KR960008903B1 - Forming method of insulating film on the semiconductor substrate - Google Patents

Forming method of insulating film on the semiconductor substrate Download PDF

Info

Publication number
KR960008903B1
KR960008903B1 KR1019920025009A KR920025009A KR960008903B1 KR 960008903 B1 KR960008903 B1 KR 960008903B1 KR 1019920025009 A KR1019920025009 A KR 1019920025009A KR 920025009 A KR920025009 A KR 920025009A KR 960008903 B1 KR960008903 B1 KR 960008903B1
Authority
KR
South Korea
Prior art keywords
dielectric film
gas
film
forming
semiconductor substrate
Prior art date
Application number
KR1019920025009A
Other languages
Korean (ko)
Other versions
KR940016581A (en
Inventor
유병곤
유종선
노태문
남기수
Original Assignee
조백제
한국전기통신공사
양승택
재단법인한국전자통신연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조백제, 한국전기통신공사, 양승택, 재단법인한국전자통신연구소 filed Critical 조백제
Priority to KR1019920025009A priority Critical patent/KR960008903B1/en
Publication of KR940016581A publication Critical patent/KR940016581A/en
Application granted granted Critical
Publication of KR960008903B1 publication Critical patent/KR960008903B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The method for forming dielectric film comprises; (a) forming dielectric film(2) of 10mm thickness on silicon substrate(1) at 900 deg.C by introducing O2 or O3 gas; (b) introducing gas containing fluorine for last 3-5min. during the growing process for oxide film : (c) thermal annealing it at 900 deg.C for 10 min in order to accumulate fluorine atoms between dielectric film(2) and silicon substrate(1).

Description

반도체 기판상의 유전체막 형성방법Method of forming dielectric film on semiconductor substrate

제1도는 종래의 유전체막의 제조방법을 예시하는 단면도.1 is a cross-sectional view illustrating a conventional method for producing a dielectric film.

제2a~b도는 본 발명의 일 실시예에 따른 유전체막의 제조공정을 보인 단면도.2A to 2B are cross-sectional views illustrating a process of manufacturing a dielectric film according to an embodiment of the present invention.

제3a~c도는 본 발명의 다른 실시예에 따른 유전체막의 제조공정을 보인 단면도.3A to 3C are cross-sectional views illustrating a process of manufacturing a dielectric film according to another embodiment of the present invention.

본 발명은 반도체 기판상에 유전체막을 형성하는 방법에 관한 것으로서, 특히 기판과 유전체막 사이의 계면 불소가 주입되게 하는 유전체막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a dielectric film on a semiconductor substrate, and more particularly to a method of forming a dielectric film in which interfacial fluorine is injected between a substrate and a dielectric film.

종래의 유전체막 형성기술은 O2가스막으로 도입하여 실리콘을 산화시키는 건식산화법과, 게더링 효과(gettering effect)를 위하여 산화막(SiO2막)을 형성할 때 계속하여 HCl 가스 등을 사용하는 방법이 이용되고 있다.Conventional dielectric film formation techniques include a dry oxidation method for introducing silicon into an O 2 gas film and oxidizing silicon, and a method of continuously using HCl gas or the like when forming an oxide film (SiO 2 film) for a gettering effect. It is used.

그런데 이 방법으로서는 유전체막중에 염소(Cl)원자가 과다하게 함유되어 박막의 질을 떨어뜨리는 문제점이 있다. 종래의 유전체막 형성기술을 반도체 소자의 제조에 사용하면 유전체막에 핀홀(pin-hole)등의 결함이 발생하기도 하고, 또한 알카리 이온의 충분히 제거되지도 않을 뿐만 아니라 계면준위 밀도도 충분히 작게 억제되지 않는 등의 문제점이 발생한다.However, this method has a problem in that the chlorine (Cl) atoms are excessively contained in the dielectric film, thereby degrading the quality of the thin film. When the conventional dielectric film forming technique is used in the manufacture of semiconductor devices, defects such as pin-holes may occur in the dielectric film, and not only the alkali ions may be sufficiently removed but also the interfacial level density is not sufficiently suppressed. Problems occur.

제1도는 상기의 방법으로 기판(1) 상에 SiO2막(2)과 다결정 실리콘층(3)을 차례로 형성한 상태의 단면도이다.1 is a cross-sectional view of a state in which a SiO 2 film 2 and a polycrystalline silicon layer 3 are sequentially formed on a substrate 1 by the above method.

본 발명은 이러한 제반 문제점들을 해소하는 유전체막의 형성방법을 제공하는데 그 목적이 있다.It is an object of the present invention to provide a method for forming a dielectric film that solves these problems.

이하, 첨부도면에 의거하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은, 제2a도에 나타낸 바와 같이, 실리콘 웨이퍼(Si wafer)(1)를 석영관로에 넣어 산화 온도 900℃에서 O2가스를 도입하여 10nm정도의 두께의 산화막(2)을 형성할때, 산화과정의 마지막 3~5분간에만 제2b도와 같이 F2가스를 석영관 내에 도입하면 SiO2/Si의 계면에 블소가 도입되기 때문에 실리콘웨이퍼(1) 표면에 Na등의 알카리 금속의 혼입과 핀홀 등이 없고, 또한 계면준위 밀도가 충분히 작아지는 유전체막(2)이 생성될 수 있다.As shown in FIG. 2A, when the silicon wafer 1 is placed in a quartz tube, O 2 gas is introduced at an oxidation temperature of 900 ° C. to form an oxide film 2 having a thickness of about 10 nm. When the F 2 gas is introduced into the quartz tube only in the last 3 ~ 5 minutes of the oxidation process, the bloso is introduced at the interface of SiO 2 / Si, so that alkali metal such as Na is mixed on the surface of the silicon wafer (1). The dielectric film 2 can be formed without pinholes or the like and with sufficiently low interface density.

이렇게 생성된 유전체막(2)과 Si기판(1) 계면에는 1012개/cm2정도의 불소원자가 축적(pile-up)되어 계면준위 밀도가 1010개/cm2·eV이하로 감소된다.At the interface between the dielectric film 2 and the Si substrate 1 thus produced, fluorine atoms of about 10 12 atoms / cm 2 are piled up to reduce the interface density to 10 10 atoms / cm 2 or less.

또한, F2가스대신에 HF 가스를 사용하여도 같은 효과가 나타나며 O2가스 대신에 O3가스를 사용해도 바람직한 효과를 기대할 수 있다.In addition, the same effect is obtained when HF gas is used instead of F 2 gas, and a desirable effect can be expected even when O 3 gas is used instead of O 2 gas.

유전체막중 Si3N4막을 생성할 경우에는 F2가스, ,혹은 HF 가스와 NH3가스와의 혼합 가스를 흘리면 핀홀이 없고 계면준위 밀도가 충분히 작은 유전체막을 형성할 수 있다. 또한 NH3가스 대신에 NO2가스를 사용해도 좋은 효과가 있다.When the Si 3 N 4 film is formed in the dielectric film, a dielectric film having no pinhole and sufficiently low interfacial density can be formed by flowing F 2 gas, or a mixed gas of HF gas and NH 3 gas. In addition, it is also possible to use the NO 2 gas in place of the NH 3 gas.

또 SiO2막에 10keV로부터 25keV정도의 낮은 가속 에너지로 불소 이온을 1014~1015/cm2정도의 도즈(dose)량으로 주입시켜서 전술한 것과 동일하게 SiO2/Si 계면에 불소원자를 도입시킬 수 있다.In addition, fluorine atoms are introduced into the SiO 2 / Si interface at a dose of about 10 14 to 10 15 / cm 2 at a low acceleration energy of 10 keV to 25 keV in the SiO 2 film. You can.

불소이온 주입 후 900℃, 10분 정도로 열처리(thermal annealing)함으로써 불소원자가 SiO2/Si 계면에 축적되어 계면준위 밀도를 감소시키는 효과가 있다.By thermal annealing at 900 ° C. for 10 minutes after fluorine ion injection, fluorine atoms accumulate at the SiO 2 / Si interface, thereby reducing the interface density.

불소원자 주입 후 열처리 방법은 SiO2막이 아닌 Si3N4막 등의 유전체막에도 적용시킬 수 있고 유전체막의 두께가 30nm 이하에서도 적용이 가능하다.After the fluorine atom injection, the heat treatment method can be applied to dielectric films such as Si 3 N 4 films, not SiO 2 films, and can be applied even when the thickness of the dielectric films is 30 nm or less.

또한 본 발명의 다른 실시예를 보인 제3a도와 같이 실리콘 기판(1)상에 형성된 SiO2막(2)위에 30nm정도의 다결정 실리콘(poly-Si)막(3)을 성장시킨 후에, 제3b도와 같이 불소원자를 주입한 다음 제3c도와 같이 열확산(F-implantation-implantation -thermal diffusion)시킨다.In addition, after the polycrystalline silicon (poly-Si) film 3 of about 30 nm is grown on the SiO 2 film 2 formed on the silicon substrate 1, as shown in FIG. 3a showing another embodiment of the present invention, After injecting the fluorine atom as shown in Figure 3c it is thermal diffusion (F-implantation-implantation -thermal diffusion).

이때, SiO2/Si 기판의 계면에 불소원자가 축적되어 유전체막중의 결함 및 계면준위 밀도를 감소시키는 등의 효과가 생기기 때문에 유전체막의 질을 향상시킬 수 있다.At this time, since the fluorine atoms are accumulated at the interface of the SiO 2 / Si substrate to reduce the defects in the dielectric film and the density of the interface level, the quality of the dielectric film can be improved.

Claims (2)

실리콘 기판(1)상에 유전체막(2)을 형성하는 공정과, 그 유전체막(2)으로 산화막을 성장시키는 공정중 마지막 3 내지 5분간 불소함유가스를 도입하는 공정과, 그 불소도입공정 후 900℃에서 10분 정도 열처리하여 그 유전체막(2)과 상기 실리콘 기판(1) 사이의 계면에 불소원자를 축적시켜 계면준위 밀도를 감소시키는 공정을 포함하는 반도체 기판상의 유전체막 형성방법.Forming a dielectric film 2 on the silicon substrate 1, introducing a fluorine-containing gas for the last 3 to 5 minutes during the step of growing an oxide film into the dielectric film 2, and after the fluorine introduction step 10. A method of forming a dielectric film on a semiconductor substrate, the method comprising: a step of heat treatment at 900 DEG C for about 10 minutes to accumulate fluorine atoms at the interface between the dielectric film (2) and the silicon substrate (1) to reduce the interface density. 제1항에 있어서, 상기 유전체막(2) 형성 공정은, 상기 실리콘 기판(1)을 석영관로내 넣고 900℃의 온도에서 O2가스 또는 O3가스를 도입하여 10nm 정도의 두께로 SiO2막을 상기 유전체막(2)으로 성장시키키는 것을 특징으로 하는 반도체 기판상의 유전체막 형성방법.The process of claim 1, wherein the forming of the dielectric film 2 comprises inserting the silicon substrate 1 into a quartz tube and introducing an O 2 gas or an O 3 gas at a temperature of 900 ° C. to form a SiO 2 film with a thickness of about 10 nm. A method for forming a dielectric film on a semiconductor substrate, characterized by growing on the dielectric film (2).
KR1019920025009A 1992-12-22 1992-12-22 Forming method of insulating film on the semiconductor substrate KR960008903B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920025009A KR960008903B1 (en) 1992-12-22 1992-12-22 Forming method of insulating film on the semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920025009A KR960008903B1 (en) 1992-12-22 1992-12-22 Forming method of insulating film on the semiconductor substrate

Publications (2)

Publication Number Publication Date
KR940016581A KR940016581A (en) 1994-07-23
KR960008903B1 true KR960008903B1 (en) 1996-07-05

Family

ID=19346198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920025009A KR960008903B1 (en) 1992-12-22 1992-12-22 Forming method of insulating film on the semiconductor substrate

Country Status (1)

Country Link
KR (1) KR960008903B1 (en)

Also Published As

Publication number Publication date
KR940016581A (en) 1994-07-23

Similar Documents

Publication Publication Date Title
US5434109A (en) Oxidation of silicon nitride in semiconductor devices
EP0617461B1 (en) Oxynitride dielectric process for IC manufacture
KR100421767B1 (en) A method to fabricate thin insulating films
CA1284236C (en) Semiconductor device with low defect density oxide
US6281138B1 (en) System and method for forming a uniform thin gate oxide layer
KR940009597B1 (en) Forming method of gate oxide film
JP2673183B2 (en) Method of forming silicon oxide
JP2008028403A (en) Method for forming first oxide layer, and second oxide layer
US5132244A (en) Growth-modified thermal oxidation for thin oxides
US20070087506A1 (en) Method of forming a semiconductor device
EP0258394B1 (en) Fabrication of solid-state devices having thin dielectric layers
KR100908784B1 (en) Manufacturing Method of Semiconductor Device
KR100195355B1 (en) Semiconductor device manufacturing method including dry oxidation
US5672539A (en) Method for forming an improved field isolation structure using ozone enhanced oxidation and tapering
JPS618931A (en) Manufacture of semiconductor device
KR960008903B1 (en) Forming method of insulating film on the semiconductor substrate
JPH0574762A (en) Formation of insulating film
JPH11297689A (en) Heat treatment of silicon insulating film and manufacture of semiconductor device
KR960008904B1 (en) Forming method of silicon oxide film on the semiconductor substrate
Declerck Silicon oxidation
JP3584544B2 (en) Method for manufacturing semiconductor device
JPH11283975A (en) Method of forming thin and uniform thickness oxide film at low temperature
JPH07221092A (en) Manufacture of semiconductor device
KR100227641B1 (en) Method for forming gate oxide film of semiconductor
JPS6360550A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090703

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee