JPS58123448A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS58123448A
JPS58123448A JP57006375A JP637582A JPS58123448A JP S58123448 A JPS58123448 A JP S58123448A JP 57006375 A JP57006375 A JP 57006375A JP 637582 A JP637582 A JP 637582A JP S58123448 A JPS58123448 A JP S58123448A
Authority
JP
Japan
Prior art keywords
gas
electrode
baked
detecting element
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57006375A
Other languages
Japanese (ja)
Inventor
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57006375A priority Critical patent/JPS58123448A/en
Publication of JPS58123448A publication Critical patent/JPS58123448A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To provide a small size and high reliable gas detecting element which has a fast answering speed and a high output voltage, by a method wherein electrode materials being different in a type are applied to both sides of a sintered material with a specified composition, being used as an oxygen ion conductive material, and the sintered material and the electrode are covered with a porous protecting layer. CONSTITUTION:An oxide of a raw material of a magnetic composition is Y2O3, WO3 and ZrO2 with a purity of not less than 99.8%, which are respectively weighed so that they are brought to 0<=x<=0.8 by a chemical formula of Y2(W1-xZrx)O6, they are mixed by a ball mill for 46hr togetherwith pure water, the mixture is filtered and dried, and after the mixture is temporarily burned at 1,200 deg.C for 2hr, it is repulverized by an attritor. A 5% polyvinyl alcohol liquid is then added to granulate it, the granulation is press-molded 10mm. in diameter and about 5mm. in length, and after the work is sintered at 1,200 deg.C for 1hr, it is cut to 0.5mm. in thickness. After a platinum electrode 1 is baked to one side of a sintered material 3, a silver electrode 2 is baked to the opposite side thereof, a lead wire 4 is connected thereto, and a glass paste is applied as a porous protecting layer 6 and is baked at 500-700 deg.C to produce a glass detecting element. The element has a fast answering speed to hydrogen, isobutane, or the like is also excellent in a returning property, is approximately linearly increased in a value of an electromotive force with the increase in gas concentration, and also has an excellent selectivity to gas.

Description

【発明の詳細な説明】 ガスを検知するガス検知素子に関する。[Detailed description of the invention] The present invention relates to a gas detection element that detects gas.

従来の固体電解質材料を用いるガス検知素子としてはカ
ルシア(CaO)ないしはイツトリア(Y菅Os )等
で安定化し九ジルコニア(ZrO嘗)を用いた固体電解
質酸素センサがよく知られている。これはIJIL1図
に示すように、固体電解質によって作られたパイプ3の
内部および外部に多孔質白金層よシなる電@lおよび電
l@2を付与し、かつ、リードll4tもうけた構造で
ある・酸素濃度の測定にはジルコニアパイプを被測定気
体中に置き、また、パイプの内部には酸素分圧が既知の
気体例えは空気ないし社線酸素気体を満す。
As a conventional gas detection element using a solid electrolyte material, a solid electrolyte oxygen sensor using 9-zirconia (ZrO) stabilized with calcia (CaO) or yttrium (Y-Os) is well known. As shown in Fig. IJIL1, this is a structure in which electric currents @l and l@2 are applied by a porous platinum layer to the inside and outside of a pipe 3 made of a solid electrolyte, and a lead ll4t is provided. - To measure oxygen concentration, a zirconia pipe is placed in the gas to be measured, and the inside of the pipe is filled with a gas of known oxygen partial pressure, such as air or line oxygen gas.

このとき、電@lおよび電極2間に発生する起電力と酸
素分圧の関係BS (1)式のネA−ンストの関係式で
与えられる。
At this time, the relationship between the electromotive force generated between the electric current and the electrode 2 and the oxygen partial pressure BS is given by the Neenst relational expression (1).

1 = CRT/4 F ) I n (Pot”’/
Pop’″%(1)ここでPO,(1)および2缶(1
)唸それぞれ電極l訃よび電極2が置かれた気体中の酸
素分圧である。
1 = CRT/4F) I n (Pot”'/
Pop'''% (1) where PO, (1) and 2 cans (1
) is the partial pressure of oxygen in the gas in which electrodes 1 and 2 are placed, respectively.

従うて、固体電解質パイプの内外における酸素分圧の差
に基づいて発生する起電力の値から、被測定気体中の酸
素Sat求めることができる〇この種の酸素#I淡電池
を利用した酸素#1度針は、例えば自動軍排気ガス中の
酸素濃度測定あるいは、溶融鋼中の溶存酸素量制御等の
用途に使用されている。
Therefore, the oxygen Sat in the gas to be measured can be determined from the value of the electromotive force generated based on the difference in oxygen partial pressure inside and outside the solid electrolyte pipe. The one-degree needle is used for purposes such as measuring the oxygen concentration in automatic military exhaust gas or controlling the amount of dissolved oxygen in molten steel.

しかしながら上述の従来の固体電解質材料及びこれを用
いたガス検知素子には次の様な種々の欠点がある。
However, the above-mentioned conventional solid electrolyte materials and gas sensing elements using the same have various drawbacks as follows.

即ち、カルシア(Cab)ないしはイツトリア(y、o
、)勢によりて安定化されたジルコニアのパイプas 
1400℃以上の高温でなければ数置な磁層パイプとし
て得られず、製造は容1ではない。更に第1図に記した
電極lおよび電極2、りが発生しゃすく、特性劣化を生
じやすいという欠点がある。
That is, Calcia (Cab) or Ittoria (y, o
, ) zirconia pipe stabilized by force as
Unless the temperature is 1400° C. or higher, a magnetic layer pipe with several layers cannot be obtained, and manufacturing is not easy. Furthermore, the electrodes 1 and 2 shown in FIG. 1 have the disadvantage that they are prone to scratches and deterioration of characteristics.

更に酸素濃度既知の気体例えば空気あるい紘□ 酸素などを基準ガスとして一方の電極部分に供給する必
要があるため、形状が大きくな夛、小型化しにくい欠点
もあう九。また、被検知気体の温度が数百度必要である
ためおのずからその用途は限定されていた。
Furthermore, since it is necessary to supply a gas with a known oxygen concentration, such as air or oxygen, as a reference gas to one of the electrodes, it also has the disadvantage of being large in size and difficult to miniaturize. Furthermore, since the temperature of the gas to be detected needs to be several hundred degrees, its use is naturally limited.

上述の欠点を除去するものとして、第2図に示す様な構
造の素子が提案されているう即ち、安定化ジルコニアの
円板30表裏にPt ペーストを印刷し焼付けた電極l
および電極2をもうけ、更に一方の電極上に触媒層5お
よび電極リードls4をもうけたものである。確かに仁
の様な構造によって素子の小型化性容易になりた。
In order to eliminate the above-mentioned drawbacks, an element having a structure as shown in FIG. 2 has been proposed. In other words, an electrode l formed by printing and baking Pt paste on the front and back of a stabilized zirconia disc 30.
and an electrode 2, and furthermore, a catalyst layer 5 and an electrode lead ls4 are provided on one of the electrodes. It is true that the nickel-like structure facilitates miniaturization of the device.

しかしながら、ガス導入後出力電圧が一定値に達するま
での時間即ち応答速度はきわめて遅く5分以上の時間を
必要とする。また触媒層の劣化によって出力電圧が低下
するという問題もあった0本発明の目的はこれらの欠点
を除き、小塵で、応答速度が速く、出力電圧が大きくさ
らに信頼性の高いガス検知素子を提供することを目的と
している。  :′ 1 本発明のガス検知素子はY雪(W+ −x Z rx 
) 0・なる化学式で表わされ、0≦X≦αSするXの
範囲で示される磁器組成物を用いたとえば菖3図に示す
様に、前記組成の焼結体円板3の上下mKそれぞれ種類
の異る電極ペーストを焼付けて、電l[ilおよび電@
2となし、リード線4を取付け、更に多孔質保護層6で
焼結体と電極を被覆した構造を特徴としている。
However, the time it takes for the output voltage to reach a certain value after gas introduction, that is, the response speed, is extremely slow and requires 5 minutes or more. In addition, there was also the problem that the output voltage decreased due to deterioration of the catalyst layer.The purpose of the present invention is to eliminate these drawbacks and to provide a highly reliable gas detection element that is small in dust, has a fast response speed, has a large output voltage, and is highly reliable. is intended to provide. :' 1 The gas detection element of the present invention is Y snow (W+ -x Z rx
) Using a porcelain composition expressed by the chemical formula 0 and in the range of 0≦X≦αS, for example, as shown in Fig. By baking different electrode pastes of
2, a lead wire 4 is attached, and the sintered body and electrode are further covered with a porous protective layer 6.

以下実施例に基づいて詳細に述べる。The following will be described in detail based on examples.

Y、 (W、 + x Z rx )O−なる磁気組成
物を作製する九めに原料として用いた酸化物は純度99
.8−以上の酸化イツトリウム(y*os)、酸化タン
グステン(WOs)および酸化ジルコニウム(ZrOt
)である0これらをY* (W+ −x Z rx )
 O−においてX−〇、4となる様にそれぞれ所定量秤
量し、純水とともにボールミルで46時間混合し、口過
乾燥し、1200cで2時間仮焼を行った後、ライカイ
機で再粉砕した。その後5%ポリビニルアルコール液を
加えて造粒し、直径l〇四戸長さ約51111にプレス
成形し、1200℃で1時間焼結した後厚み0.5■に
切断し、第3図に示したように片面に白金電極を焼付た
後反対側の面に銀電極を焼付はリード線をつけ多孔質保
護層6とし5− てガラスペーストを塗布5ooc〜700℃で焼付けた
The oxide used as a raw material in the ninth stage of producing the magnetic composition Y, (W, + x Z rx )O- has a purity of 99
.. 8- or higher yttrium oxide (y*os), tungsten oxide (WOs) and zirconium oxide (ZrOt
), these are Y* (W+ −x Z rx )
A predetermined amount of each was weighed to give X-〇, 4 in O-, mixed with pure water in a ball mill for 46 hours, dried, calcined for 2 hours at 1200c, and re-pulverized in a Raikai machine. . After that, 5% polyvinyl alcohol solution was added and granulated, press-formed to a diameter of 10 cm and a length of approximately 51111 cm, sintered at 1200°C for 1 hour, and then cut to a thickness of 0.5 cm, as shown in Figure 3. After baking a platinum electrode on one side, a silver electrode was baked on the opposite side. Lead wires were attached to form the porous protective layer 6, and glass paste was applied and baked at 500°C to 700°C.

測定Ka第4図に示すようにヒーター5を巻き付けた石
英パイプ7を試料の温度が300C〜〜400℃となる
ように加熱し、先の方法で作製した試料を設置し、石英
パイプ中Kl1度既知の気体を1分間約10100cし
たとき試料に誘起される電圧を測定した。
Measurement Ka As shown in Fig. 4, a quartz pipe 7 with a heater 5 wrapped around it is heated so that the sample temperature reaches 300 to 400 degrees Celsius, the sample prepared in the previous method is placed, and the temperature of Kl in the quartz pipe is 1 degree. The voltage induced in the sample was measured when a known gas was heated at about 10100 C for 1 minute.

結果を第5all−籐7図に示す。The results are shown in Figure 5.

第5図は空気中にイソブタン3000ppNAを滉合し
、試料温度が400 CKなるよう加熱した石英パイプ
中に流しこのとき試料に誘起される起電力を測定した。
In FIG. 5, 3000 ppNA of isobutane was mixed in air and poured into a quartz pipe heated to a sample temperature of 400 CK, at which time the electromotive force induced in the sample was measured.

誘起された電圧線、は″i5秒以内に定常値の80−に
達し十分早い応答速度を示した。ガスを空気のみに切換
えた後の復層性も喪好で1分以内に徨帰し十分実用にな
p得る性能である。
The induced voltage line reached the steady-state value of 80- within 5 seconds, showing a sufficiently fast response speed.The recovery performance after switching the gas to only air was also poor and returned within 1 minute, which was sufficient. This is a performance that can be put to practical use.

第6図は、H,(直#11)とイソブタン(i−CmH
+・)(直線2)の空気に対混合比率を変えたときの起
電力の測定値である。起電力の値はガス6− 濃度が上昇するとほぼ直線的に増加する。またガスの種
類によってもその値に差が生じ、ガスに対する選択性が
得られる事を示している〇通常可燃性ガスの検知に要求
される濃度は、爆発下限の’/4〜l/1oo以下とさ
れている。インブタンの場合にこの値はおよそ1100
ppから5000ppm  であり、この程度のイソブ
タン濃度に対し本発明になる素子は50mVl!j[以
上の出力電圧があり、十分な有効性があることが結論で
きる。
Figure 6 shows H, (straight #11) and isobutane (i-CmH
+・) (Line 2) is the measured value of electromotive force when changing the mixing ratio to air. The value of the electromotive force increases almost linearly as the gas concentration increases. The value also differs depending on the type of gas, indicating that selectivity can be obtained for the gas. Normally, the concentration required for detection of flammable gas is below the lower explosive limit of '/4 to l/1oo. It is said that In the case of imbutane, this value is approximately 1100
ppm to 5000ppm, and for this level of isobutane concentration, the device of the present invention is 50mVl! It can be concluded that there is an output voltage of more than J[, and that there is sufficient effectiveness.

また第3図に示した電極1および電極2を同一電極材料
を用いた場合Ktj出力電圧は1mV以下となり、ガス
検知素子として有効な特性を示さないこと、また、一方
を銀の焼付電極とした場合他方の電極をパラジウムとし
た場合でも白金と同様に最も良好な特性を示した。
Furthermore, if the same electrode material is used for electrode 1 and electrode 2 shown in Fig. 3, the Ktj output voltage will be 1 mV or less, and it will not exhibit effective characteristics as a gas detection element. In this case, even when the other electrode was made of palladium, it showed the best characteristics, similar to platinum.

すなわち、選択する電極材料の組合わせによって素子特
性が制御できること=意味している。
In other words, this means that the device characteristics can be controlled by the combination of selected electrode materials.

第7図は、本発明のガス検知素子においてその焼結体組
成の二酸化ジルコニウム(ZrO禽)と酸化タングステ
ン(WOs)の比率を変えたときの一酸化炭素(CO)
を3000p戸含む空気に対するガス検知素子の出力電
圧を示している。
Figure 7 shows carbon monoxide (CO) when the ratio of zirconium dioxide (ZrO) and tungsten oxide (WOs) in the sintered body composition is changed in the gas detection element of the present invention.
It shows the output voltage of the gas detection element for air containing 3000p.

実用上10mV以下の起電力値の検出法は、回路構成上
困難が増加する。従って、できるだけ大きい起電力であ
ることが望ましく、50mV以上は必要である。し友が
って本発明に用いるY* (W+ −x Z x ) 
Cb で示される磁器組成物において酸化ジルコニウム
と酸化タングステンの配合比Xの範囲は0≦X≦0.8
が望ましいといえる。
In practice, a method for detecting an electromotive force value of 10 mV or less is more difficult due to the circuit configuration. Therefore, it is desirable that the electromotive force be as large as possible, and 50 mV or more is required. Y* (W+ −x Z x ) used in the present invention as a friend
In the ceramic composition represented by Cb, the range of the blending ratio X of zirconium oxide and tungsten oxide is 0≦X≦0.8
is desirable.

また以下に示す表は本発明のガス検知素子を室温から、
500℃に保持した電気炉中に投入し、5分保持し、再
び室温に取り出し、20分間放置するという温度サイク
ル試験を500回まで繰返した後の出力電圧の変化率管
示す。
In addition, the table shown below shows how the gas sensing element of the present invention is measured from room temperature to
The rate of change in output voltage after a temperature cycle test was repeated up to 500 times, in which the tube was placed in an electric furnace held at 500° C., held for 5 minutes, taken out to room temperature, and left for 20 minutes.

表 表中の従来素子としては第2図に示し危構造で、材料は
カルシア(Cab)で安定化したジルコニア(ZrO嘗
)を用いて作製した。試験の結果、従来素子は固体電解
質と、電極あるいは電極と触媒層間が温度サイクルによ
シハク離した)、またクラックが発生したシして出力電
圧が大きく低下することが明らかになりた。−万事発明
による素子は出力電圧の減少はほとんどなく安定な特性
を示している。
The conventional element in the table has a critical structure as shown in FIG. 2, and was manufactured using zirconia (ZrO) stabilized with calcia (Cab). Test results revealed that in conventional devices, the solid electrolyte and the electrodes or between the electrodes and the catalyst layer separated due to temperature cycles), and cracks occurred, resulting in a significant drop in output voltage. - The device according to the invention exhibits stable characteristics with almost no decrease in output voltage.

また、多孔質保護層は素子特性の安定化のために有効で
、保護層を付与しないものは温Ill!ナイクルに対し
ても従来素子と同S度でありた。
In addition, a porous protective layer is effective for stabilizing device characteristics, and those without a protective layer are very hot! The degree of S for Nycle was also the same as that of the conventional element.

ま九本発明のガス検知素子において多孔質保護層に酸化
イツトリウムを少量含有させると保護層と固体電解質と
の接着強度を高める効果があることが判った・ 以上述べた様に本発明Knるガス検知素子は小型で焼結
が容易で温度サイクルにも強く、十分な安定度を持ち応
答速度、出力電圧ともに実用上有益な性能を示すことが
明らかである。
It has been found that in the gas sensing element of the present invention, containing a small amount of yttrium oxide in the porous protective layer has the effect of increasing the adhesive strength between the protective layer and the solid electrolyte.As described above, the gas sensing element of the present invention It is clear that the sensing element is small, easy to sinter, resistant to temperature cycles, has sufficient stability, and exhibits practically useful performance in both response speed and output voltage.

9− ま九本実施例では電極材料として銀と白金及び銀とパラ
ジウムの組合わせを示したが、他の組合わせ例えにニッ
ケルと酸化ニッケルの混合体を一方の電極とし、他方を
銀あるい拡白金ど10− q1囲の聞手rl説明 第l凶、第2凶はDE米のカス偵知素子の構造を/l<
’(J−図。
9-9 In this example, combinations of silver and platinum and silver and palladium are shown as electrode materials, but other combinations can be used, such as using a mixture of nickel and nickel oxide as one electrode and using silver or nickel oxide as the other electrode material. Expanded platinum gold 10-Q1 Surrounding listener rl explanation The first and second mistakes are the structure of DE rice's waste detection element /l<
'(J-Fig.

第3図は本兄例のカス検知素子の構造を示す図。FIG. 3 is a diagram showing the structure of the scum detection element of this example.

弔41は杢に明り刀ス検知素子の時性供す定装喧r/」
くず図0 →5凶、第6図智よ本ル例のカス偵知素子の待比凶0 弔7−は4元例のカス恢知系子かご用いる1不1Prf
貝疵幀庫の凪収比と起喝刀の一詠倉示9−図0.41図
におい−(l、2ば自省一憾、3は固捧゛−屏^Vバ1
ノー、4,4−ばリード−である。
Condolence 41 is a set-up that provides the timeliness of the light detection element in the heather.
Kuzu diagram 0 → 5 evil, Figure 6 Wisdom, this example's waste detection element's waiting ratio 0, 弔 7- is the 4-element example's waste intelligence system child basket 1 fu 1 Prf
9 - Figure 0.41 - (l, 2 is for self-reflection, 3 is for dedication.)
No, 4,4-ba lead.

弔2図icおいてl 、 24ま臼爺゛−憾、3は一不
鳴屏λの腕輻庫、4,4はリード―、5は触媒層でd)
に−)0 粥3.4凶−こお−て1.2は1憾、3は固体−が1緘
り睨腺目ギ、 4.4は1何ドー、ハ0孔貞保IJ51
1wf、5+、+t:、−ノー、7は石大パイグである
In Figure 2 IC, 1, 24 mausuji - sorry, 3 is the arm storage of Ichifusaki λ, 4 and 4 are the leads, 5 is the catalyst layer d)
ni-) 0 porridge 3.4 evil - koote 1.2 is 1 regret, 3 is solid - is 1 linden eye, 4.4 is 1 what do, ha 0 hole Teiho IJ51
1wf, 5+, +t:, -no, 7 is Ishidai Paig.

弔1)1會こ−,,)v”(lij水AtこAi−=f
Φ賢注*w、  2第 1 図 第 2 図 第3図 植4図 第5図 8纜jFIIl′1(4i〕 力°゛スJL度(PPfn)
Condolence 1) 1 meeting ko-,,)v"(lij water Atko Ai-=f
Φ Note *w, 2nd figure 1st figure 2 figure 3 figure 4 figure 5 figure 8 line jFIIl'1 (4i) force°゛su JL degree (PPfn)

Claims (1)

【特許請求の範囲】[Claims] 酸素イオン伝導性を有する焼結体の両面に電極を付与し
、さらに該電liKリード線を取〕付けてなるガス検知
素子において、焼結体としてYt(W+−xZrx)O
a (ただし0≦×≦Q、8)で示畜れる酸素イオン伝
導体を用い、さらにこの焼結体の両面にそれぞれ異なる
種類の電極材料を付与し、鉄焼結体及び電極を多孔質保
護層で被覆したことを特徴とするガス検知素子。
In a gas detection element formed by providing electrodes on both sides of a sintered body having oxygen ion conductivity and further attaching the electric lead wire, Yt(W+-xZrx)O is used as the sintered body.
a (0≦×≦Q, 8) An oxygen ion conductor is used, and different types of electrode materials are applied to both sides of the sintered body to protect the iron sintered body and the electrodes in a porous manner. A gas detection element characterized by being coated with a layer.
JP57006375A 1982-01-19 1982-01-19 Gas detecting element Pending JPS58123448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006375A JPS58123448A (en) 1982-01-19 1982-01-19 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006375A JPS58123448A (en) 1982-01-19 1982-01-19 Gas detecting element

Publications (1)

Publication Number Publication Date
JPS58123448A true JPS58123448A (en) 1983-07-22

Family

ID=11636627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006375A Pending JPS58123448A (en) 1982-01-19 1982-01-19 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS58123448A (en)

Similar Documents

Publication Publication Date Title
JP2882104B2 (en) Proton conductor and method for producing the same
US3644795A (en) Gas detecting element and method of making it
CN110024053B (en) Thermistor sintered compact and thermistor element
WO1986003051A1 (en) Oxide semiconductor for thermistor and a method of producing the same
JPH05119015A (en) Carbon dioxide gas detection element
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
KR100238575B1 (en) A temperature sensor
US4162631A (en) Rare earth or yttrium, transition metal oxide thermistors
JPH06231611A (en) Mixed ion conductor
JPS58123448A (en) Gas detecting element
JPS605548B2 (en) Zirconia sintered body for oxygen sensor
JPH0611400B2 (en) Combustion catalyst with deterioration detection function
JPS58201057A (en) Sensing element of gas
JP3201477B2 (en) Composition for thermistor
US4231254A (en) Rare earth or yttrium, transition metal oxide thermistors
JPS58123446A (en) Gas detecting element
JPS59220641A (en) Gas detecting element
JPH06283310A (en) Temperature sensor
JPS59120951A (en) Gas sensitive element
JP3362644B2 (en) Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element
JPH03120456A (en) Oxygen sensor
JP2985562B2 (en) Temperature sensor
JP2904002B2 (en) Temperature sensor
JPS6152422B2 (en)
KR0140493B1 (en) Temperature sensor and its manufacturing method