JPS59215743A - Large scale integrated circuit device - Google Patents
Large scale integrated circuit deviceInfo
- Publication number
- JPS59215743A JPS59215743A JP9100283A JP9100283A JPS59215743A JP S59215743 A JPS59215743 A JP S59215743A JP 9100283 A JP9100283 A JP 9100283A JP 9100283 A JP9100283 A JP 9100283A JP S59215743 A JPS59215743 A JP S59215743A
- Authority
- JP
- Japan
- Prior art keywords
- chip
- wiring
- equivalent
- integrated circuit
- circuit device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明はデータ処理装置等のシステム構成の簡単化をは
かった大規模集積回路装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a large-scale integrated circuit device that has a simplified system configuration such as a data processing device.
ノクーソナルコンピュータ等のシステムを構成するには
、通常複数個のLSI(大規模集積回路)を組み合わせ
て使う。これらはCPU(中央処理装置)、ROM(リ
ード・オンリ・メモリ)、RAM(ランダム・アクセス
・メモリ)、キー人力制仰部、シリアル入出力部、パラ
レル゛入出力部、カウンタタイミング制佃部、表示駆動
部等多くのチップになシ、各チップ間の相互配線はプリ
ント基板によシなされる。ところがこの方法は、プリン
ト基板上の(1互配線が複雑で製作に手間がかがシ、コ
ストアップの原因となる。またプリント配線の静電容量
が太きいため、各チップのスピードが早くなっても、シ
ステム全体のスピードアップにつながらない。また故障
率が高い等の理由から、ユーザとしての要求は”システ
ムに使用される複数個のLSIを1チツプ化出来ないか
g2という要求が大変強い。To configure a system such as a nocusonal computer, a plurality of LSIs (Large Scale Integrated Circuits) are usually used in combination. These are the CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), key control section, serial input/output section, parallel input/output section, counter timing control section, There are many chips such as a display drive section, and interconnections between the chips are made on a printed circuit board. However, with this method, the interconnections on the printed circuit board are complicated, requiring time and effort to manufacture, which increases costs.Also, because the capacitance of the printed wiring is large, the speed of each chip increases. However, this does not lead to speeding up the entire system.Also, due to the high failure rate, there is a very strong demand from users that it is possible to combine multiple LSIs used in the system into a single chip.
上記1チツプ化の要求に応える方法としては、(ハ)全
システムを再度設計して新たな1チツプLSIをつくる
、←)複数個のチップを1つのノやツケージの中に封入
していわゆるノ1イブリッドIC(集積回路)とする、
等が考、えられる。上記0)項の全システムを再設計す
る方法の場合、現在ある設計手法としては、■全て手設
計による方法、■霜算機を4人したビルディングブロッ
ク方式の自動設計による方法、■ゲートアレイ等による
自動設削、等がある。これら■〜■ともいずれも利点/
欠点があるが、再設計の最大の欠点は、「各チップはす
でに開発されて、機能、特性とも充分評価され可となっ
ているのに、また同様のものを再度設割するため、設剖
。Methods to meet the above demand for single-chip LSI include (c) redesigning the entire system to create a new single-chip LSI, and ←) encapsulating multiple chips in a single chip or cage. 1 hybrid IC (integrated circuit),
etc. can be considered. In the case of the method of redesigning the entire system as described in item 0), the currently available design methods include: ■ Complete manual design method, ■ Automated design method using a building block method using four frost calculators, ■ Gate array, etc. automatic cutting, etc. All of these ■~■ have advantages/
Although there are disadvantages, the biggest disadvantage of redesigning is that ``each chip has already been developed and has been sufficiently evaluated in terms of function and characteristics, but it is necessary to design and design the same chip again. .
評価の手順をもう一度踏まねばならぬ」ことである。従
って設計ミスのおそれがあったシ、開発時間がかかる管
種々の問題があり、能がない方法と云わざるを得ない。The evaluation process must be repeated again.'' Therefore, there is a risk of design errors, and there are various problems with the tube, which takes time to develop, so it must be said that this method is ineffective.
上記(ロ)項のハイブリッドICの方法は、これは外部
から見ると1個の部品として見えるだけで、上記プリン
ト基板に複数個のチップを実装し、配線する方法を単に
小さくしただけにすぎない。勿論小さくしただけのメリ
ットはそれなシにあるが、実際の実装技術として、どれ
だけの個数のチップがへイブリッド化できるか疑問が残
るところであシ、実現出来たとしても相当のコストアッ
プとなるであろう。The hybrid IC method described in item (b) above only appears as a single component when viewed from the outside, and is simply a smaller version of the method of mounting and wiring multiple chips on the printed circuit board. . Of course, there are advantages to just making it smaller, but as an actual implementation technology, there are still doubts as to how many chips can be hybridized, and even if it were possible, the cost would increase considerably. Will.
本発明は上記実情に麺みてなされたもので、町設計、ハ
イブリッド化いずれとも異なる新たなシステムの1チツ
プ化を可能とする大規模集積回路装置を揚供しようとす
るものである。The present invention has been made in view of the above-mentioned circumstances, and is intended to provide a large-scale integrated circuit device that enables a new system different from either town planning or hybridization to be integrated into a single chip.
本発明は所望の装置を実現するのに、既に設計評価され
ている各チップのパターンをそのま\使用して1チツプ
化するようにしたものである。In the present invention, in order to realize a desired device, the patterns of each chip that have already been designed and evaluated are used as they are to form a single chip.
以下図面を参照して本発明の実施例を飲、明する。第1
図中1は半導体チップ、A、Bはチップ1内で同一工程
でいっしょに形成されたチップ1目当飴域で、これら領
域はそれぞれ以前にチップA、チップBとして評価ずみ
のものである。Embodiments of the present invention will be explained below with reference to the drawings. 1st
In the figure, 1 is a semiconductor chip, and A and B are areas for chip 1 that were formed together in the same process in chip 1, and these areas were previously evaluated as chip A and chip B, respectively.
2.3はチップ相当領域A、Bが以前チップA。2.3 is the chip equivalent area A, and B is the former chip A.
Bであった時のボンディングパラ下(これを仮にインナ
ーポンディングパッドという)、4はチップ1のポンデ
ィングパッド(これを仮にアウターポンプイングツぐラ
ドという)である。このように既に評価確認ずみのチッ
プ相当領域AとBを適当なスペース5を置いてチップ1
内に配置形成する。このスペース5はチップ相当領域A
、B間の相互配線6の配線領域であり、またチップ周縁
付近には、1チツプ化した後にLSIからのリード端子
として外部と接続するためのポンディングパッドとの配
線(これを仮に外部配線という)7に使用される配線領
域も設けられる。即ち、チップ相当領域Aと8間の相互
配M!6を、領域A、B各々が有している該当ポンディ
ングパッド間で上記配線領域5を利用して領域A、Hの
プロセスによる配線層(ポリシリコン、アルミニウム等
)でつくる。更に外部配線7に相当するポンディングパ
ッド4をチップ周辺に必要個数レイアウトし、外部配線
7を、該当する領域A、Hのポンプイングツ4ツド2,
3とアウターポンディングパッド4の間で、・やはシポ
リシリコン、アルミニウム等でつくる。4 is the bonding pad under the bonding pad (temporarily referred to as the inner bonding pad) at B, and 4 is the bonding pad of chip 1 (this is tentatively referred to as the outer pumping pad). In this way, place the chip equivalent areas A and B, which have already been evaluated, with an appropriate space 5, and place the chip 1.
Place and form within. This space 5 is the chip equivalent area A
, B. Also, near the periphery of the chip, there is wiring with a bonding pad (temporarily referred to as external wiring) for connection to the outside as a lead terminal from the LSI after it is integrated into a single chip. ) 7 is also provided. That is, the mutual arrangement M! between the chip equivalent areas A and 8! 6 is made of a wiring layer (polysilicon, aluminum, etc.) by the process of regions A and H using the wiring region 5 between the corresponding bonding pads that each region A and B have. Furthermore, the necessary number of pumping pads 4 corresponding to the external wiring 7 are laid out around the chip, and the external wiring 7 is connected to the pumping pads 2, 4 in the corresponding areas A and H.
The pad between the pad 3 and the outer bonding pad 4 is made of polysilicon, aluminum, or the like.
第2図は第1図の一部断面を示すもので、1jはチップ
相当領域AまたはBのトランジスタ領域、12はN型基
板、13.14はP型ソース、ドレイン領域、15は絶
縁膜、16はポリシリコンゲート電極、17はアルミニ
ウム配線、18は配線領域5での配線交差領域で、17
1+172は第1図の配線6に対応するアルミニウム配
線層、19はポリシリコン記録層である。FIG. 2 shows a partial cross section of FIG. 1, where 1j is a transistor region of the chip equivalent area A or B, 12 is an N-type substrate, 13.14 is a P-type source and drain region, 15 is an insulating film, 16 is a polysilicon gate electrode, 17 is an aluminum wiring, 18 is a wiring crossing area in the wiring area 5;
1+172 is an aluminum wiring layer corresponding to the wiring 6 in FIG. 1, and 19 is a polysilicon recording layer.
上記例は、各チップ相当領域の相互配線及び外部配線を
、各チップのウェハプロセスを変えること々く、配線領
域5を設けることにより実瞥現する手法であった。いわ
ばプリント基椴配緑をチップと同一ウニへ上に配線領域
を設けて焼きつけたものであシ、1チツプ化後のチップ
サイズは各チップ相当領域A、Bの合計面積よシ配線領
域5分だけ大きくなるが、次に示す例は第1図、第、2
図の例を改良し、配線領域5を始んど零にすることがで
きる1チツ、プ化の手法で本発明の実施例である。The above example is a method of actually realizing the mutual wiring and external wiring in the area corresponding to each chip by providing the wiring area 5 without changing the wafer process of each chip. In other words, the printed circuit board is printed on the same board as the chip with a wiring area above it, and the chip size after making it into one chip is the total area of each chip equivalent area A and B plus the wiring area of 5 minutes. However, the following examples are shown in Figures 1, 2, and 2.
This is an embodiment of the present invention, which is an improvement on the example shown in the figure, and uses a one-chip reduction method that can reduce the wiring area 5 to zero from the beginning.
第3図、第4図がその例を示すものであるが、ここでは
説明を簡単にするためにチップ相当領域A、Bそれぞれ
は、第1図、第2図の場合と同様シリコンゲートプロセ
スで構成されたLSIとする。従ってチップ相当領域A
、Bは各々配線層として、ソース、ドレインを形成する
不純物拡散層(P 、N拡散等)、ゲート電極を構成
するポリシリコン層、そして通常部52 層として多用
されるメタル配線層の3種非1を有し、それらはチップ
A、B上で回路構成に応じて電気的に絶縁されたフ、結
合されたシする。チップ相当領域A、Bの入力信号及び
出力信号は、通常チップ周辺に配置されたポンディング
パッド4よルノやツケージのリードに結合されてLSI
の外部と接続される。ボンディング・母ツドはメタル層
で形成されるのが通常である。Figures 3 and 4 show examples of this, but here, to simplify the explanation, chip-equivalent regions A and B are each formed using a silicon gate process as in the case of Figures 1 and 2. It is assumed that this is a configured LSI. Therefore, chip equivalent area A
, B are wiring layers of three types: an impurity diffusion layer (P, N diffusion, etc.) that forms the source and drain, a polysilicon layer that forms the gate electrode, and a metal wiring layer that is often used as the normal layer. 1, and they are electrically insulated and coupled on chips A and B depending on the circuit configuration. The input signals and output signals of the chip-equivalent areas A and B are usually connected to the leads of the bonding pad 4 placed around the chip and to the leads of the LSI.
connected to the outside. The bonding/maintenance is usually formed from a metal layer.
第4図は第3図の一部断面を示すものであるが、これは
第2図に対応させた場合の例であるから、対応個所には
同一符号を付して説明を省略し、特徴とする点を説明す
る。第4図において21はPウェル層、22.23はN
チャネル型トランジスタ25のンース、ドレイン層、2
4はポリシリコンよシなるゲート電極、26は層間絶縁
膜、27はこの絶縁膜上に設けられた第2層目のアルミ
ニウム配線層で、第3図の配線6または7と対応するも
のである。28はアルミニウム配fg1y、2v間をつ
なぐためのコンタクトである。Fig. 4 shows a partial cross-section of Fig. 3, but since this is an example of a case corresponding to Fig. 2, corresponding parts are given the same reference numerals, explanations are omitted, and features are not explained. Let me explain the points. In FIG. 4, 21 is a P well layer, 22.23 is an N well layer, and 22.23 is an N well layer.
source and drain layers of channel type transistor 25;
4 is a gate electrode made of polysilicon, 26 is an interlayer insulating film, and 27 is a second aluminum wiring layer provided on this insulating film, which corresponds to wiring 6 or 7 in FIG. . 28 is a contact for connecting aluminum wires fg1y and 2v.
このように第3図、第4図の手法は、絶縁膜26を挟ん
でメタル配線J7..?7を形成し、この第2層目のメ
タル配線層をチップ相当俳域人、B間の相互配線6及び
外部配線7として使用する。第2層目のメタル配線22
による信号は、チップ相当領域A、B各々の入出力信号
(電源含む)のみでよい。また第2層目のメタル配線2
7と第1層目のメタルにより形成されたインナーポンデ
ィングパッド間に電気的結合が必要だが、これは層間絶
縁膜26を必要な個所のみ写真蝕刻技術にて除去し、冶
間ρコンタクトホールをつくることによシ可能である。In this way, the method shown in FIGS. 3 and 4 uses the method shown in FIG. .. ? 7 is formed, and this second metal wiring layer is used as mutual wiring 6 and external wiring 7 between the chip-equivalent area and B. Second layer metal wiring 22
The signals required are only input/output signals (including power supply) for each of the chip equivalent areas A and B. Also, the second layer metal wiring 2
7 and the inner bonding pad formed by the first layer of metal, this can be done by removing the interlayer insulating film 26 only at the necessary parts using photolithography, and forming a contact hole between the holes ρ. This can be done by creating.
このようなコンタクト28を通常ビア・コンタクト(V
IA contact )と称している。即ちポンプイ
ングツぐラド2または3の上にビア・コンタクトをつく
シ、その上に第2層目のメタル(アルミニウム)を蒸着
することで各層のメタル配線が結合される。しかしとア
・コンタクトは必ずしもボンディング/4ツド2または
3上に形成する必要がないことは明らかである。チップ
相当領域A、Bが複合された新LSIも、最終的にLS
I外部と信号伝達するポンディングパッド(アウターポ
ンディングパッド)4が必要であるが、これは第2層目
のメタルで形成する。Such a contact 28 is usually a via contact (V
IA contact). That is, a via contact is formed on the pumping layer 2 or 3, and a second layer of metal (aluminum) is deposited thereon, thereby connecting the metal wirings of each layer. It is clear, however, that the contact need not necessarily be formed on the bond/quarter 2 or 3. A new LSI in which chip-equivalent areas A and B are combined will eventually become an LS
A bonding pad (outer bonding pad) 4 is required for transmitting signals to the outside, but this is formed from the second layer of metal.
第3図、第4図の如く構成されたLSIにあっては、チ
ップ相当飴域A、B上に第2層目の配線27が形成でき
、第1図の場合のように特に配線領域5を特に設ける必
要がないため、チップサイズを小さくできる。また第1
層目と第2層目の配線の交差点にアルミニウムを使用で
きるため、該抵抗を小に保持できて高速設計が可能とな
る。また第1層目の配線17と第2層目の配線27は同
一平面上で交差し々いため、配線設計の自由度が増すも
のである。In the LSI configured as shown in FIGS. 3 and 4, the second layer of wiring 27 can be formed on the chip-equivalent areas A and B, and especially in the wiring area 27 as in the case of FIG. Since there is no need to specifically provide a chip, the chip size can be reduced. Also the first
Since aluminum can be used at the intersection of the first layer and the second layer wiring, the resistance can be kept low and high-speed design is possible. Further, since the first layer wiring 17 and the second layer wiring 27 often intersect on the same plane, the degree of freedom in wiring design is increased.
第5図は第3図、第4図の手法を用いたパターン配置例
である。A−Eが既に開発され機能が確A忍されている
LSI(チップ相当領域)で、同一チップ相当領域がN
複して巻回である(例えばD=E )。また各チップ相
当領域間の配線は第2層目のアルきニウム配線22(第
5図の配線6または7に相当)でつくる。各チップ相当
領域が本来有しているパッド2,3と第2IP!1目の
配線6,7はビア・コンタクトで接続する。FIG. 5 shows an example of pattern arrangement using the methods shown in FIGS. 3 and 4. A-E is an LSI (chip-equivalent area) that has already been developed and whose functions are guaranteed, and the same chip-equivalent area is N.
It is a double turn (for example, D=E). Further, the wiring between each chip-corresponding area is formed by a second layer of aluminum wiring 22 (corresponding to wiring 6 or 7 in FIG. 5). Pads 2, 3 and the second IP which each chip equivalent area originally has! The first wirings 6 and 7 are connected through via contacts.
外周のノ+ツド4が新LSIのポンディングパッドとな
シ、第2層目のアルミニウムでつくるものである。The outer circumferential node 4 serves as the new LSI's bonding pad, and is made from the second layer of aluminum.
なお本発明は実施例のみに限られることなく種々の応用
が可能である。例えば実施例では、チップ相当飴域A、
B等の構造がシリコンゲート型の場合を説明したが、ア
ルミニウムゲート型、ダンゲステンゲート型、モリブデ
ンゲート型等柚々の場合に適用できる。また配線のメタ
ル材料としては、アルミニウムのみに限らずタングステ
ン、モリブデン4種々の材料が使用できる。また実施例
ではチップ相当領域A’ 、 Hの外側領域にアウター
ポンディングパッド4を形成しているが、ツヤターン形
状が許せばチップ相当領域A、Hのポンプイングツ母ツ
ドz、3と同一ライン上にノ母ツド4を形成してもよい
。またメタル配線層としてアルミニウムを用いた2層配
線の場合を説明したが、3層、4脂等の多層配線として
もよい。Note that the present invention is not limited to the embodiments, and can be applied in various ways. For example, in the embodiment, chip equivalent candy area A,
Although the case where the structure of B etc. is a silicon gate type has been described, it can be applied to other cases such as an aluminum gate type, a dungesten gate type, a molybdenum gate type, etc. Further, as the metal material for the wiring, not only aluminum but also tungsten, molybdenum, and various other materials can be used. In addition, in the embodiment, the outer pumping pad 4 is formed in the outer region of the chip-equivalent regions A', H, but if the glossy turn shape permits, it may be formed on the same line as the pumping pads z, 3 of the chip-equivalent regions A', H. A motherboard 4 may also be formed. Furthermore, although the case of two-layer wiring using aluminum as the metal wiring layer has been described, multi-layer wiring such as three-layer or four-layer wiring may also be used.
以上説明した如く本発明によれば、チップ相当領域は従
来のチップ構成にほとんど手を加えないので、機能、特
性共に評価ずみのものがそのま\1チップ化できる。ま
た1チツプ化できるため、従来のプリント基板を用いる
ものと比べ信頼性が向上する。また本装置を得るのに従
来のウニ八プロセスをそのま\利用でき、製造工程の簡
単化が可能である。またチップ相当領域上に第2層目以
降の配線が形成できるためチップサイズの縮小が可能で
ある。また第1.第2層目等の交差配線部に共にアルミ
ニウムを使用できるため、抵抗を小にできて晶速設計が
可能と々る。また第2層目以降の配線は第1層目のそれ
と同一平面上で交差しないため、配線設計の自由度が増
すものである。As explained above, according to the present invention, since the chip-equivalent area requires almost no modification to the conventional chip configuration, a device whose functions and characteristics have been evaluated can be made into a single chip as is. Furthermore, since it can be made into a single chip, reliability is improved compared to those using conventional printed circuit boards. Furthermore, the conventional Unihachi process can be used as is to obtain this device, and the manufacturing process can be simplified. Further, since the second and subsequent layers of wiring can be formed on the chip-equivalent region, the chip size can be reduced. Also number 1. Since aluminum can be used for the cross-wiring portions such as the second layer, resistance can be reduced and crystal speed can be designed. Furthermore, since the wiring in the second and subsequent layers does not intersect with that in the first layer on the same plane, the degree of freedom in wiring design is increased.
第1図は改良前のLSIの41!′を略平面図、第2図
はその一部断面図、第3図は本発明の一実施例の概略平
面図、第4図はその一部断面図、第5図は上記実施例の
応用例を示す概略平面図である。
1°・・半導体チップ、2〜4・・・ボンデイア りt
4ッド、6,7・・・配線、12・・・N型基板、17
゜22・・・配線、21・・・Pウェル層、26・・・
層間絶縁膜、28・・・ビア・コンタクト、A、B・・
・チップ相当領域。
出願人代理人 弁理士 鈴 江 武 豚。Figure 1 shows 41! of the LSI before improvement. ' is a schematic plan view, Fig. 2 is a partial sectional view thereof, Fig. 3 is a schematic plan view of an embodiment of the present invention, Fig. 4 is a partial sectional view thereof, and Fig. 5 is an application of the above embodiment. FIG. 3 is a schematic plan view showing an example. 1°...Semiconductor chip, 2~4...Bondeia Rit
4 pad, 6, 7... Wiring, 12... N type board, 17
゜22... Wiring, 21... P well layer, 26...
Interlayer insulating film, 28... Via contact, A, B...
・Chip equivalent area. Applicant's representative Patent attorney Suzue Takeshi Buta.
Claims (1)
その機能を遂行するのに必要とする複数個のチップ相当
領域と、前記各チップ相当領域相互の仙域外導出用電極
間、または、該電極とポンディングパッド間を選択的に
つなぐ配線材料とを具備し、該配線材料は前記複数個の
チップ相当領域を形成するのに使用された配#i1層の
上段に層間絶縁膜を介して形成された事を4′!徴とす
る前記複数個の集積回路を同一半導体基板上に1チツプ
構成された大規模集積回路装置。 (2) 前記チップ相当領域は、それぞれ単独で完成
されたCPU(中央処理装置)またはメモリまたは周辺
機器である特許¥、It求の範囲第1項に記載の大規模
集積回路装置。 (3) 前記チップ相当領域はシリコンゲート構造で
形成された特許請求の範囲第1項に記載の大規模集積回
路装置。 (4) 前記チップ相当領域はアルミニウムゲート構
造で形成された特許請求の範囲第1項に記載の大規模集
積回路装置。 (5) 前記配線材料を2層以上の配線nf造とした
ことを特徴とする特許請求の範囲第1項に記載の大規模
集積回路装置。 (6)すでに機能が確認されている複数個のLSIのそ
のω能を遂行するのに必要とするネル数のチップ相当領
域を同一半導体基板に同時に形成する工程と、前記チッ
プ相当領域上に配線層の層間絶縁膜を形成する工程と、
前記各チップ相当領域の領竣外導出用電柾間、または該
電極とポンディングパッド間を前記層間絶縁膜上に設け
られる電極配線層で煎択的に接続する工程とを具備した
ことを特徴とする太却模集積回路装置の製造方法。 (7) 前記チップ[4”+ itj域は、それぞれ
単独で完成されたcpv(−4央処理装置)またはメモ
リまたは周辺機器である特許請求の範囲第6項に記載の
大規模集積回路装置の製造方法。 (8) 前記チップ相当領域はシリコンゲート構造で
形成された特許請求の範囲第6項に記載の大規模集積回
路装置の製造方法。 (9) 前記チップ相当領域はアルミニウムゲート(
10) 前記電極配線層を2層以上の配線構造とした
ことを特徴とする特許請求の範囲第6項に記載の大規模
集積回路装置の製造方法。[Scope of Claims] (11) A plurality of chip-equivalent regions necessary for performing the functions of a plurality of integrated circuits whose functions have already been confirmed, and a mutual derivation of each of the chip-equivalent regions to outside the region. A wiring material is provided that selectively connects between the electrodes or between the electrodes and the bonding pad, and the wiring material is placed on the upper layer of the wiring #i1 layer used to form the plurality of chip-equivalent regions. A large-scale integrated circuit device in which the plurality of integrated circuits, each of which is formed via an interlayer insulating film, are configured as one chip on the same semiconductor substrate. (2) Each of the chip-equivalent areas is The large-scale integrated circuit device according to item 1 of the scope of the patent application, which is a independently completed CPU (central processing unit), memory, or peripheral device. (3) The chip-equivalent region is formed with a silicon gate structure. (4) The large-scale integrated circuit device according to claim 1, wherein the chip-equivalent region is formed of an aluminum gate structure. ( 5) A large-scale integrated circuit device according to claim 1, characterized in that the wiring material has a wiring nf structure with two or more layers. (6) A plurality of LSIs whose functions have already been confirmed. a step of simultaneously forming chip-equivalent regions of the number of channels necessary to perform the ω function on the same semiconductor substrate; a step of forming an interlayer insulating film of a wiring layer on the chip-equivalent region;
It is characterized by comprising a step of selectively connecting between the wiring lines for leading out of the area of each chip equivalent area or between the electrodes and the bonding pads with an electrode wiring layer provided on the interlayer insulating film. A method for manufacturing a large-scale integrated circuit device. (7) The large-scale integrated circuit device according to claim 6, wherein each of the chip [4''+ITJ areas is a cpv (-4 central processing unit), memory, or peripheral device completed independently. Manufacturing method. (8) The method for manufacturing a large-scale integrated circuit device according to claim 6, wherein the chip-equivalent region is formed of a silicon gate structure. (9) The chip-equivalent region is formed of an aluminum gate (
10) The method for manufacturing a large-scale integrated circuit device according to claim 6, wherein the electrode wiring layer has a wiring structure of two or more layers.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9100283A JPS59215743A (en) | 1983-05-24 | 1983-05-24 | Large scale integrated circuit device |
EP84105778A EP0127100B1 (en) | 1983-05-24 | 1984-05-21 | Semiconductor integrated circuit device |
DE8484105778T DE3481958D1 (en) | 1983-05-24 | 1984-05-21 | INTEGRATED SEMICONDUCTOR CIRCUIT ARRANGEMENT. |
US06/613,302 US4688070A (en) | 1983-05-24 | 1984-05-23 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9100283A JPS59215743A (en) | 1983-05-24 | 1983-05-24 | Large scale integrated circuit device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3088316A Division JP2752262B2 (en) | 1991-04-19 | 1991-04-19 | Manufacturing method of one-chip LSI |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59215743A true JPS59215743A (en) | 1984-12-05 |
Family
ID=14014293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9100283A Pending JPS59215743A (en) | 1983-05-24 | 1983-05-24 | Large scale integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59215743A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62194640A (en) * | 1986-02-20 | 1987-08-27 | Fujitsu Ltd | Semiconductor integrated circuit using bump mounting |
JPH0582643A (en) * | 1991-09-24 | 1993-04-02 | Nec Ic Microcomput Syst Ltd | Lsi automatic layout apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5484984A (en) * | 1977-12-20 | 1979-07-06 | Fujitsu Ltd | Semiconductor integrated circuit |
JPS5722242B2 (en) * | 1972-04-10 | 1982-05-12 |
-
1983
- 1983-05-24 JP JP9100283A patent/JPS59215743A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5722242B2 (en) * | 1972-04-10 | 1982-05-12 | ||
JPS5484984A (en) * | 1977-12-20 | 1979-07-06 | Fujitsu Ltd | Semiconductor integrated circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62194640A (en) * | 1986-02-20 | 1987-08-27 | Fujitsu Ltd | Semiconductor integrated circuit using bump mounting |
JPH0582643A (en) * | 1991-09-24 | 1993-04-02 | Nec Ic Microcomput Syst Ltd | Lsi automatic layout apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3179800B2 (en) | Semiconductor integrated circuit device | |
US8643178B2 (en) | Semiconductor chips having redistributed power/ground lines directly connected to power/ground lines of internal circuits and methods of fabricating the same | |
US5258891A (en) | Multichip module with multilayer wiring substrate | |
JP3917683B2 (en) | Semiconductor integrated circuit device | |
US4688070A (en) | Semiconductor integrated circuit device | |
JPH0290651A (en) | Semiconductor integrated circuit | |
JPH0480538B2 (en) | ||
JPH0434309B2 (en) | ||
JPS59215743A (en) | Large scale integrated circuit device | |
JPH05243482A (en) | Semiconductor integrated circuit | |
JPH0194636A (en) | Semiconductor device | |
JPS6080250A (en) | Semiconductor device | |
JPH04355952A (en) | Semiconductor integrated circuit device | |
JP2752262B2 (en) | Manufacturing method of one-chip LSI | |
JP3636523B2 (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JPH0230163A (en) | Master-slice type semiconductor integrated circuit and its manufacture | |
JPH09205150A (en) | Manufacture of large scale integrated circuit device | |
JPS62263653A (en) | Manufacture of semiconductor integrated circuit device | |
JPH0475665B2 (en) | ||
JPH04246857A (en) | Semiconductor integrated circuit device | |
JPH03169073A (en) | Semiconductor integrated circuit device | |
JPH065782A (en) | Layout method at corner part of semiconductor and semiconductor integrated circuit device | |
JPS601844A (en) | Semiconductor integrated circuit device | |
JPS59215744A (en) | Large scale integrated circuit device | |
JPH0645566A (en) | Semiconductor integrated circuit device |