JPS59205756A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS59205756A
JPS59205756A JP58081252A JP8125283A JPS59205756A JP S59205756 A JPS59205756 A JP S59205756A JP 58081252 A JP58081252 A JP 58081252A JP 8125283 A JP8125283 A JP 8125283A JP S59205756 A JPS59205756 A JP S59205756A
Authority
JP
Japan
Prior art keywords
light
vertical
transfer
regions
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58081252A
Other languages
Japanese (ja)
Inventor
Yoshimi Hirata
芳美 平田
Hiroyuki Matsumoto
松本 博行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58081252A priority Critical patent/JPS59205756A/en
Publication of JPS59205756A publication Critical patent/JPS59205756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To prevent the remaining of a smear, and to obtain an element having high sensitivity by constituting the element by light-receiving regions arranged in the horizontal and vertical directions at regular pitches, a plurality of vertical registers extending in the vertical direction, photo-charge signal temporary storage regions positioned among the light-receiving regions disposed in the vertical direction, and reading gate regions positioned among the temporary storage regions and the vertical shift registers. CONSTITUTION:A light-receiving section 15A and a storage section 15B are formed to a solid-state image pickup element 15, and picture elements SENS and vertical shift registers VR transferring optical signal charges photoelectrically converted by the picture elements are each mounted independently. On the other hand, regions in which optical signal charges from each register VR are stored at every light-receiving region are formed to the storage section 15B, and the regions and the registers VR are used in common. According to such constitution, charges are transferred to the storage section 15B from the light-receiving section 15A for a vertical blanking period, and charges transferred and stored into the storage section 15B are read at every one horizontal period, and transferred to a register 15C and read.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はCODなどの電荷転送素子を用いた固体撮像
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a solid-state imaging device using a charge transfer device such as a COD.

背景技術とその問題点 例えば、CCDを固体撮像素子として使用する場合、受
光領域(絵素)をMO8構成とする場合と、PN接合構
成とする場合がある。
Background Art and Problems Therein For example, when a CCD is used as a solid-state image sensor, the light-receiving region (picture element) may have an MO8 configuration or a PN junction configuration.

第1図は前者の一例で、第2図は後者の一例であって、
(1)はこの例ではP型シリコンの基体で、基体(1)
の上面近傍には垂直シフトレジスタVRをバルクチャン
ネル(埋込みチャンネル)とするためNfi領域(2)
が形成されると共に、センサー領域5EN81挾んでオ
ーバーフロードレインOFD用のN+型領領域3)が、
さらにこのN+型領領域3)を挾んで左側ニオ−バーフ
ロー用のコン) 0−kl’ −ト0FCGのためのP
+型領域(4)が、右側にチャンネルストツAC8用の
P+型領域(5)が夫々形成されている。ROGは読出
し用のコントロールf−)k示す。そして、基体(1)
の上面には5IO2等の絶縁層(7)を介して垂直転送
用のポリシリコン等よシなる電極(8)が形成され、(
9)はセンサー領域5ENS ’eコントロールする透
明電極である。
Figure 1 is an example of the former, Figure 2 is an example of the latter,
In this example, (1) is a P-type silicon substrate;
There is an Nfi area (2) near the top surface of the vertical shift register VR as a bulk channel (embedded channel).
is formed, and an N+ type region 3) for overflow drain OFD is sandwiched between the sensor region 5EN81.
Furthermore, by sandwiching this N+ type region 3), a controller for nitrogen flow on the left side is formed (P for 0-kl'-to 0FCG).
A + type region (4) and a P+ type region (5) for channel stock AC8 are formed on the right side. ROG indicates readout control f-)k. And the base (1)
An electrode (8) made of polysilicon or the like for vertical transfer is formed on the upper surface of the (
9) is a transparent electrode that controls the sensor area 5ENS'e.

第1図において、基体(1)と絶縁層(7)と透明電極
(9)とによってMO8構成のセンサー領域5gN5が
形成され、また第2図において基体(1)中に形成され
たN+型領領域2)と基体(1)とによってPN接合構
成のセンサー領域5EN8が形成さnる。
In FIG. 1, a sensor region 5gN5 having an MO8 structure is formed by the base (1), an insulating layer (7), and a transparent electrode (9), and in FIG. 2, an N+ type region is formed in the base (1). A sensor region 5EN8 having a PN junction configuration is formed by the region 2) and the base body (1).

第1図構成のものではセンサー領域5INSに形成され
た透明電極(9)Kよって元が吸収さnるため、赤、緑
及び青の各色光に対する感度が全体的に低下すると共に
、基体(1)中に形成される空乏層の拡が9が浅いため
に空乏層外の基体の奥深くまで進入する長波長の元信号
(赤信号等)による光信号電荷が基体中に拡散してこれ
が垂直シフトレジスタVRに流れ込んでスミアが発生す
る。また、オーバーフロードレインOFDは二次元的に
配置されているため素子面を有効に利用することができ
ない。
In the structure shown in FIG. 1, the light is absorbed by the transparent electrode (9)K formed in the sensor area 5INS, so the sensitivity to each color of red, green, and blue light decreases as a whole, and the substrate (1 ) Due to the shallow spread of the depletion layer formed inside the depletion layer, optical signal charges due to long-wavelength original signals (red signals, etc.) that penetrate deep into the substrate outside the depletion layer are diffused into the substrate, resulting in a vertical shift. It flows into the register VR and causes smear. Furthermore, since the overflow drain OFD is arranged two-dimensionally, the element surface cannot be used effectively.

第2図構成のものでは、センサー領域5ENSに透明電
極(9)がないので感度の低下は抑えられる反面、この
場合も基体(1)中での空乏層の拡がシが浅いためにス
ミアが発生すると共に、PN接合構成であるために光信
号電荷の読出し時、センサー領域の光信号電荷を完全に
垂直シフトレジスタVR側に転送することができないか
ら残像が発生する。
In the configuration shown in FIG. 2, since there is no transparent electrode (9) in the sensor region 5ENS, a decrease in sensitivity can be suppressed, but in this case as well, smear occurs because the depletion layer in the substrate (1) is shallow. In addition, because of the PN junction configuration, when reading optical signal charges, the optical signal charges in the sensor region cannot be completely transferred to the vertical shift register VR side, resulting in afterimages.

このように、従来のようなセンサー領域その他の領域の
構成では一長一短がある。
As described above, the conventional configuration of the sensor area and other areas has advantages and disadvantages.

発明の目的 そこで、この発明ではスミアや残像の発生がなく、しか
も素子面を有効利用できる高感度な固体撮像素子を提案
するものである。
OBJECT OF THE INVENTION Therefore, the present invention proposes a highly sensitive solid-state image pickup device that does not generate smear or afterimage and can effectively utilize the device surface.

発明の概要 このような目的を達成するため、この発明では、水平及
び垂直方向に夫々所定のピッチで配列された複数の受光
領域と、垂直方向に延びる複数の垂直シフトレジスタと
、垂直方向に配列された受光領域の間に夫々形成さn、
その隣シ合う受光領域で夫々光電変換さA7’c元信号
電荷が蓄積される一時蓄積領域と、この一時蓄積領域と
垂直シフトレジスタとの間に形成さnた読出しダート領
域とによって固体撮像素子を構成したものである。
Summary of the Invention In order to achieve the above object, the present invention includes a plurality of light receiving areas arranged at a predetermined pitch in the horizontal and vertical directions, a plurality of vertical shift registers extending in the vertical direction, and a plurality of vertical shift registers arranged in the vertical direction. formed between the light-receiving areas n,
A solid-state image sensor is formed by a temporary storage area in which photoelectrically converted A7'c original signal charges are stored in the adjacent light receiving areas, and a readout dirt area formed between this temporary storage area and the vertical shift register. It is composed of

実施例 続いて、この発明に係る固体撮像素子の一例を第3図以
下を参照して詳細に説明する。実施例はインターライン
転送構成あるいはフレーム着しくけフィールド転送構成
の変形ともいうべき固体撮像素子にこの発明を適用した
場合である。その概  略を第3図に示す。
Embodiment Next, an example of the solid-state image sensing device according to the present invention will be described in detail with reference to FIG. 3 and subsequent figures. The embodiment is a case in which the present invention is applied to a solid-state image sensor, which can be called a modification of an interline transfer structure or a frame-based field transfer structure. The outline is shown in Figure 3.

すなわち、この固体撮像素子(ト)は、受光部(15A
)と蓄積部(15B)を有し、受光部(15A)は受光
領域(絵素) 5ENSと、コノ受光領域5ENS″′
r′九電変換さ九た元信号電荷を転送する垂直シフトレ
ジスタ■とが夫々独立に設けられ、−力蓄積部(15B
)は各垂直シフトレジスタ’VRからの光信号電荷を受
光領域ごとに蓄える領域とを有し、この領域と垂直シフ
トレジスタVRとが共通に使用さnるようになさnたも
のである。
That is, this solid-state image sensor (G) has a light receiving section (15A).
) and an accumulation part (15B), and the light receiving part (15A) has a light receiving area (pixel) 5ENS and a light receiving area 5ENS"'
Vertical shift registers for transferring the r′9-converted signal charges are independently provided, and a force storage unit (15B
) has a region for storing optical signal charges from each vertical shift register VR for each light receiving region, and is designed so that this region and the vertical shift register VR are commonly used.

受光部(15A)から蓄積部(15B)−/)電荷転送
は垂直ブランキング期間に行なわれ、蓄積部(15B)
に転送蓄積された電荷は1水平期間ごとに順次水平シフ
トレジスタ(読出しレジスタ) (15C)に転送さn
て読出さnる。
Charge transfer from the light receiving section (15A) to the accumulation section (15B) is performed during the vertical blanking period, and the charge transfer from the light receiving section (15A) to the accumulation section (15B)
The accumulated charges are sequentially transferred to the horizontal shift register (read register) (15C) every horizontal period.
and read out.

このような固体撮像素子a0においてこの発明では受光
部(15A)が第4図以下に示すように構成される。
In such a solid-state image sensor a0 according to the present invention, the light receiving section (15A) is configured as shown in FIG. 4 and subsequent figures.

受光部(15A)は水平及び垂直方向に夫々所定のピッ
チをもって複数の受光領域(センサー領域)S ENS
が配列形成され、水平方向に配列形成さnたセンサー領
域5ENSの間には夫々垂直方向に延びる複数の垂直シ
フトレジスタvRが配列形成さnる。垂直方向に配列形
成さnたセンサー領域5EN8の間には夫々垂直方向に
隣シ合うセンサー領域5ENS、と5ENSj(1、j
はi番目及びj番目のセンサー領域)とで夫々光電変換
された光信号電荷の一部が蓄積される一時蓄積領域ps
が形成さnる。この一時蓄積領域PSと垂直シフトレジ
スタVRとの間には夫々一時蓄積領域psに蓄えられた
元信号電荷を垂直シフトレジスタVRに読出し転送する
ための読出しダート領域ROGが設けらnる。
The light receiving section (15A) has a plurality of light receiving areas (sensor areas) S ENS with predetermined pitches in the horizontal and vertical directions.
A plurality of vertical shift registers vR extending in the vertical direction are arranged between the sensor regions 5ENS arranged in the horizontal direction. Between the vertically arranged sensor regions 5EN8, vertically adjacent sensor regions 5ENS and 5ENSj (1, j
is a temporary storage region ps in which a part of the optical signal charge photoelectrically converted is stored in the i-th and j-th sensor regions, respectively.
is formed. A read dirt region ROG is provided between the temporary storage region PS and the vertical shift register VR, respectively, for reading and transferring the original signal charges stored in the temporary storage region ps to the vertical shift register VR.

第5図は第4図のI−I線上における受光部(2)の断
面構成の一例を示すものであって、この例ではP型シリ
コン基体(1)が使用される。基体(1)内にはバルク
チャンネル(埋込みチャンネル)型の垂直シフトレジス
タVRとすべくN型領域(2)が形成さn、センサー領
域5ENSは基体(1)とSiO2等の絶縁層(7)と
によって形成される。
FIG. 5 shows an example of the cross-sectional configuration of the light receiving section (2) taken along line II in FIG. 4, and in this example, a P-type silicon substrate (1) is used. An N-type region (2) is formed in the base (1) to form a bulk channel (buried channel) type vertical shift register VR, and a sensor region 5ENS is formed between the base (1) and an insulating layer (7) such as SiO2. formed by.

第6図は第4図の[−1を線上における断面図であシ、
また第7図は一時蓄積領域PSの縦断面図であって、一
時蓄積領域psに対応する部分にはバルクチャンネル用
のN−型領域(,4が形成さnてこの部分に元信号電荷
が蓄積さnる。他方のN型領域αQはチャンネルストッ
パ領域C8用のものである。
Figure 6 is a sectional view taken along the line [-1 in Figure 4;
FIG. 7 is a vertical cross-sectional view of the temporary storage region PS, in which an N-type region (, 4) for a bulk channel is formed in a portion corresponding to the temporary storage region PS, and original signal charges are stored in the lever portion. The other N type region αQ is for the channel stopper region C8.

領域(2)とαηとの間に対応する基体(1)の表面に
は夫々電極α枠と(至)が垂直方向に延在するように所
定の幅をもって被着形成されて、一方の電極α樽がチャ
ンネルストッパ領域C8用の電極として利用さぁ他方の
電極αりが電荷の読出しダート領域ROG用の電極とし
て利用さnる。基体(1)の上面にはさらに電荷を垂直
転送するための複数の電極φ1〜φ4が被着形成さnる
On the surface of the substrate (1) corresponding between the region (2) and αη, electrodes α frame and (to) are formed with a predetermined width so as to extend in the vertical direction, and one electrode The α barrel is used as an electrode for the channel stopper region C8, and the other electrode α is used as an electrode for the charge reading dart region ROG. A plurality of electrodes φ1 to φ4 for vertically transferring charges are further formed on the upper surface of the base (1).

第4図にその電極形状の一例を示す。この例では4本の
電極φl〜φ4によって光信号電荷を垂直転送するよう
にした場合で、N型領域(2)の形成さnた基体(1)
の上面には、水平方向に延在する4本の電極φl〜φ4
が垂直方向に順次交互に被着形成される。センサー領域
Shl:Ns上は第5図にも示すように電極φ1〜φ4
で櫟わnないようにするため、夫々は櫛歯状をなし、電
極φ2とφ3及びφ1とφ4の各歯部が互いに向い合い
、かつ夫々の先端が一部重な)合うように各電極φl〜
φ4の形成位置が選定される。
FIG. 4 shows an example of the electrode shape. In this example, optical signal charges are vertically transferred using four electrodes φl to φ4, and the substrate (1) has an N-type region (2) formed thereon.
There are four electrodes φl to φ4 extending horizontally on the upper surface of the
are sequentially and alternately deposited in the vertical direction. Above the sensor region Shl:Ns are electrodes φ1 to φ4 as shown in FIG.
In order to avoid combing, each electrode has a comb-teeth shape, and the teeth of electrodes φ2 and φ3 and φ1 and φ4 face each other, and the tips of each electrode are partially overlapped. φl~
The formation position of φ4 is selected.

そして、こnら各電極φl〜φ4はセンサー領域BEN
B上1c覆わないで水平方向に延在させるため、各電極
φ!〜φ4の櫛歯状の基部(共通電極部分)は読出しダ
ート領域ROG及び一時蓄積領域PSに対応する基体(
1)の上面に形成さ牡る。このため、それらの部分の電
極構造は2層構造となる(第6図参照)。
Each of these electrodes φl to φ4 is a sensor area BEN.
In order to extend horizontally without covering 1c on B, each electrode φ! The comb-shaped base (common electrode part) of ~φ4 is connected to the base (
1) A hole formed on the top surface. Therefore, the electrode structure in those parts becomes a two-layer structure (see FIG. 6).

ただし、第6図のようなポテンシャルウェルとするため
、第2及び第4の電極φ2.φ4は第8図にも示すよう
に第1及び第3の電極φl、φ3よりも下層に位置する
ように選定される。
However, in order to form a potential well as shown in FIG. 6, the second and fourth electrodes φ2. As shown in FIG. 8, φ4 is selected to be located below the first and third electrodes φl and φ3.

このような受光部(15Qの製法の一例は後述するとし
て、上述した読出しダート用電極(1■には第9図Aに
示す読出しダート信号S、が供給されると共に、転送用
の電極φl〜φ4のうち、電極部及びφ2には第9図B
に示す転送りロックCKI + CK2カニ、他方の電
極φ3及びφ4には同図Cに示す転送りロックCK3 
+ CK4が供給さnる。
An example of the manufacturing method of such a light receiving section (15Q will be described later).The readout dart signal S shown in FIG. 9A is supplied to the readout dart electrode (1), and the transfer electrode φl~ Of φ4, the electrode part and φ2 are shown in Figure 9B.
The transfer lock CKI + CK2 shown in Figure C is connected to the other electrode φ3 and φ4, and the transfer lock CK3 shown in Figure C is connected to the other electrode φ3 and φ4.
+ CK4 is supplied.

1フイールドの期間は受光期間と垂直ブランキング期間
V−BLKとに分けらC,ブランキング期間V−BLK
はさらKm出し転送期間と元信号の電荷転送期間とに分
けらする。これらの転送期間の間、第10図に示す所定
レベルと所定位相の転送りロックCK1〜CK4が対応
する電極φ1〜φ4に供給さする。
The period of one field is divided into a light receiving period and a vertical blanking period V-BLK, and a blanking period V-BLK.
It is further divided into a Km output transfer period and an original signal charge transfer period. During these transfer periods, transfer locks CK1-CK4 of a predetermined level and a predetermined phase shown in FIG. 10 are supplied to the corresponding electrodes φ1-φ4.

受光期間は垂直シフトレジスタVRはオー・マーフロー
ドレインとしても機能するように、読出しダート用電極
(至)には所定電位Vl(>0)のダート信号S0が加
えられると共に、電極φ1〜φ4vこは一夫々オーバー
フローした光信号電荷を蓄積するため夫々所定電位に選
定さtた一部レベルのクロックCK1〜CK4が加えら
れる・ 第6図Aがそのときのポテンシャルウェルの一例を示す
During the light reception period, a dart signal S0 of a predetermined potential Vl (>0) is applied to the reading dart electrode (to), and the electrodes φ1 to φ4v are connected so that the vertical shift register VR also functions as an O-Murflow drain. In order to accumulate the overflowing optical signal charge, clocks CK1 to CK4 of a partial level selected to a predetermined potential are applied respectively. FIG. 6A shows an example of the potential well at that time.

受光期間中、センサー領域8EN8で光電変換さ詐た光
信号電荷は第4図の矢印a r b h c・・・で示
す方向に拡散して一時蓄積領域PS下のポテンシャルウ
ェルに蓄積さnる(第7図参照)。このとき、第611
Aに示すように胱出しケ゛−ト領域ROGのポテンシャ
ルはt位置1に対応した深さをもつので、受光期間中こ
のポテンシャルを越える電荷が一時蓄積領域PSK流I
L込む(そのときのポテンシャルを破線で示す)と、そ
れらの電荷はすべて過剰な電荷となって垂直シフトレジ
スタVlllニオーツマ−フローする(第8図A参照)
。そのため、垂直ブランキング期間V−BLKの前半部
ではこの過剰電荷を掃出し転送する必要がある。
During the light reception period, the optical signal charges photoelectrically converted in the sensor region 8EN8 are diffused in the directions shown by the arrows a r b h c... in FIG. 4 and accumulated in the potential well under the temporary storage region PS. (See Figure 7). At this time, the 611th
As shown in A, the potential of the bladder outlet region ROG has a depth corresponding to the t position 1, so during the light reception period, charges exceeding this potential are temporarily accumulated in the storage region PSK flow I.
When L is input (the potential at that time is shown by the dashed line), all of those charges become excess charges and flow into the vertical shift register (see Figure 8A).
. Therefore, it is necessary to sweep and transfer this excess charge in the first half of the vertical blanking period V-BLK.

掃出し転送期間では、ff−)信号S。全コントロール
して読出しダート領域ROGを閉じる(第9図A)。こ
のときのポテンシャルを第6図Aに1点鎖線で示す。こ
れは一時蓄積領域psに蓄積さ扛た光信号電荷が垂直シ
フトレジスタvR1111に流出しないようにするため
である。この状態で、電極φl〜φ4に供給さ扛るクロ
ックCK、〜CK4に基いて過剰電荷が掃出し転送さn
る。
During the sweep transfer period, the ff-) signal S. The read dirt area ROG is closed with full control (FIG. 9A). The potential at this time is shown by a dashed line in FIG. 6A. This is to prevent the optical signal charges accumulated in the temporary accumulation region ps from flowing out to the vertical shift register vR1111. In this state, excess charges are swept out and transferred based on the clocks CK, ~CK4 supplied to the electrodes φl~φ4.
Ru.

第10図に示すように転送りロックCKIとCK。Transfer locks CKI and CK as shown in FIG.

は同相であるがそのレベルが異る。同様に、転送りロッ
クCK3とCK4は同相でそのレベルが異る。
are in phase, but their levels are different. Similarly, transfer locks CK3 and CK4 are in phase and have different levels.

そして、転送りロックCK1 + CKzとは逆相の関
係に選ばれている〇 受光期間での転送りロックCK、〜CK40レベルは第
9図B及びCのように選ばれているので、過剰電荷は垂
直シフトレジスタVRのうち第2及び第4の電極φ2.
φ4に対応するポテンシャルウェルに蓄積さnている。
The transfer lock CK1 + CKz is selected to have an opposite phase relationship. The transfer lock CK, ~CK40 level during the light reception period is selected as shown in Figure 9 B and C, so that the excess charge is are the second and fourth electrodes φ2. of the vertical shift register VR.
n is accumulated in the potential well corresponding to φ4.

掃出し転送期間では第10図に示す転送りロックCK、
〜CK4が加えられるために、転送開始時の転送りロッ
クCKI −CK4 (時点ta)により第3及び第4
の電極φ3.φ4下のポテンシャルのみ変化して1つお
きの蓄at荷(この例ではS、8)が転送さnて残シの
蓄積電荷SB、SDに混   C 合さnる(第8図B)。次の転送タイミング(時点tb
)では全ての転送りロックCK、〜CK4のレベルが反
転するので、ポテンシャルウェルの形成位置がシフトし
、こ匹に伴って電荷(RA+SB) 及ヒ(Sc+SD
)が移動する。このようにして電荷転送が行なわnる。
During the sweep transfer period, the transfer lock CK shown in FIG.
~CK4 is added to the third and fourth transfer locks CKI-CK4 (time ta) at the start of the transfer.
The electrode φ3. Only the potential under φ4 changes, and every other stored charge (S, 8 in this example) is transferred and mixed with the remaining stored charges SB and SD (FIG. 8B). Next transfer timing (time tb
), the levels of all transfer locks CK, ~CK4 are reversed, so the formation position of the potential well shifts, and along with this, the charges (RA+SB) and (Sc+SD)
) moves. Charge transfer is performed in this manner.

転送りロックCKI〜CK4は数Zoo kHz、例え
ば600 kHzの高周波信号であるので、高速転送が
行なわれる・このとき蓄積部(15B)にも同様な転送
りロックが供給されているので、信号キャリヤとしては
使用さnない。
Since the transfer locks CKI to CK4 are high frequency signals of several Zoo kHz, for example 600 kHz, high-speed transfer is performed. At this time, similar transfer locks are also supplied to the storage section (15B), so the signal carrier Not used as.

なお、第10図に示すように転送りロックCK。In addition, as shown in FIG. 10, the transfer lock CK.

〜CK4のレベルを異ならし、たのは第8図に示すよう
に、転送方向に対し所定のポテンシャルバリヤ−e形成
するためである・ 掃出し転送が終了した後は、本来の光信号電荷を垂直シ
フトレジスタVRに転送するため読出しy−ト領域RO
G ’&開けて信号の読出しが行なわれる。
The reason for changing the level of ~CK4 is to form a predetermined potential barrier in the transfer direction, as shown in Figure 8. After the sweep transfer is completed, the original optical signal charge is vertically Readout area RO for transfer to shift register VR
G'& is opened and the signal is read out.

このときの電位間係を第9図に示すと共に、これ[、!
:つて生ずるポテンシャルの関係を第6図Bに示す。こ
の転送によって垂直シフトレジスタ■には、掃出し転送
時と同様な位置に光信号電荷が蓄積されるから、元信号
電荷は第8図Aのように蓄積さnる。
The potential relationship at this time is shown in FIG. 9, and this [,!
: The resulting potential relationship is shown in FIG. 6B. As a result of this transfer, optical signal charges are accumulated in the vertical shift register (2) at the same positions as in the sweep transfer, so the original signal charges are accumulated as shown in FIG. 8A.

電荷転送期間に入ると、第1〜第4の電極φ1〜φ4に
は夫々所定の転送りロックCKl−CK4が供給さnて
、受光部(15A)の光信号電荷が高速転送されて蓄積
部(’15B)の対応する位置に蓄積さnる。
When the charge transfer period begins, predetermined transfer locks CKl-CK4 are supplied to the first to fourth electrodes φ1 to φ4, respectively, and the optical signal charge of the light receiving section (15A) is transferred at high speed to the storage section. ('15B) is stored at the corresponding position.

インターレースを考慮して電荷転送全行なうには、例え
ばそのフィールドでの電荷転送期間における転送りロッ
クCK、〜CK4の位相を前のフィールドとは逆相にす
nばよい。この場合転送時のポテンシャルバリヤーを配
慮するならば、転送りロックCKIとCK3を入几換え
、CK2とCK4を入れ換えnばよく、こうすることに
よって時点t&でのポテンシャルウェルは第8図りのよ
うになる。こnによって、前のフィールドでの水平ライ
ンとは異る水平ライン上の光信号電荷を得ること力;で
きる。
In order to perform all charge transfers taking interlace into consideration, for example, the phase of transfer locks CK to CK4 during the charge transfer period in that field may be set to be in opposite phase to that in the previous field. In this case, if the potential barrier at the time of transfer is taken into account, transfer locks CKI and CK3 should be swapped, and CK2 and CK4 should be swapped.By doing this, the potential well at time t& will be as shown in Figure 8. Become. This makes it possible to obtain optical signal charges on a horizontal line that is different from the horizontal line in the previous field.

第11図(鼾士)はこの発明に係る受光部(15A)の
製造方法の一例を示す。同図A −Eは第4図の■−■
線上における工程図で、同図F−HはI−1線上におけ
る工程図で、同図りは同図Fに対応し、同図Eは同図G
に対応する。
FIG. 11 (Snorter) shows an example of a method for manufacturing the light receiving section (15A) according to the present invention. Figure A-E are ■-■ in Figure 4.
In the process drawings on the line, F-H in the same diagram is a process diagram on the I-1 line, which corresponds to F in the same diagram, and E in the same diagram corresponds to G in the same diagram.
corresponds to

まずP型シリコン基体(1)の上面には8102等の絶
縁層(7)と5lNN(ト)が形成される(同図A)O
次いで、所定位置にIリシリコン等よpなる電極α枠。
First, an insulating layer (7) such as 8102 and 5lNN (T) are formed on the upper surface of the P-type silicon substrate (1) (A in the same figure).
Next, an electrode α frame made of silicon or the like is placed in a predetermined position.

θ場が被着形成さ扛、しかる後全面にN−型領域用のイ
オン注入が行なわnる(同図B)。N−型領域形成後、
垂直シフトレジスタ■とチャンネルストツノ9−C8の
領域を残して全面にレジスト層<21)が被着形成さn
、その後さらに同一領域にイオン注入さnて、N型領域
が形成さnる(同図C)。その後、レジスト層eηを除
去して選択的にポリシリコン等よシなる第2及び第4の
電極φ2.φ4 f)Z形成され(同図り、F)、こn
に続いて、同じくポリシリコン等よシなる第1及び第2
の電極φ1.φ3力!選択的に形成さnて転送電極φl
〜φ4の製造工程−1)E終了する(同図E、G)。
After the θ field is deposited, ions for the N- type region are implanted over the entire surface (FIG. B). After forming the N-type region,
A resist layer <21) is deposited on the entire surface except for the vertical shift register ■ and channel block horn 9-C8 area.
Then, ions are further implanted into the same region to form an N-type region (FIG. C). Thereafter, the resist layer eη is removed and the second and fourth electrodes φ2. φ4 f) Z is formed (same figure, F), this
Next, the first and second layers, which are also made of polysilicon, etc.
The electrode φ1. φ3 power! Selectively formed transfer electrode φl
~ φ4 manufacturing process-1) E ends (E, G in the same figure).

次に、センサー領域S ENSのSiN層翰を除去して
、&ロンイオンを注入してN″″型領域α乃をP型イヒ
する(同図H)。
Next, the SiN layer of the sensor region SENS is removed, and ions are implanted to make the N'''' type region α into a P type (see H in the same figure).

以上の工程によって目的とする受光部(1sA)d’影
形成れる。
Through the above steps, the desired shadow of the light receiving portion (1sA) d' is formed.

なお、上述した転送りロックCK1 ” CK4は4相
クロツクとして用いてもよい。
Note that the transfer locks CK1''CK4 described above may be used as four-phase clocks.

インターレースの場合、受光期間中のレベルを変更すn
ば、転送期間でのクロックをフィールド毎に反転する必
要はない。
In the case of interlace, change the level during the light reception period.
For example, there is no need to invert the clock during the transfer period for each field.

また上述では、耽出しr−ト領域ROGは受光期間中常
時アキュムレーションモードにして過駆1の電荷を垂直
シフトレジスタ■にオーtN−フローさせたが、水平ブ
ランキング期間中のみアキュムレ−ジョンモードにして
過剰の電荷をオーバーフローさせてもよい、 この発明の適用される固体撮像素子は第3図に示すよう
なタイプのものではなく、通常のインターライン転送方
式をとる固体撮像素子でもよい。
In addition, in the above description, the start r-to region ROG is always in the accumulation mode during the light reception period to cause the charge of the overdrive 1 to auto-flow into the vertical shift register (2), but it is set in the accumulation mode only during the horizontal blanking period. The solid-state imaging device to which the present invention is applied is not of the type shown in FIG. 3, but may be a solid-state imaging device using a normal interline transfer method.

発明の詳細 な説明したように、この構成によれば従来に比し次のよ
うな特徴を有する。
As described in detail, this configuration has the following features compared to the prior art.

[F] センサー構成SEMSにはポリシリコン等の電
接層がないので、感度、特に短波長の感度が劣化しない
[F] Since the sensor configuration SEMS does not have an electrical contact layer such as polysilicon, the sensitivity, especially the short wavelength sensitivity, does not deteriorate.

■ 受光中、基体(1)の奥深くで光電変換された畏波
長成分による電荷はバルク中に拡散する。
■ During light reception, charges due to wavelength components photoelectrically converted deep inside the substrate (1) diffuse into the bulk.

しかも、電荷転送は高速で行なわれるのでスミアの発生
を抑制できる。
Moreover, since the charge transfer is performed at high speed, the occurrence of smear can be suppressed.

■ 受光期間、絞出しダート領域ROGを介して過剰電
荷が垂直シフトレジスタVRに流出するので、ブルーミ
ングを抑圧できると共に、垂直シフトレジスタvRヲオ
ーバーフロードレインとしても利用することができるた
め、素子面を有効に利用することができる。
■ During the light reception period, excess charge flows to the vertical shift register VR through the squeeze dirt region ROG, so blooming can be suppressed and the vertical shift register VR can also be used as an overflow drain, making the element surface more effective. It can be used for.

■ PH1合によるセンサー構成のものに比し、N−型
領域αカによって蓄積された電荷を転送するので完全転
送となシ、残像が少ない。
(2) Compared to the sensor configuration based on PH1 combination, the charges accumulated in the N-type region α are transferred, so the transfer is complete and there is less afterimage.

なお、第11図GK示したようにセンサー領域5ENs
中に形成されているN−型便域を残して(N−P)によ
るセンサー領域5ENSとすれば、このセンサー領域I
Nsで光電変換された光信号電荷を有効に、効率よく一
時蓄積領域psに蓄積することができる。
Furthermore, as shown in Fig. 11 GK, the sensor area 5ENs
If we leave the N-type toilet area formed inside and make the sensor area 5ENS by (N-P), then this sensor area I
The optical signal charge photoelectrically converted by Ns can be effectively and efficiently stored in the temporary storage region ps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は固体撮像素子の従来例を示す要部の
断面図、第3図はこの発明を適用できる固体撮像素子の
一例を示す平面図、第4図はこの発明に係る固体撮像素
子の受光部の一例を示す平面図、第5図はそのI−1線
上断面図、及び基体表面に対するポテンシャルを示す図
、第6図は■−■線上の断面図及びそのポテンシャルを
示す図、詑7図は一時蓄積領竣の断面図及びそのポテン
シャルを示す図、第8図は垂直シフトレジスタの縦断面
図、第9図及び蕗10図は使用クロックの波形図、第1
1図はこの発明に係る固体撮像素子の製造方法の一例を
示す工程図である。 α力は固体撮像素子、(15A)は受光部、(15B)
は蓄積部、(1)は−の導電型の基体、(2) 、α力
は他導電型の領JLVRはシフトレジスタ、ROGは読
、出しr−ト領竣、5BNSはセンサー領域、C8はチ
ャンネルストッパー領域、PSは一時蓄積@竣、φ!〜
φ4は転送電荷である。
1 and 2 are cross-sectional views of essential parts of a conventional example of a solid-state image sensor, FIG. 3 is a plan view showing an example of a solid-state image sensor to which the present invention can be applied, and FIG. 4 is a solid-state image sensor according to the present invention. FIG. 5 is a plan view showing an example of the light-receiving part of the image sensor; FIG. 5 is a sectional view taken along the line I-1 and a diagram showing the potential with respect to the substrate surface; FIG. 6 is a sectional view taken along the line ■-■ and a diagram showing the potential. , Figure 7 is a cross-sectional view of the temporary storage area and its potential, Figure 8 is a vertical cross-sectional view of the vertical shift register, Figures 9 and 10 are waveform diagrams of the clock used, and Figure 1
FIG. 1 is a process diagram showing an example of a method for manufacturing a solid-state image sensor according to the present invention. α force is a solid-state image sensor, (15A) is a light receiving part, (15B)
is the storage part, (1) is the base of negative conductivity type, (2), α force is the area of other conductivity type, JLVR is the shift register, ROG is the read/output area, 5BNS is the sensor area, and C8 is the area of the other conductivity type. Channel stopper area, PS is temporarily accumulated @ completed, φ! ~
φ4 is a transfer charge.

Claims (1)

【特許請求の範囲】[Claims] 水平及び垂直方向に夫々所定のピッチで配列された複数
の受光領域と、垂直方向に延びる複数の垂直シフトレジ
スタと、上記垂直方向に配列された受光領域の間に夫々
形成され、上記隣シ合う受光領域で夫々元電変換された
光信号電荷が蓄積さnる一時蓄積領域と、この一時蓄積
領域と垂直シフトレジスタとの間に形成された読出しダ
ート領域からなる固体撮像素子。
A plurality of light-receiving regions arranged at predetermined pitches in the horizontal and vertical directions, a plurality of vertical shift registers extending in the vertical direction, and a plurality of light-receiving regions arranged in the vertical direction, respectively formed between the light-receiving regions arranged in the vertical direction, and adjacent to each other. A solid-state image sensing device comprising a temporary storage area in which optical signal charges that have been electrically converted in a light-receiving area are accumulated, and a readout dirt area formed between the temporary storage area and a vertical shift register.
JP58081252A 1983-05-10 1983-05-10 Solid-state image pickup element Pending JPS59205756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58081252A JPS59205756A (en) 1983-05-10 1983-05-10 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58081252A JPS59205756A (en) 1983-05-10 1983-05-10 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS59205756A true JPS59205756A (en) 1984-11-21

Family

ID=13741193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58081252A Pending JPS59205756A (en) 1983-05-10 1983-05-10 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS59205756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915062B1 (en) * 2002-04-02 2009-09-02 코니카 미놀타 홀딩스 가부시키가이샤 Producing method of image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915062B1 (en) * 2002-04-02 2009-09-02 코니카 미놀타 홀딩스 가부시키가이샤 Producing method of image pickup device

Similar Documents

Publication Publication Date Title
US4875101A (en) Solid state photovoltaic imaging device with excess charge eliminator
US4040092A (en) Smear reduction in ccd imagers
US6974975B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and method for processing image signal
JPH0666914B2 (en) Solid-state imaging device
US4194213A (en) Semiconductor image sensor having CCD shift register
JPS6216599B2 (en)
JPS5916472A (en) Solid-state image pickup device
JP2597600B2 (en) Solid-state imaging device
US5063449A (en) Solid-state image sensor employing a gate and diode for bias charge injection
JPH0831988B2 (en) Solid-state imaging device
JPS59205756A (en) Solid-state image pickup element
JPH0443429B2 (en)
JPH09172156A (en) Solid-state image pick-up device and its fabrication
JPS6210469B2 (en)
JP2002151673A (en) Solid-state image pickup element
JPS58212167A (en) Interline transfer charge coupled element
JPH031871B2 (en)
JPH0421351B2 (en)
JP3562128B2 (en) Solid-state imaging device
JPS5818368Y2 (en) solid-state imaging device
JPH03246971A (en) Charge-coupled device and solid-state image sensing device using same
JPH0322755B2 (en)
JPS61248553A (en) Solid-state image pickup device
JPS60149270A (en) Driving method of solid state image pickup device
JPH06268923A (en) Drive method for solid-state image pickup device