JPS59202614A - Magnetic element - Google Patents

Magnetic element

Info

Publication number
JPS59202614A
JPS59202614A JP7866183A JP7866183A JPS59202614A JP S59202614 A JPS59202614 A JP S59202614A JP 7866183 A JP7866183 A JP 7866183A JP 7866183 A JP7866183 A JP 7866183A JP S59202614 A JPS59202614 A JP S59202614A
Authority
JP
Japan
Prior art keywords
magnetic
thickness
amorphous alloy
thin film
mixture consisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7866183A
Other languages
Japanese (ja)
Other versions
JPH0254641B2 (en
Inventor
Hiroshi Shimada
寛 島田
Takashi Hasegawa
隆 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP7866183A priority Critical patent/JPS59202614A/en
Publication of JPS59202614A publication Critical patent/JPS59202614A/en
Publication of JPH0254641B2 publication Critical patent/JPH0254641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/133Amorphous metallic alloys, e.g. glassy metals containing rare earth metals
    • H01F10/135Amorphous metallic alloys, e.g. glassy metals containing rare earth metals containing transition metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To contrive improvement in frequency characteristics in the high frequency region by a method wherein a specific constitution is accomplished using an amorphous material. CONSTITUTION:The composition of the titled magnetic element is indicated by the formula T100-x{M100-y-zGyR2}x. Said magnetic element is formed by alternately laminating a plurality of magnetic thin films of 100Angstrom <=D<=10,000Angstrom consisting of an amorphous alloy wherein x, y and z satisfy 1<=x<=50, 0<=y<=100.0, 0<=z<=100.0 and 0<=y+z<=100, and amorphous insulating films in thickness (d) of 10Angstrom <=d<=2,000Angstrom . T indicates a metal element or a mixture consisting of at least one kind of Fe, Co and Ni, M indicates a metal element or a mixture consisting of at least one kind of Sc, Y, La, Ti, Zr, Hf, Be, Cr, Ta, W, Nb, V, Mo, Mn and Cu, G indicates an element or a mixture consisting of at least a kind of B, Si, C, Al, Ge, Sn and Sb, and R indicates an element or a mixture consisting of at least Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y.

Description

【発明の詳細な説明】 この発明は、変成器、インダクタあるいは磁気ヘッド等
の磁気素子に係るもので、特に高周波域における周波数
特性の改善を計った磁気素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic element such as a transformer, an inductor, or a magnetic head, and particularly to a magnetic element with improved frequency characteristics in a high frequency range.

この種の磁気素子の磁心材料として、近年、非晶質磁性
材料が注目されている。非晶質磁性材料は、高透磁率、
低抗磁力、低磁気損失等の点で従来の結晶性磁性材料に
比べて優れた磁気特性を有しており、とnを磁心として
用いた磁気素子は従来の磁気素子に比べて高域周波数特
性が良好である。ところで、従−来の非晶質磁性材料は
、一般に、ローラ急冷法と呼ばれる液相急冷法によって
薄帯状のものとして製作されているが、この種の製法に
よって得られる薄帯状材料の厚さけ、通常15μm以上
である。また、このような材料は、上記薄帯状のものを
巻回して、あるいはこの薄帯状のものから打ち抜かれた
環状板を積層して、磁心に形成されるため、製作過程に
おいても、また磁心IC形成した後においても、熱処理
等によって磁区構造を制御することは極めて困難であっ
た。したがって、上記のような製法による非晶質材料を
用いた磁心け、その材料の薄さの限界から渦電流が発生
−し易く、また磁区構造の制御の困難性から磁化過程が
磁壁の運動に犬きく依存するため、高周波域における損
失が急激に増大することになυ、この結果、数100K
H1までしか使用することができないという問題があっ
た。
In recent years, amorphous magnetic materials have attracted attention as magnetic core materials for this type of magnetic element. Amorphous magnetic materials have high magnetic permeability,
It has superior magnetic properties compared to conventional crystalline magnetic materials in terms of low coercive force, low magnetic loss, etc., and magnetic elements using n as the magnetic core have higher frequencies than conventional magnetic elements. Good characteristics. By the way, conventional amorphous magnetic materials are generally produced in the form of a thin strip by a liquid phase quenching method called a roller quenching method. It is usually 15 μm or more. In addition, since such materials are formed into magnetic cores by winding the above-mentioned thin strip-like material or stacking annular plates punched from the thin strip-like material, it is difficult to form the magnetic core IC during the manufacturing process. Even after formation, it was extremely difficult to control the magnetic domain structure by heat treatment or the like. Therefore, in a magnetic core using an amorphous material produced by the manufacturing method described above, eddy currents are likely to occur due to the thinness of the material, and the difficulty in controlling the magnetic domain structure causes the magnetization process to be affected by the motion of the domain walls. Because of this, the loss in the high frequency range increases rapidly, and as a result, the
There was a problem that it could only be used up to H1.

上記の問題を解決するには、非晶質材料を、スパッタ法
あるいは蒸着法等の気相成長法によって光分に薄い薄膜
状に形成することが考えられる。
In order to solve the above problem, it is conceivable to form an amorphous material into a light-thin film by a vapor phase growth method such as a sputtering method or a vapor deposition method.

このようにすれば、渦電流を減少させることができ、し
かも反磁界効果が小となるので磁区構造の制御も比較的
容易になる。したがって、非晶質材料を気相成長法によ
って薄膜状に形成し、かつこnを非磁性絶縁物を介在さ
せて複数枚積層して磁心とすれば4 10 MHz  
程度まCW用可能な磁気素子を得ることができる。しか
しながらこの場合にも、材料を使用目的に応じた磁心の
形状において熱処理することが困難であること、また渦
電流が減少けするが残存すること、等によって、数lO
MH2付近で損失が急増してし甘・ハ、それ以上の周波
数では使用し得えないという問題があった。したがって
、周波数特性を更に改善するには、使用する非晶質材料
の厚さを更に薄くすることが考えられるが、これIt1
μm以下の薄さにすると、従来と同様の考え方で構成し
たのでは、気相成長時に起こる島状構造あるいは基板の
凹凸等が影響して基本的な磁気特性が劣化してしまうた
め特性の改善は期待できなかった。
In this way, eddy currents can be reduced, and the demagnetizing field effect is also reduced, making control of the magnetic domain structure relatively easy. Therefore, if an amorphous material is formed into a thin film by a vapor phase growth method and a plurality of layers are laminated with a non-magnetic insulator interposed to form a magnetic core, the frequency is 410 MHz.
A magnetic element that can be used for CW to some extent can be obtained. However, even in this case, it is difficult to heat-treat the material in the shape of the magnetic core depending on the purpose of use, and the eddy current remains although it is reduced.
There was a problem in that the loss increased rapidly near MH2, making it impossible to use it at frequencies higher than that. Therefore, in order to further improve the frequency characteristics, it is conceivable to further reduce the thickness of the amorphous material used, but this
If the thickness is made to be less than μm, if the structure is constructed using the same concept as before, the basic magnetic properties will deteriorate due to the effects of island structures or substrate irregularities that occur during vapor phase growth, so it is necessary to improve the properties. I couldn't expect that.

この発明は、以上の諸事情に艦み、非晶質材料を用いか
つ新規な構成によって、従来の磁気素子より高周波域に
おける周波数特性が一層優れた磁気素子を提供すること
にある。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, it is an object of the present invention to provide a magnetic element that uses an amorphous material and has a novel configuration, and has better frequency characteristics in a high frequency range than conventional magnetic elements.

以下、この発明による磁気素子につ”ハて詳細に説明す
る。
The magnetic element according to the present invention will be explained in detail below.

この発明による磁気素子の磁心は、特定範囲内の厚さを
有する非晶質合金の薄膜と、他の特定範囲内の厚さを有
する絶縁物の薄膜とを、ダ互に積層して構成することに
よって、渦電流の抑制効果に加えて、非晶質合金の薄膜
間の磁気的相互作用を利用して周波数特性の向上を計っ
ている。すなわち、上記の場合、非晶質合金の膜厚を数
千A以下、また絶縁物の浮きを数百諷とすれば、非晶質
合金の膜厚を薄くしたことに起因してその磁壁および構
造欠陥から漏れ磁束が生じたとしても、この漏れ磁束は
両隣りの非晶質合金薄膜を介して還流するようになり、
これによって前記磁壁および構造欠陥が持つエネルギポ
テンシャルの勾配が緩やかになると共に、同磁壁の厚さ
も増加する。したがって、上記のような構成にすれば、
磁壁の移動が容易になり、かつ非晶質合金の薄膜に島状
構造等の欠陥が形成されたとしても、この欠陥の影響を
低減することができる。
The magnetic core of the magnetic element according to the present invention is constructed by laminating a thin film of an amorphous alloy having a thickness within a specific range and a thin film of an insulating material having a thickness within another specific range. This not only suppresses eddy currents, but also utilizes magnetic interaction between thin films of amorphous alloy to improve frequency characteristics. In other words, in the above case, if the film thickness of the amorphous alloy is several thousand amps or less, and if the insulator floats in the hundreds, then the domain wall and Even if leakage flux occurs due to structural defects, this leakage flux will flow back through the amorphous alloy thin films on both sides.
As a result, the gradient of the energy potential of the domain wall and structural defects becomes gentler, and the thickness of the domain wall also increases. Therefore, if you configure as above,
The movement of domain walls becomes easier, and even if a defect such as an island structure is formed in a thin film of an amorphous alloy, the influence of this defect can be reduced.

ここで、この発明において使用される非晶質合金の組成
について述べる。この非晶質合金は、T100−Z ”
100−y−Z Gy”Z )Zなる組成式で示される
もので、ここでTは、常温における磁気飽和レベルを高
くするだめの強磁性金属であって、例えば、F6. C
□、 N1のうちの少くとも1種以上からなる金属元素
(またはこれらのうちの2種以上の混合物が好適)であ
る。この強磁性金属Tは、飽和磁束密度を高めるために
、その含有量が原子鎖チで50以上かつ99以下である
ことが望ましい。また、Mは、磁歪効果を調整するため
に必要とされる金属であって、例えば、sc、 y、 
La、 ’ri、 zr、 Hf、 Be、 Cr、 
Ta、 W。
Here, the composition of the amorphous alloy used in this invention will be described. This amorphous alloy is T100-Z”
It is represented by the composition formula 100-y-Z Gy"Z)Z, where T is a ferromagnetic metal that increases the magnetic saturation level at room temperature, for example, F6.
□, N1 (or a mixture of two or more of these is preferred). In order to increase the saturation magnetic flux density, the content of the ferromagnetic metal T is desirably 50 or more and 99 or less in terms of atomic chain. Furthermore, M is a metal required to adjust the magnetostrictive effect, such as sc, y,
La, 'ri, zr, Hf, Be, Cr,
Ta, W.

Nb、■、141Mn、Cuのうちの少くとも1種以上
からなる金属元素、(またはこれらのうちの2種以上の
混合物が好適)である。この磁歪調整用金属Mは、非晶
質合金の結晶化温度を上昇させる効果があり、こnによ
って非晶質合金の熱的な安冗度が得られる。また、Gは
、この非晶質合金に強磁性金属TとしてCo  を多量
に使用した場合に、非晶質化を容易にするために用いら
れる半金属元素で、例えば、B 、 St、 C,A#
、 Ge、 sn、 Sbのうちの少くとも1種以上か
らなる元素である。
A metal element consisting of at least one of Nb, 141Mn, and Cu (or a mixture of two or more of these is preferred). This magnetostriction adjusting metal M has the effect of raising the crystallization temperature of the amorphous alloy, thereby providing thermal stability of the amorphous alloy. Furthermore, G is a metalloid element used to facilitate amorphization when a large amount of Co is used as the ferromagnetic metal T in this amorphous alloy, such as B, St, C, A#
, Ge, sn, and Sb.

また、Rは、co  を多量に用いた場合に結晶化温度
の低下等の不安定性が生じた場合に用いられるもので、
例えばCe、 Pr、 Nd、 Pm、 Sm、 Eu
、 Gd。
In addition, R is used when instability such as a decrease in crystallization temperature occurs when a large amount of co is used.
For example, Ce, Pr, Nd, Pm, Sm, Eu
, Gd.

Tos D’ls Ho、 Er、 Tm、 Yb、 
Lu、 Yのうちの少くとも1種以上からなる元素であ
る。以上に述べた調整用の元素M、G、Rけ、その含有
量χが原子量係で1〜50%となる。この場合、磁歪調
整用金属Mは必須成分であるが、他の元素G、Rは各々
必要に応じて用いられるものである。したがって、元素
Mに対する元素GO含有量yおよび元素Rの含有量2は
Tos D'ls Ho, Er, Tm, Yb,
It is an element consisting of at least one of Lu and Y. The content χ of the adjusting elements M, G, and R described above is 1 to 50% in terms of atomic weight. In this case, the magnetostriction adjusting metal M is an essential component, but the other elements G and R are each used as necessary. Therefore, the element GO content y and the element R content 2 for element M are:

0≦y<1o。0≦y<1o.

O≦z<100 0≦)’−1−Z<100 となる。O≦z<100 0≦)'-1-Z<100 becomes.

ところで、この発明による磁気素子は、主として高周波
域で使用することを目的としているので、半導体集積回
路等との結合のために小型化、低電力化が可能であるこ
とが望ましく、さらに、製作過程での化学的処理あるい
は物理的加工(例えば応力付加、高温加熱等)に耐える
ものでなければならなハ。したがって、前記含有量χ#
 3’ t zは。
By the way, since the magnetic element according to the present invention is mainly intended for use in a high frequency range, it is desirable that it can be made smaller and lower in power for coupling with semiconductor integrated circuits, etc. It must be able to withstand chemical or physical processing (e.g. stress application, high temperature heating, etc.). Therefore, the content χ#
3' tz is.

Tによる飽和磁束密度の向上、Mによる磁歪調整、また
M、G、Hによる化学的処理の容易さおよび高温におけ
る磁気特性の安定化が最適となるように各々適宜の値に
設定されなければならない。
Each must be set to an appropriate value to optimize the improvement of saturation magnetic flux density by T, the magnetostriction adjustment by M, and the ease of chemical treatment and stabilization of magnetic properties at high temperatures by M, G, and H. .

次に、この発明における絶縁膜用材料としては、容易に
薄膜状に形成し得る非磁性絶縁物である必要性から、8
1021M203  あるいは40 等の酸化物が挙げ
られる。
Next, the material for the insulating film in this invention needs to be a non-magnetic insulator that can be easily formed into a thin film.
Examples include oxides such as 1021M203 or 40.

次に、前述した各組成物からなる非晶質合金の薄膜と、
上記組成物からなる絶縁膜との積層構造について詳述す
る。
Next, a thin film of an amorphous alloy made of each of the above-mentioned compositions,
The laminated structure with the insulating film made of the above composition will be described in detail.

w、1図は、Co87zr5Nb8  なる組成を有し
かつスパッタ法によって形成された非晶質合金の磁性薄
膜を、単層構造で使用した場合と、各層間に5IO2か
らなる厚さ50^の絶縁膜を介在させて4層の多層構造
にして使用した場合とについて、前記磁性薄膜の厚さD
を変化させた時のこれら両者の抗磁カシの変化を測定し
プロエトしたものである。この第1図から明らかなよう
に、鎖線で示す凰層構造のものは厚さDを減少させると
抗磁力山 が増大するが、実線で示す多層構造のものは
厚さDを減少させても抗磁力Ha はそれ程増大するこ
とがな(,100≦Dでヲトば磁気素子として好適な低
抗磁力を確保することができる。
w, Figure 1 shows a case where a magnetic thin film of an amorphous alloy having a composition of Co87zr5Nb8 and formed by sputtering is used in a single layer structure, and a case where an insulating film of 50^ thickness made of 5IO2 is used between each layer. The thickness D of the magnetic thin film when used in a multilayer structure of four layers with
The changes in the antimagnetic strength of both of these were measured and plotted when the values were changed. As is clear from Fig. 1, the coercive force peak increases as the thickness D decreases for the thin layer structure shown by the chain line, but the coercive force peak increases even if the thickness D is reduced for the multilayer structure shown by the solid line. The coercive force Ha does not increase that much (with 100≦D, a low coercive force suitable for the magnetic element can be ensured.

第2図は、第1図における測定に用いられたものと同種
の磁性薄膜を、単層構造で使用した場合と、各層間にS
tO□からなる厚さ100Xの絶縁膜を介在させて10
〜50層の多層構造にして使用した場合について、非晶
質合金の厚さDを変化させてこれら両者の初透磁率μ0
 をlKH2なる励磁周波数において測定したものであ
る。この図から明らかなように、鎖線で示す凰層構造の
ものは厚さDが10000A以下、特に5000ム以下
ではμ0が急激に減少するが、実線で示す多層構造のも
のはμ0の減少は僅かである。すなわち、多層構造のも
のにおいては、絶縁膜の厚さdにも左右されるが、厚さ
Dが10000A以玉特に5000A以下において磁性
薄膜間の磁気的相互作用によって磁気特性が著るしく改
善されろうまた、第3図は、co、ozrlo  なる
組成を有しかつスパッタ法によって形成された厚さ20
00Aの非晶質合金の薄膜を、眉間にSiO2からなる
絶縁膜を介在させて2層構造にしたものにおいて、この
絶縁膜の厚さ、dを変rヒさせた時の抗磁力Hcの変化
を測強しプロットしたものである。こ0図から明らかな
ように、厚さdが10A以下では抗磁力Hc  が急激
に増加してしまう。
Figure 2 shows the case where the same type of magnetic thin film as that used in the measurement in Figure 1 is used in a single layer structure, and the case where there is S between each layer.
10 with an insulating film of 100× thickness made of tO□ interposed
When using a multilayer structure of ~50 layers, the thickness D of the amorphous alloy is changed to increase the initial magnetic permeability μ0 of both of them.
was measured at an excitation frequency of lKH2. As is clear from this figure, in the case of the thin-layered structure shown by the chain line, μ0 decreases rapidly when the thickness D is less than 10000A, especially less than 5000μm, but in the case of the multilayered structure shown by the solid line, μ0 decreases only slightly. It is. In other words, in a multilayer structure, the magnetic properties are significantly improved due to the magnetic interaction between the magnetic thin films when the thickness D is 10,000 A or more and especially 5,000 A or less, although it also depends on the thickness d of the insulating film. Also, FIG. 3 shows a film having a thickness of 20 mm and having a composition of co, ozrlo and formed by a sputtering method.
Changes in coercive force Hc when the thickness of this insulating film, d, is varied in a two-layer structure of a thin film of 00A amorphous alloy with an insulating film made of SiO2 interposed between the eyebrows. is measured and plotted. As is clear from Figure 0, when the thickness d is less than 10A, the coercive force Hc increases rapidly.

さらに、第4図は、Co87zr5Nb8  なる組成
の非晶質合金の磁性薄膜を、層間にSiO□からなりか
つ厚さ100Aの絶縁膜を介在させて多層構造としたも
のについて、前記磁性薄膜の厚さDを2 s o oX
としかつ40層の多層構造とした場合(実線で示す)、
厚さDを1μmとしかつ12層の多層構造とした場合(
1点鎖線で示す)、厚さDを2.7μmとしかつ4層の
多層構造とした場合(2点鎖線で示す)の各場合につい
て、励磁周波数fを変化させて透磁率μを測定したもの
である。
Furthermore, FIG. 4 shows the thickness of the magnetic thin film of an amorphous alloy having a composition of Co87zr5Nb8, which has a multilayer structure with an insulating film of SiO□ and a thickness of 100 A interposed between the layers. D to 2 s o oX
In the case of a multilayer structure of 40 layers (shown by a solid line),
When the thickness D is 1 μm and the multilayer structure has 12 layers (
Magnetic permeability μ was measured by changing the excitation frequency f for each case (indicated by a dashed-dotted line), and when the thickness D was 2.7 μm and a multilayer structure of 4 layers (indicated by a dashed-double line). It is.

この図から明らかなように、磁性薄膜は2層以上積層し
たものであれば積層数シてよって特性上それ程大きな差
が生じることはないが、磁性薄膜の膜厚に関しては厚さ
Dが増加すると、高周波域における透磁率μが減少する
ことが解る。
As is clear from this figure, if a magnetic thin film is made of two or more laminated layers, there will not be a large difference in characteristics depending on the number of laminated layers, but as for the thickness of the magnetic thin film, as the thickness D increases, , it can be seen that the magnetic permeability μ decreases in the high frequency range.

そして、笛1図ないし第4図に示した各特性から明らか
なように、磁性薄膜の厚さDと、絶縁膜の厚さdとに関
して考察すると、厚さDをあまり増大させると(例えば
100OOA以上にすると)、両隣りの磁性薄膜からの
磁束が当該磁性薄膜の厚み方向の中間部イ・で浸透しな
くなるため、磁気的相互作用が減少して特性の改善が計
れないことが解る。また厚さDをあま、り薄くすると(
FJえば100八以下にすると)、絶縁膜の厚さdが相
対的に増大することになり、この結果、得られる磁束が
減少してしまう。また、厚さdをあまり増大させると(
例えば200OA以上にすると)、磁性薄膜間の磁気的
相互作用が減少して特性が劣化してしまう。さらに、鳳
厚さdを薄くし過ぎると(例えばIOA以下にすると)
、絶縁膜の島状構造が顕著となって絶縁物としての機能
を失なうこ相互作用を奏するようになり、全体が1つの
磁性材料のようになってしまうため特性が著ろしく劣化
する。したがって、この発明における非晶質合金薄膜の
厚さDは。
As is clear from the characteristics shown in Figures 1 to 4, when considering the thickness D of the magnetic thin film and the thickness d of the insulating film, if the thickness D is increased too much (for example, 100OOA As described above), it can be seen that the magnetic flux from the magnetic thin films on both sides stops penetrating in the middle part A in the thickness direction of the magnetic thin film, so the magnetic interaction decreases and the characteristics cannot be improved. Also, if the thickness D is made a little thinner (
If FJ is set to 1008 or less), the thickness d of the insulating film will increase relatively, and as a result, the obtained magnetic flux will decrease. Also, if the thickness d is increased too much, (
For example, if the current is 200 OA or more), the magnetic interaction between the magnetic thin films decreases and the characteristics deteriorate. Furthermore, if the thickness d is made too thin (for example, if it is less than IOA)
, the island-like structure of the insulating film becomes prominent and the insulating film loses its function as an insulating material, causing a cylindrical interaction, and the whole becomes like a single magnetic material, resulting in a significant deterioration of its properties. Therefore, the thickness D of the amorphous alloy thin film in this invention is:

100^≦D≦10,0OOA また、絶縁膜の厚さdは、 10^≦d≦2000λ であることが望ましい。100^≦D≦10,0OOA Moreover, the thickness d of the insulating film is 10^≦d≦2000λ It is desirable that

なお、以上に述べたような多層構造は、磁性薄膜として
バーマロ・イ等の結晶性の合金を用いても得られるよう
に思われるが、このような結晶性の合金を用いると、(
イ)結晶粒界のため抗磁力が高くなる。仲)熱処理を行
なうと相互拡散によって多層構造が損わnる、(ハ)ス
パッタ法等の気相成長法においては結晶成長が起きにく
′ハため強゛ハ相互付着力を持つ薄膜を形成することが
困難である、等の問題が生じることは周知の事実である
It should be noted that it seems that the multilayer structure as described above can be obtained by using a crystalline alloy such as Vermalloy as a magnetic thin film, but when such a crystalline alloy is used, (
b) Coercive force increases due to grain boundaries. (N) When heat treatment is performed, the multilayer structure is damaged due to interdiffusion. (C) Crystal growth is difficult to occur in vapor phase growth methods such as sputtering, so a thin film with strong mutual adhesion is formed. It is a well-known fact that problems arise, such as that it is difficult to do so.

次に、この発明による磁気素子の用途について述べると
、この磁気素子の磁心は、渦電流の発生が少なくかつ磁
壁の運動の著るしい高速化が計れるから、高周波域にお
ける高透磁率、低抗磁力、高角形性および高速磁化反転
特性等の優れた特性を有する。したがって、この磁気素
子は、今まで磁気素子自体の周波数特性の限界から数十
KH2程度の動作周波数に制限されていた各種装置にお
ける磁気素子として使用することができる。これらのも
のとしては、磁化過程の可飽和特性、非直線性、磁束レ
ベルの保持機能を利用する素子が含まれ、具体的には、
磁気増幅器、磁気移相器、あるいはバラメトIJツク増
幅器等における磁気素子、およびロイヤー発振器、スイ
ッチング電源、DC+  DCコンバータ等における磁
気素子等が挙げられる。また、リアクタンス機能、電気
エネルギ変成機能を利用して、高周波用インダクタ、変
圧器、変流器として構成することができる。さらに、高
透磁率、低抗磁力を利用して、磁気センサを構成するこ
とができる。この磁気センサとしては、所謂磁気ヘッド
あるいはマグ淋ソトトメータ用磁気素子等が挙げられる
。上記マグネトメータ用磁気素子は、具体的にはこの発
明による積層体を棒状に形成し、これに充分な巻き線を
施して構成すればよい。
Next, referring to the application of the magnetic element according to the present invention, the magnetic core of this magnetic element generates less eddy current and can significantly accelerate the motion of domain walls, so it has high magnetic permeability and low resistance in the high frequency range. It has excellent properties such as magnetic force, high squareness, and high-speed magnetization reversal characteristics. Therefore, this magnetic element can be used as a magnetic element in various devices that have hitherto been limited to an operating frequency of about several tens of KH2 due to the limits of the frequency characteristics of the magnetic element itself. These include devices that take advantage of the saturable nature of the magnetization process, its nonlinearity, and its ability to maintain magnetic flux levels;
Examples include magnetic elements in magnetic amplifiers, magnetic phase shifters, or parallel I/J amplifiers, and magnetic elements in Royer oscillators, switching power supplies, DC+DC converters, and the like. Further, by utilizing the reactance function and the electric energy conversion function, it can be configured as a high frequency inductor, transformer, or current transformer. Furthermore, a magnetic sensor can be constructed by utilizing high magnetic permeability and low coercive force. Examples of this magnetic sensor include a so-called magnetic head or a magnetic element for a mag-sototometer. Specifically, the above-described magnetic element for a magnetometer may be constructed by forming the laminate according to the present invention into a rod shape and winding the rod sufficiently.

次に、この発明の実施例1について詳述する。Next, Example 1 of the present invention will be described in detail.

〔実施例1〕 基板上に、co、。Zr3Nb5Nd2ノ組成からなり
かつ厚さ2500Xの非晶質合金薄膜と、SiO2・ 
からなる厚さ50Xの絶縁膜とをスパッタ法によって交
互に各50層、順次積層形成した。次に、その最上面に
、内径1.5u1外径3uの環状のフォトレジスト膜を
形成した後これをマスクとしてエツチングを行な1ハ、
さらに前記基板を切り離して第5図に示すような環状の
磁心1を得た。次゛ハで、この磁心1を、500℃の温
度で約1時間熱処理した後、図に示すように、Q、Q5
1uφの銅線2を約3ターン巻回して磁気素子3を作製
した。
[Example 1] On the substrate, co. An amorphous alloy thin film with a composition of Zr3Nb5Nd2 and a thickness of 2500X, and SiO2.
An insulating film of 50× thickness consisting of 50 layers each was alternately laminated in sequence by sputtering. Next, an annular photoresist film with an inner diameter of 1.5u and an outer diameter of 3u is formed on the top surface, and etching is performed using this as a mask.
Further, the substrate was separated to obtain an annular magnetic core 1 as shown in FIG. Next, after heat-treating this magnetic core 1 at a temperature of 500°C for about 1 hour, as shown in the figure, Q, Q5
A magnetic element 3 was prepared by winding a 1 uφ copper wire 2 around 3 turns.

この磁気素子3は、半導体−磁気回路に使用して数百M
H2まで充分動作した。なお、この磁気素子3に使用さ
れた非晶質合金薄膜におIハては、Nbを添加すること
によって、耐腐食性を向上させて化学的処理を容易なら
しめ、また結晶化温度を上昇させて高温熱処理を可能に
した。なお、第5図における矢印4は、非晶質合金の磁
化容易軸を示している。
This magnetic element 3 can be used in a semiconductor-magnetic circuit with several hundred M
It worked well until H2. In addition, by adding Nb to the amorphous alloy thin film used in this magnetic element 3, corrosion resistance is improved, chemical processing is facilitated, and the crystallization temperature is increased. This made high-temperature heat treatment possible. Note that arrow 4 in FIG. 5 indicates the axis of easy magnetization of the amorphous alloy.

〔実施例2〕 Co、。YINb7Si2の組成からなりかつ厚さ5o
ooiの非晶質合金薄膜と、SiO2からなる厚さ10
0Aの絶縁膜とをスパッタ法によって交互に各10層、
積層形成し、これをリボン状に加工した。次に、上記の
ものを、絶縁物からなりかつ内径1間、外径1.411
LIl!の管状体に10ターン巻回した後輪切りにし、
第6図に示すような厚さ1朋の環状の磁心5を得た。な
お、この図において、6は前記リボン状の積層体を、ま
た7は前記管状体を示す。次に、この磁心5を、約45
0℃で熱処理した後、導線を1〜10タ一ン巻回して磁
気素子を作製した。この磁気素子は、超小型変成器また
はインダクタとして数百MHz  まで使用し得ること
が確認された。なお、この実施例においては、非晶質合
金をリボン状に形成する必要性加量を多くシ、またこれ
によって磁歪が増加したシ非晶質組成の範囲が縮少した
りするのを防止するためにy、st  が添加されてい
る。
[Example 2] Co. Composed of YINb7Si2 and thickness 5o
ooi amorphous alloy thin film and SiO2 with a thickness of 10
10 layers each of 0A insulating films were alternately formed by sputtering.
This was laminated and processed into a ribbon shape. Next, the above is made of an insulating material and has an inner diameter of 1 mm and an outer diameter of 1.41 mm.
LIl! After wrapping 10 turns around the tubular body, cut into rings,
An annular magnetic core 5 having a thickness of 1 mm as shown in FIG. 6 was obtained. In this figure, 6 indicates the ribbon-shaped laminate, and 7 indicates the tubular body. Next, this magnetic core 5 is
After heat treatment at 0° C., the conductive wire was wound with 1 to 10 turns to produce a magnetic element. It has been confirmed that this magnetic element can be used as a microtransformer or inductor up to several hundred MHz. In this example, it is necessary to form the amorphous alloy into a ribbon shape by increasing the weight, and in order to prevent this from increasing the magnetostriction and reducing the range of the amorphous composition. y, st are added to.

〔実施例3〕 鏡面研摩した絶縁性基板上に、Co85Y2Nb7W6
 からなりかつ厚さ5oooXの非晶質合金薄膜を1厚
さ50Aの5102膜を挾んで、20層積層形成した後
、この上面に前記基板と同質同寸法の保護層を形成した
。次に、上記のものを研削、ラッピングして、第7図に
示すような磁気ヘッド用磁心8を得た。この磁心8は、
平坦な磁気ギャップ用の面9aが形成された磁心片9と
、切り欠き部10によって隔てられた2つの磁気ギャッ
プ用の面11 a 、 ]、 1 bが形成された磁心
片11とからなるもので、各磁心片9,11におハて、
12は前記基板、13は前記非晶質合金、14け前記S
iO□膜、15は前記保護層である。そして、これら各
磁心片9.11は、熱処理された後、面9aと面11a
、llbとがガラス融S−aれ1.更に磁界中にお・ハ
て熱処理がなされた後、導線16が巻回された。なお、
このようにして製作された磁気ヘッド17において、符
号18で示す部分d!記録、再生用の磁気ギャップを形
成する。また、この実施例における非晶質合金には、磁
気ヘット。
[Example 3] Co85Y2Nb7W6 was deposited on a mirror-polished insulating substrate.
After forming a laminate of 20 layers of an amorphous alloy thin film having a thickness of 500X and sandwiching a 5102 film having a thickness of 50A, a protective layer of the same quality and size as the substrate was formed on the upper surface of the 5102 film. Next, the above-mentioned material was ground and lapped to obtain a magnetic core 8 for a magnetic head as shown in FIG. This magnetic core 8 is
Consisting of a magnetic core piece 9 on which a flat magnetic gap surface 9a is formed, and a magnetic core piece 11 on which two magnetic gap surfaces 11 a , 1 b separated by a notch 10 are formed. Then, on each magnetic core piece 9, 11,
12 is the substrate, 13 is the amorphous alloy, and 14 is the S
The iO□ film 15 is the protective layer. After each of these magnetic core pieces 9.11 is heat-treated, the surface 9a and the surface 11a are
, llb and glass melt S-a 1. After further heat treatment in a magnetic field, the conductive wire 16 was wound. In addition,
In the magnetic head 17 manufactured in this manner, a portion d! denoted by reference numeral 18! Forms a magnetic gap for recording and reproduction. The amorphous alloy in this example also has a magnetic head.

としての耐磨耗性を向上させるためにNl)が、結晶f
ヒ温度を向上させるためにWが、磁歪の調整を行なうた
めにYが各々添加された。この磁気ヘッド17は、数百
MH2までの信号に対して動作し得るものである。
To improve the wear resistance as Nl), the crystal f
W was added to improve the heat temperature, and Y was added to adjust the magnetostriction. This magnetic head 17 can operate on signals up to several hundred MH2.

以上の説明から明らかなように、この発明による磁気素
子は、非晶質合金からなりかつ厚さDが100°A≦D
≦10.00 OAの範囲にある磁性薄膜と、非磁性絶
縁物からなりかつ厚さdがIQA≦、≦2.oooAの
範囲にある絶縁膜とを、交互に複数枚積層して形成した
磁心を有してなるものであるから、磁心における渦電流
の抑制効果に加えて、磁性薄膜間の磁気的相互作用(よ
って磁層の移動を高速化することができ、これによって
従来使用されて°ハた磁気素子に比べて格段に高い周波
数まで動作する磁気素子を実現することカニできる。
As is clear from the above description, the magnetic element according to the present invention is made of an amorphous alloy and has a thickness D of 100°A≦D.
It consists of a magnetic thin film in the range of ≦10.00 OA and a non-magnetic insulator, and the thickness d is IQA≦, ≦2. Since it has a magnetic core formed by alternately laminating a plurality of insulating films in the range of oooA, in addition to the effect of suppressing eddy currents in the magnetic core, it also suppresses the magnetic interaction between magnetic thin films ( Therefore, the movement of the magnetic layer can be made faster, thereby making it possible to realize a magnetic element that operates at a much higher frequency than conventionally used magnetic elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は非晶質合金薄膜を凰層体咬たは多
層体として使用した場合の膜厚と抗磁力との関係、およ
び膜厚と透磁率との関係を各々示す特1生図、第3図は
非晶質合金薄膜を多層体として使用した場合の絶縁膜の
膜厚と抗磁力との関係を示す特性図、第4図は互1ハに
膜厚の異なる3種の非晶質合金薄膜の積層体において、
励磁周波数と透磁率との関係を示す特性図、第5図はこ
の発明の第1の実施例の斜視・図、第6図はこの発明の
第2の実施例の斜視図、第7図はこの発明の第3の実施
例の斜視@である。 1・・・・・・磁心、3・・・・・・磁気素子。 第3図 第4図 υ。 第6図
Figures 1 and 2 show the relationship between film thickness and coercive force, and the relationship between film thickness and magnetic permeability, respectively, when an amorphous alloy thin film is used as a thin layer or a multilayer. Fig. 3 is a characteristic diagram showing the relationship between the thickness of the insulating film and the coercive force when an amorphous alloy thin film is used as a multilayer body, and Fig. 4 is a characteristic diagram showing the relationship between the thickness of the insulating film and the coercive force when an amorphous alloy thin film is used as a multilayer body. In a laminate of amorphous alloy thin films,
A characteristic diagram showing the relationship between excitation frequency and magnetic permeability, FIG. 5 is a perspective view of the first embodiment of the invention, FIG. 6 is a perspective view of the second embodiment of the invention, and FIG. This is a perspective view of the third embodiment of this invention. 1...Magnetic core, 3...Magnetic element. Figure 3 Figure 4 υ. Figure 6

Claims (1)

【特許請求の範囲】 組成式がT100−χ(Mloo−y−2GyR2)χ
  で示され、TがFe、 Co、 Niのうちの少な
くとも1種からなる金属元素または混合物、MがSc、
 Y。 La、 Ti 、 Zr、 Hf、 Be、 Cr、 
Ta、 W、 Nb、 V。 Mo、 Mn、 Cu  のうちの少なくとも1種から
なる金属元素または混合物、GがB、 Si、 C,A
−13,Ge。 Sn、 8bのうちの少なくとも1種からなる元素また
は混合物、RがCe、 Pr、 Nd、 Pm、 Sm
t Eu。 Gd、 ’rb、 Dy、 Ho、 Er、 Tm、 
yb、 Lu、 y  のうちの少なくとも1種からな
る元素または混合物であって、Zr ’I + Zが1
≦χ<50・0≦y〈く 100 、0−z<100 、0≦y+z<100を満
足する非晶質合金から形成された厚さDが100X≦D
≦10.00 OAノ範囲にある磁!?!膜と、厚さd
がIOA≦d≦2.oooAの範囲にある非磁性絶縁膜
とからなシかつ前記磁性薄膜と前記絶縁膜とを、交互に
複数枚積層して形成した磁心を具備してなる磁気素子。
[Claims] The compositional formula is T100-χ(Mloo-y-2GyR2)χ
, T is a metal element or a mixture consisting of at least one of Fe, Co, and Ni, M is Sc,
Y. La, Ti, Zr, Hf, Be, Cr,
Ta, W, Nb, V. A metal element or mixture consisting of at least one of Mo, Mn, and Cu, where G is B, Si, C, A
-13, Ge. Sn, an element or mixture consisting of at least one of 8b, R is Ce, Pr, Nd, Pm, Sm
tEu. Gd, 'rb, Dy, Ho, Er, Tm,
An element or mixture consisting of at least one of yb, Lu, and y, where Zr'I + Z is 1
Formed from an amorphous alloy that satisfies ≦χ<50・0≦y〈ku100, 0−z<100, 0≦y+z<100, the thickness D is 100X≦D
≦10.00 Magnetism in the OA range! ? ! membrane and thickness d
is IOA≦d≦2. 1. A magnetic element comprising a magnetic core formed by alternately laminating a plurality of magnetic thin films and insulating films, each consisting of a non-magnetic insulating film in the range oooA.
JP7866183A 1983-05-04 1983-05-04 Magnetic element Granted JPS59202614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7866183A JPS59202614A (en) 1983-05-04 1983-05-04 Magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7866183A JPS59202614A (en) 1983-05-04 1983-05-04 Magnetic element

Publications (2)

Publication Number Publication Date
JPS59202614A true JPS59202614A (en) 1984-11-16
JPH0254641B2 JPH0254641B2 (en) 1990-11-22

Family

ID=13668039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7866183A Granted JPS59202614A (en) 1983-05-04 1983-05-04 Magnetic element

Country Status (1)

Country Link
JP (1) JPS59202614A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197906A (en) * 1984-10-19 1986-05-16 Hitachi Ltd High magnetic permeability artificial grid magnetic thin film
FR2601175A1 (en) * 1986-04-04 1988-01-08 Seiko Epson Corp CATHODIC SPUTTER TARGET AND RECORDING MEDIUM USING SUCH A TARGET.
JPS63254708A (en) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd Magnetic alloy film containing nitrogen
JPS6429852U (en) * 1987-08-17 1989-02-22
JPS6464207A (en) * 1987-06-08 1989-03-10 Scient Generics Ltd Magnetic device
JPH01116905A (en) * 1987-10-30 1989-05-09 Canon Electron Inc Magnetic head
JPH01223708A (en) * 1988-03-03 1989-09-06 Tokin Corp Noise stop element
JPH05326262A (en) * 1992-03-16 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> Magnetic multilayer film
JPH07262534A (en) * 1995-02-17 1995-10-13 Hitachi Ltd Magnetoresistance effect type thin film magnetic head
EP0766272A1 (en) * 1995-09-28 1997-04-02 Kabushiki Kaisha Toshiba Magnetic thin films and their use in thin film magnetic elements
CN1294285C (en) * 2005-01-13 2007-01-10 中国科学院物理研究所 Scandium-base large amorphous alloy and method for preparing same
CN100365152C (en) * 2006-05-26 2008-01-30 浙江大学 Cm-level La0.5 Ce0.5 base bulk amorphous alloy
CN100366781C (en) * 2005-02-05 2008-02-06 中国科学院物理研究所 Erbium-base lorge-cube non-crystal alloy and making method
CN104465063A (en) * 2014-12-20 2015-03-25 陈红 Method for preparing anti-corrosion iron-silicon-based magnetic core
CN106544603A (en) * 2015-09-21 2017-03-29 南京理工大学 A kind of cobalt base amorphous magnetically soft alloy of high-curie temperature and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197906A (en) * 1984-10-19 1986-05-16 Hitachi Ltd High magnetic permeability artificial grid magnetic thin film
FR2601175A1 (en) * 1986-04-04 1988-01-08 Seiko Epson Corp CATHODIC SPUTTER TARGET AND RECORDING MEDIUM USING SUCH A TARGET.
JPS63254708A (en) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd Magnetic alloy film containing nitrogen
JPS6464207A (en) * 1987-06-08 1989-03-10 Scient Generics Ltd Magnetic device
JPS6429852U (en) * 1987-08-17 1989-02-22
JPH01116905A (en) * 1987-10-30 1989-05-09 Canon Electron Inc Magnetic head
JPH01223708A (en) * 1988-03-03 1989-09-06 Tokin Corp Noise stop element
JPH05326262A (en) * 1992-03-16 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> Magnetic multilayer film
JPH07262534A (en) * 1995-02-17 1995-10-13 Hitachi Ltd Magnetoresistance effect type thin film magnetic head
EP0766272A1 (en) * 1995-09-28 1997-04-02 Kabushiki Kaisha Toshiba Magnetic thin films and their use in thin film magnetic elements
US5780177A (en) * 1995-09-28 1998-07-14 Kabushiki Kaisha Toshiba Magnetic thin film and thin film magenetic element using the same
CN1294285C (en) * 2005-01-13 2007-01-10 中国科学院物理研究所 Scandium-base large amorphous alloy and method for preparing same
CN100366781C (en) * 2005-02-05 2008-02-06 中国科学院物理研究所 Erbium-base lorge-cube non-crystal alloy and making method
CN100365152C (en) * 2006-05-26 2008-01-30 浙江大学 Cm-level La0.5 Ce0.5 base bulk amorphous alloy
CN104465063A (en) * 2014-12-20 2015-03-25 陈红 Method for preparing anti-corrosion iron-silicon-based magnetic core
CN106544603A (en) * 2015-09-21 2017-03-29 南京理工大学 A kind of cobalt base amorphous magnetically soft alloy of high-curie temperature and preparation method thereof

Also Published As

Publication number Publication date
JPH0254641B2 (en) 1990-11-22

Similar Documents

Publication Publication Date Title
JPS59202614A (en) Magnetic element
TW201817897A (en) Soft magnetic alloy and magnetic device
JPH0680611B2 (en) Magnetic core
JPH0734207A (en) Nano-crystal alloy excellent in pulse decay characteristic, choking coil, noise filter using same, and their production
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JP2013046032A (en) Laminate core
JP3068156B2 (en) Soft magnetic alloy
JP2000277357A (en) Saturatable magnetic core and power supply apparatus using the same
CA1340795C (en) Magnetic ribbon and magnetic core
JPH01290744A (en) Fe-base soft-magnetic alloy
JPH02183508A (en) Low-loss core
JPH08153614A (en) Magnetic core
JPH01169905A (en) Magnetic core for choke coil
JP7426772B2 (en) Manufacturing method of wound magnetic core and wound magnetic core
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JPH0645128A (en) Magnetic core comprising ultra-fine crystalline alloy excellent in dc-superimposed characteristic and manufacturing method thereof, and choke coil and transformer using the core
JP2005187917A (en) Soft magnetic alloy, and magnetic component
JP7106919B2 (en) Soft magnetic thin films, thin film inductors and magnetic products
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JP2918255B2 (en) Manufacturing method of magnetic core
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core
JPS61295601A (en) Amorphous core for common mode choke
JP2002075718A (en) Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core
JP2835127B2 (en) Magnetic core and manufacturing method thereof