG. Moreover, the zirconia pipe itself has the disadvantage of being susceptible to cracks and deterioration of its properties.

更に酸素濃度既知の気体例えば空気あるいは酸素などを
基準ガスとして、一方の電極部分に供給する必要がある
ため、形状が大きくなシ、小型化しにくい欠点もあった
。また、被検知気体の温度が数百度必要であるため、お
のずからその用途社限定されていた。
Furthermore, since it is necessary to supply a gas with a known oxygen concentration, such as air or oxygen, as a reference gas to one electrode portion, there is a drawback that the shape is large and it is difficult to miniaturize. Furthermore, since the temperature of the gas to be detected needs to be several hundred degrees, its applications are naturally limited.

上述の欠点を除去するものとして、第2図に示す様な構
造の素子が提案されている。即ち、安定化ジルコニアの
円板30両面にpiペーストを印刷し焼付けた電極1お
よび電極2をもうけ、更に一方の電極上に触媒層5およ
び電極リード線4、をもうけたものである。確かにこの
様な構造によって、素子の小型化は容易になった。しか
しながら、ガス導入後出力電圧が一定値に達するまでの
時間、即ち応答速度がきわめて遅く、5分以上の時間を
必要とした。また触媒層の劣化によって、出力電圧が低
下するという問題もあった。
In order to eliminate the above-mentioned drawbacks, an element having a structure as shown in FIG. 2 has been proposed. That is, electrodes 1 and 2 are formed by printing and baking Pi paste on both sides of a stabilized zirconia disc 30, and a catalyst layer 5 and an electrode lead wire 4 are further formed on one electrode. It is true that such a structure makes it easier to miniaturize the device. However, the time required for the output voltage to reach a certain value after gas introduction, that is, the response speed, was extremely slow, requiring a time of 5 minutes or more. There was also the problem that the output voltage decreased due to deterioration of the catalyst layer.

本発明の目的はこれらの欠点を除き、小型で応答速度が
速く、出力電圧が大きく、さらに信頼性の高いガス検知
素子全提供することを目的としている。
An object of the present invention is to eliminate these drawbacks and provide a gas sensing element that is small in size, has a fast response speed, has a large output voltage, and is highly reliable.

本発明のガス積卸素子はLag (WxZrx −x)
g Oyなる化学式で表わされ、0.+<χ41.o 
なる2の範囲で示される磁器組成物重用いたとえば第3
図に示す様に、前記組成の焼一体円板3の上下面にそれ
ぞれIl類の異る電極ペーストを焼付けて、電極1およ
び電極2となし、リード線4を取付は更に多孔質保護層
6で焼結体と電極を被覆し九構造を特徴としている。
The gas loading/unloading element of the present invention is Lag (WxZrx -x)
It is represented by the chemical formula g Oy, and 0. +<χ41. o
For example, the porcelain composition shown in the range 2 is used.
As shown in the figure, electrode pastes of different types I1 are baked on the upper and lower surfaces of the sintered integral disk 3 having the above composition to form electrodes 1 and 2, and lead wires 4 are attached to the porous protective layer 6. The sintered body and electrode are coated with a nine-layer structure.

以下実施例に基づいて、詳細に述べるっLa鵞CWxZ
rs−xhoフなる磁器組成物を作製するために原料と
して用いた酸化物唸純度99.816以ヒの酸化ランタ
ン(La2ha)酸化タングステンCWog)シよび酸
化ジルコニウム(ZrO雪)である。これらをLa m
 (WxZt −IC) 雪Oy においてx=0.7
となるようにそれぞれ所定量秤量し、純水とともにボー
ル)ルで46時間混合し、口過乾燥し、1200℃で2
時間仮焼を行った後、ライカイ機で再粉砕した。
The following will be described in detail based on examples.
The oxides used as raw materials to produce the porcelain composition of rs-xho were lanthanum oxide (La2ha), tungsten oxide (CWog), and zirconium oxide (ZrO) with a purity of 99.816 or higher. La m these
(WxZt -IC) x=0.7 in snow Oy
Weigh out the predetermined amount of each, mix with pure water in a bowl for 46 hours, dry the mouth, and heat at 1200℃ for 2 hours.
After calcining for a period of time, it was re-pulverized using a Raikai machine.

その後、5%ポリビニルアルコール液を加えて、造粒し
、直径to−−f長さ約5W%にプレス成形し、120
0℃で1時間焼結した後厚み0.5M1WLに切断し、
第3図に示した様に片面に白金電極を焼付けた後、反対
側の面に俵電極を焼付け、リード線4.4′を接続!−
九。更に多孔質保護層6としてガラスペーストを塗布し
、500℃〜700℃で焼付けた。
Then, 5% polyvinyl alcohol solution was added, granulated, and press-molded to a diameter to f length of about 5W%.
After sintering at 0℃ for 1 hour, it was cut to a thickness of 0.5M1WL.
As shown in Figure 3, after baking a platinum electrode on one side, burn a straw electrode on the other side and connect lead wire 4.4'! −
Nine. Further, a glass paste was applied as a porous protective layer 6 and baked at 500°C to 700°C.

抑!定には、第4図に示すように、ヒーター5を巻き付
けた石英パイプ7中に先の方法で作製した試料を設置し
、試料の温度が300℃〜400℃となるように加熱し
、石英パイプ中に濃度既知の気体を1分間約100CC
流したとき試料に誘起される電圧を測定した。
Suppression! Specifically, as shown in Fig. 4, the sample prepared in the above method is placed in a quartz pipe 7 wrapped around a heater 5, and the sample is heated to a temperature of 300°C to 400°C. Approximately 100 CC of gas with known concentration in the pipe for 1 minute
The voltage induced in the sample when flowing was measured.

結果を第5図〜第7図に示す。The results are shown in FIGS. 5 to 7.

第5図は、空気にイソブタン3000 ppmを混合し
たガスを試料温度が400℃と表るよう加熱した石英パ
イプ中に流しこのとき試料に誘起される起電力を測定し
た1、誘起された電圧は、はぼ5秒以内に定常値の80
チに達し、十分早い応答速度を示した。ガスを空気のみ
に切換えた後の復帰性も良好で1分以内に復帰し十分実
用になり得る性能であることがわかった。
Figure 5 shows that a gas mixture of air and isobutane at 3000 ppm was poured into a quartz pipe heated to a sample temperature of 400°C, and the electromotive force induced in the sample was measured1.The induced voltage was , the steady value of 80 within 5 seconds
The response speed was sufficiently fast. It was found that the recovery performance after switching the gas to only air was also good, and the recovery took place within 1 minute, indicating that the performance was sufficient for practical use.

第6図は、H2(直線1)とイソブタン(シー04Ht
*)(直線2)の空気に対混合比率を費えたときの起電
力の測定値である。起電力の値はガス濃度が上昇すると
ほぼ直線的に増加した。を九ガスの種類によってもその
値に差が生じ、ガスに対する選択性が得られる事を示し
ている。
Figure 6 shows H2 (straight line 1) and isobutane (sea 04Ht).
*) This is the measured value of the electromotive force when the mixture ratio is applied to the air (straight line 2). The value of electromotive force increased almost linearly as the gas concentration increased. There are also differences in the values depending on the type of gas, indicating that selectivity to the gas can be obtained.

通常可燃性ガスの検知に要求される濃度は、爆発下限の
1/4〜1/1 o o以下とされている。イソブタン
の場合にこの値はおよそ100f/rnから5000−
でめ9、この程度のイソブタン濃度に対し、本発明にな
る素子a50mV程度以上の出力電圧がちシ、十分な有
効性かめることが結論できる。
Normally, the concentration required for detection of flammable gas is 1/4 to 1/1 oo of the lower explosive limit. For isobutane this value ranges from approximately 100f/rn to 5000-
9. It can be concluded that for this level of isobutane concentration, the output voltage of the device of the present invention is likely to be approximately 50 mV or more, and thus has sufficient effectiveness.

また第3図に示しis電極および電極2を同一電極材f
#+を用いた場合に紘出力電圧唸10mV以下となり、
ガス検知素子として有効′&特性を示さなかった。また
、一方を銀の焼付電極とした場合他方のVC−をパラジ
ウムとした場合でも白金の場合と同様に最も艮好な特性
を示した。
In addition, as shown in FIG. 3, the is electrode and electrode 2 are made of the same electrode material f.
When #+ is used, the output voltage will be less than 10mV,
It did not show any effective characteristics as a gas detection element. Further, even when one electrode was made of baked silver and the other VC- was made of palladium, the most favorable characteristics were exhibited as in the case of platinum.

すなわち、選択する電極材料の組合わせによって、素子
4i)注が制鉤できることを意味している。
In other words, this means that element 4i) can be controlled depending on the combination of electrode materials selected.

第7図唸、本発明のガス検知素子においてその焼結体組
成の二酸化ジルコニウム(ZrOs)と、酸化タングス
テン(WOs )の比率を変えたとき一酸1t*集(C
o)’t3000pp)m含む空気に対するjjス検9
!I素子の出力電圧を示している。
Figure 7 shows that when the ratio of zirconium dioxide (ZrOs) and tungsten oxide (WOs) in the sintered body composition is changed in the gas detection element of the present invention, 1 t* of monoacid (C
o) 't3000pp) JJ inspection for air containing m9
! It shows the output voltage of the I element.

実用上10mV以下の起電力値の検出は、回路構成上困
難が増加する。従って、できるだけ大きい起電力である
ことが望ましく、50mV以上線必要である。従って本
発明に用いhL−s (WxZrs−X)! 0マで示
される磁器組成物において酸化タングステンと酸化ジル
コニウムの配合比Xの範囲は、O,鉱す1j)の範囲が
望ましいといえる。
In practice, detection of an electromotive force value of 10 mV or less is increasingly difficult due to the circuit configuration. Therefore, it is desirable that the electromotive force be as large as possible, and a line of 50 mV or more is required. Therefore, hL-s (WxZrs-X)! is used in the present invention. In the ceramic composition indicated by 0ma, the range of the blending ratio X of tungsten oxide and zirconium oxide can be said to be desirably within the range of O, 1j).

また以下に示す表は、本発明のガス検知素子を、室温か
ら、500℃に保持した電気炉中に投入し、5分間保持
し、再び室温に堆夛出し、20分間放置するという温度
サイクル試験を500回まで繰返した後の出力電圧の変
化率を示す、 表 表中の従来素子としては、第2図に示した構造で、材料
はカルシア(CAO)で安定化したジルコニア(Zr(
h)を用いて作製し九。試験の結果、従来素子は、固体
電解質と、電極、あるいは、電極と、触媒層間が温度サ
イクルによジノ・り離したり、またクラックが発生した
シして出力電圧が大きく低下することが明らかになった
。−力木発明による素子は、出力電圧の減少はほとんど
なく安定な特性を示している。) を九、多孔質保護層は、素子特性の安定化のために有効
で、保護層を付与しないものは、温度サイクルに対して
も従来素子と同程度であった。
The table below shows a temperature cycle test in which the gas sensing element of the present invention was placed in an electric furnace maintained at 500°C from room temperature, held for 5 minutes, then deposited at room temperature again and left for 20 minutes. The conventional element in the table, which shows the rate of change in output voltage after repeating up to 500 times, has the structure shown in Figure 2, and the material is zirconia (Zr) stabilized with calcia (CAO).
h) Produced using 9. Test results revealed that in conventional devices, the solid electrolyte and the electrodes, or between the electrodes and the catalyst layer, may become separated due to temperature cycles, or cracks may occur, resulting in a significant drop in output voltage. became. - The device according to Rikiki's invention exhibits stable characteristics with almost no decrease in output voltage. (9) The porous protective layer is effective for stabilizing device characteristics, and those without a protective layer have the same resistance to temperature cycles as conventional devices.

以上述べた様に本発明のガス検知素子は、小型で焼結が
容易で温度サイクルにも強く、十分な安定度を持ち、応
答速度出力電圧ともに実用上有益な性能を示すことが明
らかである。
As described above, it is clear that the gas sensing element of the present invention is small, easy to sinter, resistant to temperature cycles, has sufficient stability, and exhibits practically useful performance in terms of response speed and output voltage. .

また本実施例では、電極材料として、銀と白金及び銀と
パラジウムの組合わせを示したが、他の組合わせ例えば
、ニッケルと鹸化ニッケルの混合
Furthermore, in this example, combinations of silver and platinum and silver and palladium are shown as electrode materials, but other combinations such as a mixture of nickel and saponified nickel are also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

弔1図、弔2図は従来のガスvL却累子の榊遺を示す図
。 %I、3図は本発明の刀ス検知素子の4迫を示す凶0第
4凶は本発明のガス慎卸系子の特注測足装置を示す図。 第5凶、弔6図は杢兄四のガス検知素子の袴江図0 第7図は+光間り刀ス伏知糸子に用いΦ固庫咀屏賃睨顧
庫の組成比と起−刀の一悌υボT凶0IJ41図にねい
て1,2は白並鴫憾、3は一座鴫屏責のパイプ、4はリ
ード−である0 弔2図番こおいて1.2は白金−億、3は一不−厨貞の
砿I[体、4ばリード−15は)!1!−ノ曽であるワ
5はヒーター、7は石英パイプである。 階6凶会こ石いてlはボ系醗こメ1する狩注直−12第
 5 図 第6図 too       tooo      tooo。 力°ス5Jl 3   (pr−n) 第7図 Laz (WX Zr+−x )z (77υ    
         0.5            7
.0×
Diagram 1 and Diagram 2 are diagrams showing the traditional gas vL Keiko Sakaki. %I, Figure 3 shows the fourth aspect of the gas detection element of the present invention, and the fourth figure is a diagram showing a custom-made foot measuring device of the gas discrepancy system of the present invention. Figure 5 and Figure 6 are the Hakamae diagrams of the gas detection elements of Mokuenshi 4. Figure 7 is the composition ratio and origin of 1 and 2 are the pipes of Shiranami Shiraku, 3 is the pipe of the Ichiza Shigetsu, and 4 is the lead. - 100 million, 3 is one fu - Chusei's green I [body, 4ba lead - 15 is]! 1! - No. 5 is a heater, and 7 is a quartz pipe. Floor 6 Kyoukai Koishi, l is Bo-kei Kome 1 Karizunao - 12 Figure 5 Figure 6 too too too tooo. Force°S5Jl 3 (pr-n) Fig. 7 Laz (WX Zr+-x )z (77υ
0.5 7
.. 0×

Claims (1)

【特許請求の範囲】[Claims] 酸素イオン伝導性を有する焼結体の両面に電極を付与し
、さらに骸電極にリード線を取り付けてなるガス検知素
子において、焼結体としてLa、、 (WxZrt−x
>20t (友だし0,41 x l 1.0 )で示
される酸素イオン伝導体を用い、さらにこの焼結体両面
にそれぞれ異なる種類の電極材料を付与し、該焼結体及
び電極を多孔質保護層で被覆したことを特徴とするガス
検知素子。
In a gas detection element in which electrodes are provided on both sides of a sintered body having oxygen ion conductivity and lead wires are attached to the skeleton electrodes, the sintered body contains La, (WxZrt-x
Using an oxygen ion conductor of >20t (tomo 0.41 A gas detection element characterized by being coated with a protective layer.
JP57006371A 1982-01-19 1982-01-19 Gas detecting element Pending JPS58123446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006371A JPS58123446A (en) 1982-01-19 1982-01-19 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006371A JPS58123446A (en) 1982-01-19 1982-01-19 Gas detecting element

Publications (1)

Publication Number Publication Date
JPS58123446A true JPS58123446A (en) 1983-07-22

Family

ID=11636504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006371A Pending JPS58123446A (en) 1982-01-19 1982-01-19 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS58123446A (en)

Similar Documents

Publication Publication Date Title
US4283441A (en) Method of making an ion conductive gas sensor body with a cermet electrode thereon
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
JPH05119015A (en) Carbon dioxide gas detection element
JPS6126621B2 (en)
US4162631A (en) Rare earth or yttrium, transition metal oxide thermistors
JP2008306086A (en) Thermistor element and manufacturing method of thermistor element
JPH0467912B2 (en)
JPS58123446A (en) Gas detecting element
JPS58201057A (en) Sensing element of gas
JPS59220641A (en) Gas detecting element
JPS6161344B2 (en)
US4231254A (en) Rare earth or yttrium, transition metal oxide thermistors
JPS58123448A (en) Gas detecting element
JPS59168360A (en) Gas-detecting element
JPS59120951A (en) Gas sensitive element
JPS59168359A (en) Gas-detecting element
JPS58123447A (en) Gas detecting element
JPH03120456A (en) Oxygen sensor
JPH04329353A (en) Carbon dioxide and humidity sensor
JP2985562B2 (en) Temperature sensor
JP3845490B2 (en) Carbon dioxide sensor
JP3669807B2 (en) Carbon monoxide detection sensor
US4232441A (en) Method for preparing rare earth or yttrium, transition metal oxide thermistors
KR0140493B1 (en) Temperature sensor and its manufacturing method
JPS6044273B2 (en) Zirconia sintered body for oxygen sensor