JPS59218735A - Manufacture of insulating film and interface between insulating film and semiconductor - Google Patents

Manufacture of insulating film and interface between insulating film and semiconductor

Info

Publication number
JPS59218735A
JPS59218735A JP58163048A JP16304883A JPS59218735A JP S59218735 A JPS59218735 A JP S59218735A JP 58163048 A JP58163048 A JP 58163048A JP 16304883 A JP16304883 A JP 16304883A JP S59218735 A JPS59218735 A JP S59218735A
Authority
JP
Japan
Prior art keywords
gas
insulating film
cf2cl2
case
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58163048A
Other languages
Japanese (ja)
Other versions
JPS6361771B2 (en
Inventor
Yutaka Hayashi
小林清彦
Iwao Hamaguchi
浜口巌
Kiyohiko Kobayashi
林豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58163048A priority Critical patent/JPS59218735A/en
Publication of JPS59218735A publication Critical patent/JPS59218735A/en
Publication of JPS6361771B2 publication Critical patent/JPS6361771B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Abstract

PURPOSE:To enable to easily perform the introduction of fluorine into an SiO2 system-insulating film and to confine the DELTANFB value of an Si (111) plane- MOS to 10<10>cm<-2> or less by a method wherein carbon fluoride system-gas is specified. CONSTITUTION:A silicon, a silicon compound or a silicon oxide film is heated in gas of an atmosphere wherein CHXFYClZ (X+Y+Z=4, X=0-2, Y, Z=1-3) gas has been included oxidizing gas. Examplified as carbon fluoride system-gas are CHF2Cl, CF2Cl2, CF3Cl gasses, etc. Used as oxidizing gas are O2, CO2, NOX gasses, etc. For example, in case CF2Cl2 gas is included, the DELTANFB value in case the CF2Cl2 gas was included up to 5% to oxidizing gas is smaller than that in case the CF2Cl2 was not included and, in case the conclusion is up to 0.1%- 3%, the decrease of nearly one digit is observed.

Description

【発明の詳細な説明】 本発明は良質1よ酸化シリコン系の絶縁膜および絶縁膜
−半導体界面の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-quality silicon oxide-based insulating film and an insulating film-semiconductor interface.

従来、5i02中の可動イオンの固定化を行い電気特性
を安定化するのには、酸化燐を含む高温雰囲気中でS 
z O2を熱処理して表面にリンガラス層を形成し、可
動イオンをゲッタリングするか、塩素又は塩化水素を含
む雰囲気中で5cot  Z熱酸化して形成することに
より、塩素原子を可動イオンに対するバリアとしてS 
* 02中に取り込んでいた。この塩素酸化は更に5c
o2 Si界面の界面準位の減少、5LOz膜の絶縁耐
圧のバラツキの減少(但し、必ずしも絶縁耐圧の値の増
大は期待できない)、 Si表面の結晶欠陥の減少に有
効であることが知られている。しかし、塩素原子の原子
半径はSiのそれに較べて大きいので、SiO□中の欠
陥やSL衣表面欠陥を完全に埋めることは離しい。一方
、水素は欠陥を埋めるには原子半径か小さく好都合で、
その効果はあるが、300〜400°Cの熱処理で解離
してしまうこと、S L 02および5i02−8i 
界面に輸送された高エネルギーキャリア又は電子線、又
は紫外線で容易に解離してしまう等の難点がある。本発
明者らは弗素原子はSiより小さい一価の原子でS L
 02及びS to 2−半導体の界面の安定、高品質
化に有効であることに着目したが、一般に弗素イオンは
SiO□火溶解し、しかも熱酸化等に用いられる石英反
応管をおかすことが知られている。
Conventionally, to immobilize mobile ions in 5i02 and stabilize its electrical properties, S was used in a high-temperature atmosphere containing phosphorus oxide.
By heat treating Z O2 to form a phosphorus glass layer on the surface to getter the mobile ions, or by thermally oxidizing 5cot Z in an atmosphere containing chlorine or hydrogen chloride, the chlorine atoms become a barrier to mobile ions. as S
*It was taken in during 2002. This chlorine oxidation is further 5c
o2 It is known that it is effective in reducing the interface states at the Si interface, reducing the variation in the dielectric strength voltage of the 5LOz film (however, an increase in the dielectric strength value cannot necessarily be expected), and reducing crystal defects on the Si surface. There is. However, since the atomic radius of the chlorine atom is larger than that of Si, it is difficult to completely fill the defects in SiO□ and the defects on the surface of the SL coat. On the other hand, hydrogen has a small atomic radius, which is convenient for filling defects.
Although this effect exists, it dissociates after heat treatment at 300 to 400°C, and SL 02 and 5i02-8i
It has drawbacks such as being easily dissociated by high-energy carriers or electron beams transported to the interface, or by ultraviolet rays. The present inventors found that fluorine atom is a monovalent atom smaller than Si and S L
02 and S to 2 - We focused on the fact that it is effective in stabilizing the interface of semiconductors and improving quality, but it is known that fluorine ions are generally dissolved by fire in SiO□, and that they can be used in quartz reaction tubes used for thermal oxidation. It is being

品質化およびS * 0 @系−半導体界面の特性を改
、善することを主目的とし、この課題の解決のために、
弗化炭素系のガス’k 02 、C02、NOx等の酸
化性ガス雰囲気中に混入して、Si化合物、5ilk加
熱するか、S i O2膜を上記雰囲気中で加熱する方
法を先に提案した。この場合、キャリアガスとしてはN
! + Ar 、Ha等の不活性ガスを用いることがで
きる。実験によれば上記の弗化炭素系のガスを酸化性ガ
ス雰囲気中に混入した場合は石英反応管もS * 02
膜もおかされることなく高品質の酸化シリコン系膜を得
ることができた。尚、上記で酸化シリコン系とは、酸化
シリコン及び酸化シリコン中に窒素、塩素、リン等の他
の元素を含んでいるものの総称である。以下、前記先に
提案した発明に就き記述する。
The main purpose is to improve the quality and properties of the S*0@ system-semiconductor interface, and to solve this problem,
Previously, we proposed a method in which a Si compound is mixed into an oxidizing gas atmosphere such as carbon fluoride gas, CO2, NOx, etc., or a SiO2 film is heated in the above atmosphere. . In this case, the carrier gas is N
! + An inert gas such as Ar or Ha can be used. According to experiments, when the above-mentioned carbon fluoride gas is mixed into an oxidizing gas atmosphere, the quartz reaction tube also becomes S*02.
A high quality silicon oxide film could be obtained without any damage to the film. Note that the silicon oxide type mentioned above is a general term for silicon oxide and silicon oxide containing other elements such as nitrogen, chlorine, and phosphorus. The invention proposed above will be described below.

弗化炭素系のガスとしてCF、’&用い、酸化性の雰囲
気中で800℃〜1200℃の温度でシリコン基板を熱
酸化した場合はSin、−Si界面の界面準位密度の減
少が観測された。第1図はその1例で、横軸は酸化性ガ
スに対するCF、の体積襲を示す。この例では界面準位
感度は1/4に減少している。同様な条件で成長させた
S t 02膜の絶縁耐圧はCF、を混入しないで製造
したものよりも改善された。第2図はこの一例な示し、
面j圧の低い絶縁膜製造技術でも、CF4 i混入する
ことによって平均耐圧の値が4vからIOVまで改善さ
れている。ここで絶縁耐圧は絶縁膜に10−10−l5
A”オーダーの電流か流れる電圧として便宜的に測定さ
れた。CF、の酸化性ガスに対する体)tjt %が6
%を越すと耐圧改善効果は少なく ブxつている。
When a silicon substrate was thermally oxidized at a temperature of 800°C to 1200°C in an oxidizing atmosphere using CF, '& as a carbon fluoride gas, a decrease in the interface state density at the Sin, -Si interface was observed. Ta. FIG. 1 is an example of this, and the horizontal axis shows the volume attack of CF against oxidizing gas. In this example, the interface state sensitivity is reduced to 1/4. The dielectric strength of the S t 02 film grown under similar conditions was improved over that produced without the addition of CF. Figure 2 shows an example of this.
Even in the insulating film manufacturing technology with low plane j pressure, the average breakdown voltage value is improved from 4V to IOV by mixing CF4i. Here, the dielectric strength voltage is 10-10-15 for the insulating film.
Conveniently measured as a current of the order of A" or a flowing voltage.
%, the effect of improving withstand voltage is small.

S t O!系の絶縁膜は室温でその中に正電荷が捕獲
された状態で得られる場合が多く、そのために導電性電
極−8i0.系絶縁膜−半導体(COS)構造の半導体
表面には熱平衡状態より過剰な電子が誘起されている場
合が多い。この過剰電子の表面密度NFBは絶縁膜の中
の半導体表面側にある正電荷の大小に比例し、小さい方
が望ましいし、CO8構造に加える電圧温度ストンスに
対する変動が小さいことも重要である。弗化炭素系のガ
ス混入により、このNFBの値も小さく、NFBのバイ
アス・温度ストンスに対する変動も小さくなることかた
しかめられた。第3図は(100) 面Si上にS i
 O2’?: CF4  混入酸化雰囲気中で成長させ
た場合の測定値で、NFBの値は零から負の値をとるよ
うになり、従来のS * 02膜の場合と逆の符号とな
る。これはnチャネルMO8)ランジスタのゲート閾値
電圧の設泪に有用な性質である。又CF。
S t O! System insulating films are often obtained with positive charges trapped in them at room temperature, and therefore conductive electrodes -8i0. In many cases, more electrons than in a thermal equilibrium state are induced on the semiconductor surface of a system insulating film-semiconductor (COS) structure. The surface density NFB of the excess electrons is proportional to the magnitude of the positive charge on the semiconductor surface side in the insulating film, and is preferably smaller, and it is also important that the variation with respect to the voltage, temperature, and tone applied to the CO8 structure is small. It was confirmed that by mixing fluorocarbon gas, the value of NFB becomes small, and the fluctuation of NFB with respect to bias and temperature is also small. Figure 3 shows Si on the (100) plane Si.
O2'? : CF4 In the measured values when grown in an oxidizing atmosphere, the NFB value changes from zero to a negative value, with the opposite sign from that of the conventional S*02 film. This property is useful for setting the gate threshold voltage of an n-channel MO transistor. Also CF.

の混入チが1%前後となるとバイアス・温度ストンスに
対するNFB変動(ΔNyn)も小さくなっていること
がわかる。
It can be seen that when the amount of mixed chi is around 1%, the NFB fluctuation (ΔNyn) with respect to bias and temperature is also reduced.

ところで、(111)面Si上K S t Otを成長
させた場合は塩素を混入してもこのΔNrBは1011
cm−20オーダ以下にできないとされている。
By the way, when K S t Ot is grown on (111) plane Si, this ΔNrB is 1011 even if chlorine is mixed.
It is said that it cannot be reduced to less than cm-20 order.

本発明は上記の点にかんがみなされたもので、弗化炭素
系のガスを特定することによってΔNFBを101O1
01O以下とすることができたものである。
The present invention has been made in view of the above points, and by specifying a fluorocarbon gas, ΔNFB can be reduced to 101O1.
01O or less.

以下、本発明について説明する。The present invention will be explained below.

本発明は、弗化炭素系のガスとしてCHF、ClCF2
Cl、 、 CF、C1等のCHxFy Cl z (
X+Y+Z=4、X=0〜2、y、Z=1〜a)iスy
t用いてΔNFB Y 1010cn+−2以下とする
ものである。
The present invention uses CHF, ClCF2 as carbon fluoride gas.
CHxFy Cl z (
X+Y+Z=4, X=0~2, y, Z=1~a) isu y
t to make ΔNFB Y 1010cn+-2 or less.

第4図はCF、C1,−を混入した場合のΔNFBの値
で酸化性ガスに対して5%まで混入した場合は混入しな
い場合よりも小さく、0.1%〜3%まではほぼ1桁の
減少が見られている。これはガス(素と弗素の相乗作用
のためと思われ、従来MO8−ICはNFBの小さい値
を実現し、しかも安定性火確保するために(100)面
で主として作られていたが本発明の技術を用いれば(I
ll)面MO3−ICも安定なものを得ることができる
。この塩素を含んだ弗化炭素系のガスの混入によっても
 界面準位密度は(111)面においても減少すること
か観測された。更に、本発明の方法によrノ、S*02
中のトラップの濃度の減少を示唆するVII’l〒性を
示ずS * Otも得られ、また、5in2膜を生成し
た後に弗化炭素系ガスを酸化性ガスに混入(7た写出(
気で熱処理した場合も界面準位、トラップ減少+ NF
B *ΔNFIIの減少効果が見られた。
Figure 4 shows the value of ΔNFB when CF, C1, - is mixed, and when it is mixed up to 5% of the oxidizing gas, it is smaller than when it is not mixed, and from 0.1% to 3% it is almost a single digit. A decrease has been observed. This is thought to be due to the synergistic effect of gas (elementary) and fluorine. Conventionally, MO8-IC was mainly made of (100) planes in order to achieve a small value of NFB and ensure fire stability, but the present invention If we use the technique of (I
ll) A stable MO3-IC can also be obtained. It was observed that the interfacial state density also decreased on the (111) plane due to the mixing of this fluorocarbon gas containing chlorine. Furthermore, by the method of the present invention, rノ, S*02
S*Ot was also obtained without exhibiting VII'l properties, which suggests a decrease in the concentration of traps in the oxidizing gas.
Even when heat treated with air, interface states and traps decrease + NF
B *A reduction effect in ΔNFII was observed.

また、SiH,,5iC14等のシリコン化合物を同様
な雰囲気中において加熱基板上に供給し、S t Oz
系の膜を形成しても同様な効果が得られた。
In addition, a silicon compound such as SiH, 5iC14 is supplied onto the heated substrate in a similar atmosphere, and S t Oz
A similar effect was obtained by forming a film of this type.

以上、述べたように、本発明は、弗化炭素系ガスとして
CHXFyClzカスヶ用いたので従来困シ・kであっ
た5402系絶縁膜中への弗素の渚入を按易とし、しか
も塩素との相乗作用によりs ;、 (] 1 ] )
面のMOSのΔNyBをl Q l O(M−2以下と
することができ、半導体電子工業界に寄与すること大で
ある。
As described above, the present invention uses CHXFyClz scum as a fluorocarbon-based gas, making it easier to introduce fluorine into the 5402-based insulating film, which was difficult to do in the past, and moreover, it can be easily mixed with chlorine. Due to synergy, s;, (] 1 ])
The ΔNyB of the surface MOS can be made less than lQlO(M-2), which will greatly contribute to the semiconductor electronics industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は先に提案した発明によるCF、ガス混入による
界面準位密層減少効果を示す一例の測定図、第2図は同
じ(OF、ガス混入による絶縁耐圧向上効果を示す一例
の測定図、第3図は同じ(CF。 ガス混入によるNFB減少、ΔNrnの減少(安定化)
効果を示す一例の測定図、第4図はこの発明の一実施例
である塩素を含んだ弗化炭素混入によるΔ第1図 CF4(’/、) 第2図 CF4(’10) 第3図 第4図 CF2 C12(’10)
Figure 1 is a measurement diagram of an example showing the effect of reducing the interface state density layer due to the mixing of CF and gas according to the previously proposed invention, and Figure 2 is the same (measured diagram of an example showing the effect of improving dielectric strength due to the mixing of OF and gas) , Figure 3 is the same (CF. Decrease in NFB due to gas mixture, decrease in ΔNrn (stabilization)
Figure 4 is an example of measurement diagrams showing the effect. Figure 4 is an example of the present invention, where fluorocarbon containing chlorine is mixed in. Figure 4 CF2 C12 ('10)

Claims (1)

【特許請求の範囲】[Claims] CHx  Fy Clz (X 十Y十Z=4 、 x
=o〜2゜Y、Z=1〜3)ガスを酸化性ガスに混入し
た雰囲気ガス中において、シリコン、シリコン化合物又
は酸化シリコン膜を加熱することな特徴とする絶縁膜お
よび絶縁膜−半導体界面の製造方法。
CHx Fy Clz (X 10 Y 10 Z=4, x
=o~2°Y, Z=1~3) An insulating film and an insulating film-semiconductor interface characterized by heating silicon, a silicon compound, or a silicon oxide film in an atmospheric gas in which a gas is mixed with an oxidizing gas. manufacturing method.
JP58163048A 1983-09-05 1983-09-05 Manufacture of insulating film and interface between insulating film and semiconductor Granted JPS59218735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163048A JPS59218735A (en) 1983-09-05 1983-09-05 Manufacture of insulating film and interface between insulating film and semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163048A JPS59218735A (en) 1983-09-05 1983-09-05 Manufacture of insulating film and interface between insulating film and semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13892379A Division JPS5662328A (en) 1979-10-26 1979-10-26 Manufacturing of insulation membrane and insulation membrane-semiconductor interface

Publications (2)

Publication Number Publication Date
JPS59218735A true JPS59218735A (en) 1984-12-10
JPS6361771B2 JPS6361771B2 (en) 1988-11-30

Family

ID=15766184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163048A Granted JPS59218735A (en) 1983-09-05 1983-09-05 Manufacture of insulating film and interface between insulating film and semiconductor

Country Status (1)

Country Link
JP (1) JPS59218735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091577A (en) * 1998-08-26 2000-03-31 Texas Instr Inc <Ti> Method of forming game oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091577A (en) * 1998-08-26 2000-03-31 Texas Instr Inc <Ti> Method of forming game oxide film

Also Published As

Publication number Publication date
JPS6361771B2 (en) 1988-11-30

Similar Documents

Publication Publication Date Title
JP5105627B2 (en) Formation of silicon oxynitride gate dielectric using multiple annealing steps
USRE28385E (en) Method of treating semiconductor devices
US20080128709A1 (en) Inclusion of nitrogen at the silicon dioxide-silicon carbide interface for passivation of interface defects
JPS638611B2 (en)
JPH08116059A (en) Formation of dielectric with improved performance
US3556879A (en) Method of treating semiconductor devices
US4246296A (en) Controlling the properties of native films using selective growth chemistry
JPS59207632A (en) Method of producing metal silicide or silicide polysilicon double layer structure
JPS59218735A (en) Manufacture of insulating film and interface between insulating film and semiconductor
JP2008078253A (en) Manufacturing method of semiconductor device
JP2004015049A (en) Method of oxidizing silicon wafer at low temperature and apparatus thereof
JP3247242B2 (en) Method for manufacturing semiconductor device
JP3221602B2 (en) Method for forming nitrided oxide film
KR101986097B1 (en) Film forming method and manufacturing method of thin film transistor
KR100274351B1 (en) Method of gate oxide film in a semiconductor device
JP3665766B2 (en) Semiconductor device and manufacturing method thereof
JPH0823095A (en) Semiconductor device and production process thereof
JP2019050294A (en) Silicon carbide semiconductor device
JP3399148B2 (en) Method of forming silicon oxide film
JP3243915B2 (en) Method for interfacial oxidation of CVD oxide film
KR100236081B1 (en) A method for manufacturing oxide film of semiconductor device
Ting et al. Fluorinated thin SiO2 grown by rapid thermal processing
KR960008903B1 (en) Forming method of insulating film on the semiconductor substrate
JPS61271844A (en) Method for making the surface of compound semiconductor inactive
McCluskey et al. Effect of NF 3 on the direct thermal nitridation of silicon