JPS59120951A - Gas sensitive element - Google Patents

Gas sensitive element

Info

Publication number
JPS59120951A
JPS59120951A JP57229030A JP22903082A JPS59120951A JP S59120951 A JPS59120951 A JP S59120951A JP 57229030 A JP57229030 A JP 57229030A JP 22903082 A JP22903082 A JP 22903082A JP S59120951 A JPS59120951 A JP S59120951A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
gas
sintered body
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57229030A
Other languages
Japanese (ja)
Inventor
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57229030A priority Critical patent/JPS59120951A/en
Publication of JPS59120951A publication Critical patent/JPS59120951A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a gas sensitive element which is small in size, fast in response speed and has high reliability by baking respectively different kinds of elelctrodes on the top and bottom surfaces of the disc of a sintered body using a ceramic compsn. expressed by a specific chemical formula and further coating the sintered body and electrodes with a porous protective layer. CONSTITUTION:The oxide used as a raw material for forming the ceramic compsn. (Y1-xLax)2WO6 is produced by using Y2O3, La2O3 and WO3 having >=99.8% purity, weigh ing respectively prescribed amts. of these materials so as to attain X=0.6 in the chemical formula (Y1-xLax)2WO6, mixing the weighed materials with pure water, filtering and drying the mixture, calcining the dried mixture, grinding the mixture with an automated mortar, mixing about 5% PVA soln. as a binder therewith and forming granulated powder. The granulated powder is press molded to about 10mm. diameter phi and about 5mm. length and the molding is sintered. The sintered molding is further cut to 0.5mm. thickness and a platinum electrode is baked on one side and thereafter a silver electrode is baked on the surface on the opposite side. Lead wires are connected to these electrodes. A porous protective layer 6 is additionally formed by spraying of alumina.

Description

【発明の詳細な説明】 本発明は還元性ガスないしは、可燃性ガス中において、
ガス濃度に依存した起電力を発生することでガスを検知
する固体電解質材料を用いたガス検知素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides the following methods:
The present invention relates to a gas detection element using a solid electrolyte material that detects gas by generating an electromotive force depending on the gas concentration.

従来の固体電解質材料を用いるガス検知素子としては、
カルシア(CaO)  ないしはイツトリア(Y、O,
)等で安定化した2ルコニア(ZrO□)を用いた固体
電解質酸素センサが良く知られている。これは第1図に
示すように固体電解質によって作られたパイプ3の内部
および外部に多孔質白金層よりなる電極1および電極2
を付与し、さらにリード線4をもうけた構造である。酸
素濃度の測定には、 ZrO2パイプを被測定気体中に
置きまたパイプの内部には、酸素分圧が既知の気体例え
ば空気ないしは純酸素気体を満す。このとき電極1およ
び電極2間に発生する起電力と酸素分圧の関係は+11
式のネルンストの関係式で与えられる。
As a gas sensing element using conventional solid electrolyte materials,
Calcia (CaO) or Ittria (Y, O,
) A solid electrolyte oxygen sensor using 2 luconia (ZrO□) stabilized with etc. is well known. As shown in Fig. 1, an electrode 1 and an electrode 2 made of a porous platinum layer are placed inside and outside a pipe 3 made of a solid electrolyte.
It has a structure in which a lead wire 4 is provided. To measure the oxygen concentration, a ZrO2 pipe is placed in the gas to be measured, and the inside of the pipe is filled with a gas having a known oxygen partial pressure, such as air or pure oxygen gas. At this time, the relationship between the electromotive force generated between electrode 1 and electrode 2 and oxygen partial pressure is +11
It is given by the Nernst relation of Eq.

E=   (RT/4F)Jn(Po、/Po、、(I
I)ノ  (1)(1) ここでP O2およびPo2()はそれぞれ電極lお(
+) よび電極2が置かれた気体中の酸素分圧である。
E= (RT/4F)Jn(Po, /Po,, (I
I)ノ (1) (1) Here, P O2 and Po2 () are respectively the electrodes l and (
+) and the oxygen partial pressure in the gas in which the electrode 2 is placed.

この式に従って、固体電解質パイプの内外における酸素
分圧の差に基づ(・て発生する起電力の値から被測定気
体中の酸素濃度を求めることができる。
According to this formula, the oxygen concentration in the gas to be measured can be determined from the value of the electromotive force generated based on the difference in oxygen partial pressure inside and outside the solid electrolyte pipe.

この種の酸素濃淡電池を利用した酸素濃度計は。This type of oxygen concentration meter uses an oxygen concentration battery.

例えば自動車排気ガス中の酸素濃度測定あるいは。For example, measuring oxygen concentration in automobile exhaust gas.

溶融鋼中の溶存酸素量制御等の用途に使用されている。It is used for applications such as controlling the amount of dissolved oxygen in molten steel.

しかしながら、上述のような従来の固体電解質材料及び
これを用いたガス検知素子VCは2次の様な種々の次点
がある。
However, the above-mentioned conventional solid electrolyte materials and gas sensing elements VC using the same have various runner-up points such as second order.

即ち、カルシア (CaO)ないしはイツトリア(Y、
03)等によって、安定化されたZrO2のパイプは、
  1400℃以上の高温でなげれば緻密な磁器として
得られず製造は容易ではない。更に第1図に記した電極
1および電極2とジルフニアバイプ3との接着面は熱シ
ョックに弱く、′)ルコニアパイプそのものにもクラッ
クが発生しやす<、Qf性劣化を生じやすいという欠点
があった。
That is, calcia (CaO) or ittoria (Y,
03) etc., the ZrO2 pipe stabilized by
If it is heated to a high temperature of 1,400°C or higher, it will not be possible to obtain a dense porcelain, which is not easy to manufacture. Furthermore, the bonding surfaces between the electrodes 1 and 2 shown in FIG. 1 and the zirconia pipe 3 are susceptible to thermal shock, and the luconia pipe itself has the drawbacks of being susceptible to cracks and deterioration of Qf properties.

また酸素濃度既知の気体例えば空気あるいは。Also, use a gas with a known oxygen concentration, such as air or the like.

酸素などを基準ガスとして一方のvl、棒部分に供給す
る必要があるため形状が大きくなり小型化しにくい欠点
もあった。また被検知気体の温度が数百度稈度は必要で
あるためおのずから、その用途は限定されていた。
Since it is necessary to supply oxygen or the like as a reference gas to one of the vl and rod portions, the shape is large and there is also the drawback that it is difficult to miniaturize. Furthermore, since the temperature of the gas to be detected must be several hundred degrees, its use is naturally limited.

上述の欠点を除去するものとして、第2図に示す様な構
造の素子が提案されている。即ち、安定化ジルコニアの
円板30表裏にPtの焼付げ電極1および電極2をもう
け、更に一方の電極上に触媒層5および電極リード#i
!4をもうけたものである。確かにこの様な構造によっ
て、素子の小型化は容易になった。しかしながら、ガス
導入後出力電圧が一定値に達するまでの時間即ち応答速
度はきわめて遅く、5分以上の時間を必要とする。また
触媒層の劣化によって出力電圧が低下すると℃・5問題
もあった。
In order to eliminate the above-mentioned drawbacks, an element having a structure as shown in FIG. 2 has been proposed. That is, a Pt baked electrode 1 and an electrode 2 are provided on the front and back surfaces of a stabilized zirconia disc 30, and a catalyst layer 5 and an electrode lead #i are further provided on one electrode.
! 4. It is true that such a structure makes it easier to miniaturize the device. However, the time required for the output voltage to reach a certain value after gas introduction, that is, the response speed, is extremely slow, requiring 5 minutes or more. There was also a problem of ℃5 when the output voltage decreased due to deterioration of the catalyst layer.

本発明の目的はこれらの欠点を除き、小型で応答速度が
速く、シかも信頼性の高いガス検知素子を提供すること
を目的としている。
An object of the present invention is to eliminate these drawbacks and provide a gas detection element that is small in size, has a fast response speed, and is highly reliable.

本発明のガス検知素子は’  (Y l、 L a x
 ) 2 WOaなる化学式で表わされ、02≦X≦1
0なるXの範囲で示される磁器組成物を用い第3図に示
す様に前記組成の焼結体円板3の上下面にそれぞれ種類
の異る電極を焼付けて、電極1および電極2となし、リ
ード線4を取付け、更に多孔質保護層6で焼結体と電極
を被覆した構造を特徴としている。
The gas detection element of the present invention is '(Y l, L a x
) 2 Represented by the chemical formula WOa, 02≦X≦1
Using a ceramic composition shown in the range of 0, different types of electrodes are baked on the upper and lower surfaces of a sintered disk 3 having the above composition as shown in FIG. 3 to form electrodes 1 and 2. , a lead wire 4 is attached, and the sintered body and electrode are further covered with a porous protective layer 6.

以下実施例に基づいて詳細に述べる。The following will be described in detail based on examples.

(YX□xLaX)2WO6なる磁器組成物を作成する
ために原料として用いた酸化物は純度99.s、 1以
上の酸化イツトリウム(Y、03)、  酸化ランタン
(La20.)および酸化タングステン(WO3)を用
い(Y s −x L ax ) 2 WOsなる化学
式でX=0.6となるようにそれぞれ所定量秤量し、純
水とともにボールミルで46時間混合し、j九過乾燥し
た後1150℃で2時間仮焼を行いライカイ機で粉砕し
、はy5%のポリビニルフルコール液をバインダとして
混合し造粒粉を製造した。これを直径10wnφ長さ約
5mICプレス成形し、  1000 ℃〜1600 
℃で焼結した。さらに厚み0.5mmに切断し、第3図
に示したように片面に白金電極を焼付けた後反対側の面
に釧1M、@を焼付はリード線を接続した。更に多孔層
保護層6として、アルミナを溶射した。
The oxide used as a raw material to create the porcelain composition (YX□xLaX)2WO6 has a purity of 99. s, 1 or more of yttrium oxide (Y, 03), lanthanum oxide (La20.), and tungsten oxide (WO3), each using the chemical formula (Y s −x Lax ) 2 WOs so that X = 0.6. Weigh the specified amount, mix it with pure water in a ball mill for 46 hours, dry it for 90 minutes, calcinate it at 1150℃ for 2 hours, and crush it in a Raikai machine, then mix it with 5% polyvinyl fluorocarbon solution as a binder and granulate it. produced powder. This was formed by IC press molding with a diameter of 10wnφ and a length of about 5m, and heated to 1000℃~1600℃.
Sintered at °C. It was further cut to a thickness of 0.5 mm, a platinum electrode was baked on one side as shown in FIG. 3, and a lead wire was connected to the other side by baking 1M and @. Furthermore, alumina was sprayed as a porous protective layer 6.

測定には第4図に示すようにヒーター5を巻き付けた石
英ノ(イブ7に先の方法で作表した試料を設置し・石英
パイプ7中に濃度既知の気体を1分間約100CC流し
たとき電極間に誘起される電圧を測定した。結果を第5
図〜第7図に示す。
For the measurement, as shown in Fig. 4, the sample tabulated in the above method was placed in a quartz pipe (eve 7) wrapped around a heater 5, and a gas of known concentration was flowed through the quartz pipe 7 at a rate of about 100 cc for one minute. The voltage induced between the electrodes was measured.The results are shown in the fifth section.
It is shown in FIGS.

第5図は一酸化炭素(Co )を3000ppm含む空
気を、試料湯度が400 ’Cになるよう妊ヒーターで
加熱した石英パイプ中に流した時の起電力の時間変化で
ある。起電力はは父5秒以内に定常値の80%に達し、
十分早い応答速度を示した。被検気体を空気のみに切換
えた後の復帰性も良好で約1分以内に定常値に復帰し、
実用上十分な性能であることがわかった。
FIG. 5 shows the change in electromotive force over time when air containing 3000 ppm of carbon monoxide (Co 2 ) was flowed into a quartz pipe heated with a heating heater so that the sample temperature reached 400'C. The electromotive force reaches 80% of its steady value within 5 seconds,
It showed a sufficiently fast response speed. The recovery performance is also good after switching the test gas to air only, returning to the steady value within about 1 minute.
It was found that the performance was sufficient for practical use.

第6図はI(2(直線1)とインブタン(直線2)の空
気に対する混合比率を変えたときの測定値である。起電
力の値は、ガス濃度が上昇すると、はぼ直線的に増加し
た。またガスの種類によってもその値に差が生じガスに
対する選択性が得られる事を示している。
Figure 6 shows the measured values when the mixing ratio of I(2 (line 1) and inbutane (line 2) to air was changed.The value of electromotive force increases almost linearly as the gas concentration increases. The value also differs depending on the type of gas, indicating that selectivity to the gas can be obtained.

通常可燃性ガスの検知に要求される濃度は、爆発下限の
1/4〜17100以下とされている。イソブタンの場
合にこの値はおよそ1100ppから5000ppmで
ありこの程度のイソブタン濃度に対し本発明になる素子
は約50mV程度以上の出力電圧があり、十分な有効性
があることが結論できる。
Normally, the concentration required for detection of flammable gas is 1/4 to 17,100 or less of the lower explosive limit. In the case of isobutane, this value is about 1,100 ppm to 5,000 ppm, and it can be concluded that the device of the present invention has an output voltage of about 50 mV or more for this level of isobutane concentration, and is sufficiently effective.

また第3図に示した電極lおよび電極2として同一電極
材料を用いた場合には、誘起電圧は10mV以下となり
、ガス検知素子として有効な特性を示さない。また一方
の電極を鋼とし、他方の電極をパラジウムとした場合で
も白金の場合と同様に良好な特性を示した。
Further, when the same electrode material is used for electrode 1 and electrode 2 shown in FIG. 3, the induced voltage is 10 mV or less, and the device does not exhibit effective characteristics as a gas sensing element. Furthermore, even when one electrode was made of steel and the other electrode was made of palladium, good characteristics were shown as in the case of platinum.

第7図は1本発明のガス検知素子において、その焼結体
組成の酸化イツトリウムと酸化ランタンの配合比率を変
えたときの一酸化炭素(co)濃度3000ppmの空
気中でのガス検知素子の起電力を示して(・る。
Figure 7 shows the behavior of the gas sensing element of the present invention in air with a carbon monoxide (co) concentration of 3000 ppm when the mixing ratio of yttrium oxide and lanthanum oxide in the sintered body composition was changed. Indicates the power (・ru.

実用上10mV以下の起電力の検出法は回路構成上困難
が増加する。従ってできるだけ大きい起電力であること
が望ましく、50mV以上は必要である。本発明になる
( Y +−xL aρ2WO6で示される磁器組成物
において酸化イツトリウム(Y2O2)と酸化ランタン
(I、+203)の配合比の範囲は02≦X≦1.0で
あることが望ましいと℃゛える。
In practice, a method for detecting an electromotive force of 10 mV or less is more difficult due to the circuit configuration. Therefore, it is desirable that the electromotive force be as large as possible, and 50 mV or more is required. According to the present invention, it is desirable that in the ceramic composition represented by Y I can do it.

以下に示す第1表は1本発明のガス検知素子を室温から
500℃に保持した電気炉中に5分間保持後、再び室温
に取り出し20分間放置するという温度サイクル試験を
500回繰返した後の出力電圧の変化率を示す。
Table 1 below shows the results after 500 repetitions of a temperature cycle test in which the gas sensing element of the present invention was held in an electric furnace kept at room temperature to 500°C for 5 minutes, then taken out to room temperature and left for 20 minutes. Indicates the rate of change in output voltage.

第1表中の従来素子としては第2図に示した構造でカル
シア(CaO)で安定化したジルコニア(ZrO2)を
用いて作製した。
The conventional elements in Table 1 had the structure shown in FIG. 2 and were manufactured using zirconia (ZrO2) stabilized with calcia (CaO).

第1表 試験の結果、従来素子は固体電解質と電極あるいは電極
と触媒層間が温度サイクルにより・・り離したりまたク
ラックが発生したりして、出力電圧が大きく低下するこ
とが判明している0、−力木発明になる素子は出力電圧
の減少は小さく安定な特性を示している。また多孔質保
護層は起電力の経時変化を小さくシ、素子の安定化に効
果があることも判明した。
As a result of the tests in Table 1, it has been found that in conventional devices, the solid electrolyte and the electrode or the electrode and the catalyst layer separate due to temperature cycling, or cracks occur, resulting in a significant drop in output voltage. , - The device invented by Rikiki exhibits stable characteristics with a small decrease in output voltage. It has also been found that the porous protective layer reduces the change in electromotive force over time and is effective in stabilizing the device.

以上述べた様に本発明のガス検知素子は小型で焼結が容
易で温度サイクルにも強く十分な安定度を持ち応答速度
が速く、出力電圧が犬き℃・等実用上有益な性能を示す
ことが明らかである。
As described above, the gas sensing element of the present invention is small and easy to sinter, is resistant to temperature cycles, has sufficient stability, has a fast response speed, and exhibits useful performance in practice, such as an output voltage of 30°F. That is clear.

また本実施例では、N極材料として、@と白金及び銀と
パラジウムの組合せを示したカー、他の組合わせ例えば
ニッケルと酸化ニッケルσ)混合体を一方の電極とし、
他方を釧あるいは白金としても同様の特性が得られる。
In addition, in this example, as the N electrode material, a combination of @ and platinum and silver and palladium is used as one electrode, and other combinations such as a mixture of nickel and nickel oxide σ) are used as one electrode,
Similar characteristics can be obtained by using chime or platinum as the other material.

また実施例では多孔質保護層をアルミナ溶射により形成
したが、異なる方法、利料によって形成しても本発明の
特長は失なわれない。
Further, in the examples, the porous protective layer was formed by alumina spraying, but the features of the present invention will not be lost even if the porous protective layer is formed by a different method or method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来のガス検知素子の構造図。 第3図は1本発明のガス検知素子の構造図。第4図は本
発明のガス検知素子の実験装置図。第5図。 第6図は本発明のガス検知素子の特性図。第7図は本発
明のガス検知素子に用いる焼結体の組成比と起電力との
関係を示す図。 第1図において、1,2は白金X極、3は固体電解のパ
イプ、4(土す−ド紳である。第2図において1,2は
白金電極、3は固体電解質の焼結体、4はリード線、5
は触媒層である。第3図、第4図におし・て1.2は電
極、3は固体電解質の焼結体。 4.4′はリード線、5はヒルター、6は多孔質保護層
、7は石英バイブである。 オ  1 圓 オ  2 図 t 3 口 f 〃 霞 /  、、−y
FIGS. 1 and 2 are structural diagrams of conventional gas detection elements. FIG. 3 is a structural diagram of a gas sensing element according to the present invention. FIG. 4 is a diagram of an experimental apparatus for the gas detection element of the present invention. Figure 5. FIG. 6 is a characteristic diagram of the gas detection element of the present invention. FIG. 7 is a diagram showing the relationship between the composition ratio of the sintered body used in the gas sensing element of the present invention and the electromotive force. In Figure 1, 1 and 2 are platinum X electrodes, 3 is a solid electrolyte pipe, and 4 is a soil electrode. In Figure 2, 1 and 2 are platinum electrodes, 3 is a sintered body of solid electrolyte, 4 is the lead wire, 5
is the catalyst layer. In Figures 3 and 4, 1.2 is an electrode, and 3 is a sintered solid electrolyte. 4.4' is a lead wire, 5 is a Hilter, 6 is a porous protective layer, and 7 is a quartz vibrator. O 1 En O 2 Figure t 3 Mouth f 〃 Kasumi/ ,, -y

Claims (1)

【特許請求の範囲】 酸素イオン伝導性を有する焼結体の両面に電極を付与し
、さらに該電極にリード線を取り付けてなるガス検知素
子において、焼結体として(Y、。 L ax ) 2wo 6(0,2≦X≦1.0)なる
化学式で示される酸素イオン伝導体を用い、さらに焼結
体両面にそれぞれ異なる種類の電極材料を付与し、該焼
結体及び電極を多孔質保護層で被覆したことを特徴とす
るガス検知素子。
[Claims] A gas sensing element comprising electrodes provided on both sides of a sintered body having oxygen ion conductivity and lead wires attached to the electrodes, wherein (Y,.L ax ) 2wo is used as the sintered body. Using an oxygen ion conductor represented by the chemical formula 6 (0,2≦X≦1.0), different types of electrode materials are applied to both sides of the sintered body, and the sintered body and electrodes are protected by porous A gas detection element characterized by being coated with a layer.
JP57229030A 1982-12-28 1982-12-28 Gas sensitive element Pending JPS59120951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57229030A JPS59120951A (en) 1982-12-28 1982-12-28 Gas sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57229030A JPS59120951A (en) 1982-12-28 1982-12-28 Gas sensitive element

Publications (1)

Publication Number Publication Date
JPS59120951A true JPS59120951A (en) 1984-07-12

Family

ID=16885641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57229030A Pending JPS59120951A (en) 1982-12-28 1982-12-28 Gas sensitive element

Country Status (1)

Country Link
JP (1) JPS59120951A (en)

Similar Documents

Publication Publication Date Title
JPH05119015A (en) Carbon dioxide gas detection element
US4792752A (en) Sensor for measuring partial pressures of gases
JPS6138413B2 (en)
JPS59120951A (en) Gas sensitive element
JPS58201057A (en) Sensing element of gas
JPS59220641A (en) Gas detecting element
JPH0115016B2 (en)
JP3770456B2 (en) Measuring method of gas concentration
JPH022534B2 (en)
JPS58123446A (en) Gas detecting element
JPH0114534B2 (en)
JP3845490B2 (en) Carbon dioxide sensor
US4602955A (en) Composite material that can be used to make oxygen sensors
JPS59168359A (en) Gas-detecting element
JPS58123448A (en) Gas detecting element
JPH0436340B2 (en)
JP2911292B2 (en) Humidity sensor
JPH03120456A (en) Oxygen sensor
JPS59168360A (en) Gas-detecting element
JP3669807B2 (en) Carbon monoxide detection sensor
JPH06186193A (en) Carbon dioxide gas sensor element and method for measuring carbon dioxide gas concentration
JPH01176937A (en) Solid electrolyte enzyme sensor
KR0158561B1 (en) Method of manufacturing thick-film for one-fired inflammability gas sensor
JPH07209249A (en) Nitrogen oxide sensor
JPS58123447A (en) Gas detecting element