JPH02183508A - Low-loss core - Google Patents

Low-loss core

Info

Publication number
JPH02183508A
JPH02183508A JP1003031A JP303189A JPH02183508A JP H02183508 A JPH02183508 A JP H02183508A JP 1003031 A JP1003031 A JP 1003031A JP 303189 A JP303189 A JP 303189A JP H02183508 A JPH02183508 A JP H02183508A
Authority
JP
Japan
Prior art keywords
core
magnetic
alloy
magnetic core
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1003031A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1003031A priority Critical patent/JPH02183508A/en
Publication of JPH02183508A publication Critical patent/JPH02183508A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a core which is superb in DC superposition characteristics which enables operation magnetic flux density to be large at low loss by providing a gap on at least one position of a magnetic path formed by an ultrafine crystal soft magnetic alloy thin band and then placing a soft ferrite on that cut edge surface or an abutment surface. CONSTITUTION:It has a composition expressed by (Fe1-aMa)100-x-y- z-alphaCuxSiyBzM'alpha, (where M is Co or Ni or M' is Nb, W, Ta, Zr, Hf, Ti, or Mo). It is wound in toroidal shape after creating a thin band by the single roll method using an amorphous alloy. Then, it is heat-treated to produce an Fe based ultrafine crystal alloy whose 50% of composition consists of a fine crystal grain. Then, in the case of a winding core, it is dipped or coated and then gap is formed or cutting is made. Then, a soft ferrite is placed on the cut edge surface or abutment edge surface of the gap part for producing core.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、チョークコイルや高周波トランス等に用いら
れる超微結晶軟磁性合金からなるギャップ付きコアやカ
ットコアに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gapped core or cut core made of an ultrafine crystalline soft magnetic alloy used in choke coils, high frequency transformers, etc.

[従来の技術] 従来、高周波トランスやチョークコイル用磁心としては
ケイ素鋼磁心、パーマロイ磁心、フェライト磁心等が使
用されている。
[Prior Art] Conventionally, silicon steel cores, permalloy cores, ferrite cores, and the like have been used as magnetic cores for high-frequency transformers and choke coils.

ケイ素鋼磁心は飽和磁束密度が高く磁心の発熱があまり
問題とならない周波数領域では小型化の面で有利である
が、コア損失が大きいため特に数10KHz以上の周波
数帯では使用が困難となってくる。パーマロイ磁心はケ
イ素鋼磁心より高周波特性は良いが数10KHz以上で
はコア損失が大きく歪や変形により、磁気特性が劣化し
やすい欠点がある。フェライト磁心は数10KI(z以
上の周波数におけるコア損失がケイ素鋼より低く、スイ
ッチング電源のメイントランス等に使用されているが飽
和磁束密度が低く、キュリー温度も低いため、動作磁束
密度を大きくできない欠点がある。このためインバータ
等のトランス等には磁心が大きくなるためあまり使用さ
れていない。更に、近年スイッチングレギュレータ等は
高周波化が進み数100KHzで駆動するものも現われ
てきている。このため高周波トランスや平滑チョークコ
イル等に用いられる磁心の低損失化が重要となってきて
いる。
Silicon steel magnetic cores are advantageous in terms of miniaturization in frequency ranges where the saturation magnetic flux density is high and the heat generation of the magnetic core is not much of a problem, but the large core loss makes it difficult to use them, especially in frequency bands of several tens of kilohertz or higher. . Although permalloy magnetic cores have better high frequency characteristics than silicon steel magnetic cores, they have the disadvantage that at frequencies above several tens of kilohertz, core loss is large and magnetic characteristics tend to deteriorate due to distortion and deformation. Ferrite magnetic cores have lower core loss than silicon steel at frequencies of several 10 KI (z or higher) and are used in main transformers of switching power supplies, etc., but their saturation magnetic flux density is low and their Curie temperature is also low, so they have the disadvantage that they cannot increase the operating magnetic flux density. For this reason, it is not often used in transformers such as inverters because the magnetic core becomes large.Furthermore, in recent years, switching regulators, etc. have become increasingly high-frequency, and some that drive at several hundred kilohertz have appeared.For this reason, high-frequency transformers are used. It is becoming important to reduce the loss of magnetic cores used in magnets and smooth choke coils.

しかし、フェライ1−磁心は飽和磁束密度が低くトラン
スに使用する場合は動作磁束密度を大きくできない。平
滑チョークコイルに使用する場合は直流重畳特性が悪い
問題がある。
However, the Ferrite 1 core has a low saturation magnetic flux density and cannot increase the operating magnetic flux density when used in a transformer. When used in smooth choke coils, there is a problem of poor DC superimposition characteristics.

[発明が解決しようとする問題点コ 上記問題点を解決するため近年アモルファス磁心を高周
波トランスに使用しようとする試みがある。
[Problems to be Solved by the Invention] In order to solve the above-mentioned problems, there have recently been attempts to use amorphous magnetic cores in high-frequency transformers.

このような試みはたとえば、信学技報PE84−381
2頁に記載されている。しかし、この報告では、Fe基
アモルファス磁心を高周波トランスに用いているため、
磁歪が大きく機械的ストレスにより特性が劣化しやすく
、含浸コアやカットコアにした場合、晶周波磁気特性が
劣化するという問題点が報告されている。またFe基ア
モルファス磁心は磁歪のためうなりを生ずる欠点もある
。一方CO基アモルファス磁心は歪に対する劣化は小さ
いが、経時変化が大きいという欠点がある。また、コア
損失が小さく磁心の温度上昇があまり問題とならない周
波数帯では飽和磁束密度がケイ素鋼やFe基アモルファ
スより低いため、磁心を小型化する面で不利となる。
For example, such an attempt is made in IEICE Technical Report PE84-381.
It is described on page 2. However, in this report, since Fe-based amorphous magnetic core is used in the high frequency transformer,
It has been reported that magnetostriction is large and properties tend to deteriorate due to mechanical stress, and when impregnated cores or cut cores are used, crystal frequency magnetic properties deteriorate. Furthermore, the Fe-based amorphous magnetic core also has the disadvantage of producing beats due to magnetostriction. On the other hand, a CO-based amorphous magnetic core has a drawback that deterioration due to strain is small, but changes over time are large. Furthermore, in a frequency band where the core loss is small and the temperature rise of the magnetic core is not much of a problem, the saturation magnetic flux density is lower than that of silicon steel or Fe-based amorphous, which is disadvantageous in terms of miniaturizing the magnetic core.

ところで、高周波トランス等の場合は巻線を容易にする
ためカッ1−コアが好まれ使用されている。
Incidentally, in the case of high-frequency transformers, etc., a single-core core is preferred and used in order to facilitate winding.

しかし、アモルファス合金の場合は前述の様に、カット
したり、ギャップを入れると磁心損失が大きくなること
が報告されている。
However, in the case of amorphous alloys, as mentioned above, it has been reported that cutting or creating gaps increases core loss.

これを解決するためにカット部端面にソフトフェライト
を配置する試みが第12回日本応用磁気学会学術講演概
要集P89等に報告されている。
In order to solve this problem, an attempt to arrange soft ferrite on the end face of the cut portion has been reported in the 12th Japan Society of Applied Magnetics, Academic Conference Abstracts, page 89, etc.

しかし、ここで述べられているのは磁歪が小さいCo基
アモルファスを用いた場合には、動作磁束密度を大きく
できないという問題、平滑チョークコイルに用いた場合
は直流重畳特性が十分でないという問題、経時変化も大
きいという問題があった。またFe基アモルファス合金
の場合は、飽和磁束密度は大きいが、磁歪が著しく大き
いためカッ1−やギャップを形成する際に含浸を行うと
著しく磁心損失が増加し、ラフ1−フェライトを配置し
ても磁心損失が十分小さくならない問題がある6本発明
の目的は低損失で動作磁束密度を大きくすることが可能
で、直流重畳特性に優れた磁心を提供することを目的と
する。
However, what is mentioned here is that when Co-based amorphous with low magnetostriction is used, the operating magnetic flux density cannot be increased, when used in smooth choke coils, the DC superimposition characteristics are insufficient, and over time. The problem was that there was a lot of change. In addition, in the case of Fe-based amorphous alloys, although the saturation magnetic flux density is high, the magnetostriction is extremely large, so if impregnation is performed when forming a cup or gap, the core loss will increase significantly, and if rough ferrite is arranged, However, there is a problem that the magnetic core loss cannot be sufficiently reduced.6 An object of the present invention is to provide a magnetic core that can increase the operating magnetic flux density with low loss and has excellent DC superimposition characteristics.

[問題点を解決するための手段] 本発明はFe、CuおよびM(ただしMは、N b +
 W + T a r Z r + Hf + T i
及びMoからなる群から選ばれた少なくとも一種以上の
元素)を必須元素として含み、組織の少なくとも50%
が微細な結晶粒からなる超微結晶軟磁性合金薄帯から形
成された磁路の少なくとも1箇所以上にギャップを設け
た磁心あるいはカット端面にソフトフェライトを配置し
たカット磁心および組み合わせ磁心であることを特徴と
する低損失磁心であるにこで本発明には、本発明者等が
特願昭62−367187号として先に出願したFe基
の超微結晶合金が使用できる。この合金は 組成式: %式% (ただしMはCo及び/又はNiであり1M′はNb、
W、Ta、Zt,HF,Ti、及びMoからなる群から
選ばれた少なくとも1種の元素であり、a+X+ y+
Z及びαはそれぞれ0≦a≦0.5,0.1≦X≦3.
0.0≦y≦30.O≦2≦25,5≦y十z≦30お
よび0.1≦α≦30を満たす。)により表わされる組
成を有し、組織の少なくとも50%が微細な結晶粒から
なるFe基の超微結晶合金、 または、 (Fel−aMa) 100−x−y−z−a−β−y
 CuxSiyBzM’ a M”βX(ただしMはC
O及び/又はNiであり1M′はNb、W、Ta、Zr
,HF,Ti、及びMoからなる群から選ばれた少なく
とも1種の元素、MuはV、Cr、Mn、Al、白金元
素、、XはC,Ge、P、Ga、Sb、In、Be、A
sからなる群から選ばれた少なくとも1種の元素であり
、a。
[Means for solving the problems] The present invention uses Fe, Cu and M (where M is N b +
W + T a r Z r + Hf + T i
and Mo (at least one element selected from the group consisting of Mo) as an essential element, and at least 50% of the structure
is a magnetic core with a gap at at least one point in a magnetic path formed from an ultrafine crystal soft magnetic alloy ribbon consisting of fine crystal grains, or a cut magnetic core with a soft ferrite placed on the cut end face, and a combined magnetic core. In the present invention, which is a characteristically low-loss magnetic core, an Fe-based ultrafine crystal alloy, which the present inventors previously filed as Japanese Patent Application No. 62-367187, can be used. This alloy has a composition formula: % formula % (where M is Co and/or Ni, 1M' is Nb,
At least one element selected from the group consisting of W, Ta, Zt, HF, Ti, and Mo, a+X+ y+
Z and α are 0≦a≦0.5, 0.1≦X≦3, respectively.
0.0≦y≦30. O≦2≦25, 5≦y1z≦30 and 0.1≦α≦30 are satisfied. ), and at least 50% of the structure consists of fine grains, or (Fel-aMa) 100-x-y-z-a-β-y
CuxSiyBzM' a M"βX (where M is C
O and/or Ni, and 1M' is Nb, W, Ta, Zr
, HF, Ti, and Mo, Mu is V, Cr, Mn, Al, platinum element, X is C, Ge, P, Ga, Sb, In, Be, A
at least one element selected from the group consisting of s, a.

X+y*Z+ α、β及びγはそれぞれ0≦a≦0.5
,0.1≦X≦3.0.O≦y≦30,0≦2≦25,
5≦y+z≦30および0.1≦α≦30、β≦10.
γ≦10を満たす。)により表わされる組成を有し、組
織の少なくとも50%が微細な結晶粒からなるFe基の
超微結晶合金である。
X+y*Z+ α, β and γ are each 0≦a≦0.5
,0.1≦X≦3.0. O≦y≦30, 0≦2≦25,
5≦y+z≦30 and 0.1≦α≦30, β≦10.
γ≦10 is satisfied. ), and is an Fe-based ultrafine-crystalline alloy in which at least 50% of the structure consists of fine crystal grains.

ここで、Fe、CuおよびM(ただしMは、Nb。Here, Fe, Cu and M (where M is Nb).

W、Ta、Zr,HF,Ti及びMoからなる群から選
ばれた少なくとも一種以上の元素)を必須元素としたの
は、結晶核の生成を促進し結晶成長を助長する元素と考
えられるCuと結晶の成長を抑制する元素と考えられる
Mの相互作用によってFe基の超微結晶合金が得られる
ためである。この微結晶合金は非晶質化するものであり
、上記必須元素の他にSi、B等の非晶質化を促進する
元素を含む方が好ましい。
At least one element selected from the group consisting of W, Ta, Zr, HF, Ti, and Mo) was made an essential element because Cu and Cu are considered to be elements that promote the formation of crystal nuclei and promote crystal growth. This is because an Fe-based ultrafine-crystalline alloy is obtained through the interaction of M, which is considered to be an element that suppresses crystal growth. This microcrystalline alloy becomes amorphous, and preferably contains elements that promote amorphization, such as Si and B, in addition to the above-mentioned essential elements.

また、組織の少なくとも50%以上が微細な結晶粒とし
のは、非晶質部分が多いと経時変化が大きくなったり、
磁歪が大きくなるためであり、実質的に微細な結晶粒か
らなる合金組織とした方がより好ましい。
In addition, if at least 50% of the structure is made up of fine crystal grains, if there are many amorphous parts, the change over time will become large.
This is because the magnetostriction increases, so it is more preferable to have an alloy structure consisting of substantially fine crystal grains.

本発明磁心は通常法の様にして製造される。The magnetic core of the present invention is manufactured in a conventional manner.

まず前記組成の非晶質合金薄帯を単ロール法により作製
後トロイダル状に巻き回す、あるいは打ち抜きホトエツ
チング等により各種形状に加工したものを作製し、これ
を熱処理し組織の少なく50%が微細な結晶粒からなる
Fe基の超微結晶合金を作製する。
First, an amorphous alloy ribbon with the above composition is produced by a single roll method, then rolled into a toroidal shape, or processed into various shapes by punching and photo-etching, etc., and then heat treated to produce a material with a small structure, 50% of which is fine. An Fe-based ultrafine crystal alloy consisting of crystal grains is produced.

次に巻磁心の場合はこれを含浸あるいはコーテイング後
ギャップ形成あるいはカットを行う。
Next, in the case of a wound magnetic core, it is impregnated or coated, and then gaps are formed or cut.

積層磁心の場合は形状に加工されたものを積層接着し、
形状によりカットを行う場合と、組合せて使用する場合
がある。
In the case of laminated magnetic cores, the shaped cores are laminated and bonded,
Depending on the shape, it may be cut or used in combination.

次にギャップ部のカット端面や付き合せ部端面にソフト
フェライトを配置し本発明磁心を製造する。本発明の形
状例を第1図(a)、(b)、(c)に示す。
Next, soft ferrite is placed on the cut end face of the gap portion and the end face of the mating portion to produce the magnetic core of the present invention. Examples of shapes according to the present invention are shown in FIGS. 1(a), (b), and (c).

本発明磁心の熱処理は磁場中で行っても良いし。The heat treatment of the magnetic core of the present invention may be performed in a magnetic field.

多数回にわけて行っても良い。また耐熱性の樹脂で含浸
を行う場合は、含浸後熱処理を行っても良い。また合金
薄帯表面は必要に応じて層間絶縁を行っても良い。
It may be done in multiple sessions. Further, when impregnating with a heat-resistant resin, heat treatment may be performed after impregnation. Further, the surface of the alloy ribbon may be interlayer insulated if necessary.

ソフトフェライトは、Mn−Znフェライト。Soft ferrite is Mn-Zn ferrite.

N i −Z nフェライト等を用いることができ、適
切な大きさに加工後、カット面や付き合せ部端面に配置
される。フェライトは通常は接着し固定されるが、場合
によっては押し付けるだけでも良い。
Ni-Zn ferrite or the like can be used, and after being processed to an appropriate size, it is placed on the cut surface or the end surface of the mating portion. Ferrite is usually fixed by adhesive, but in some cases it may be just pressed.

またカット面ば手研等に平らにした方がより好ましい結
果が得られる。
Further, more favorable results can be obtained if the cut surface is flattened by hand polishing or the like.

[実施例] 以下、本発明の詳細な説明するが1本発明はこれらに限
定されるものではない。
[Example] The present invention will be described in detail below, but the present invention is not limited thereto.

実施例1 原子%で、Cu1.1%、Nd2.5%、5i13.5
%、87.3%残部実質的にFeからなる合金溶湯を単
ロール法により急冷し、幅25ffi。
Example 1 Cu1.1%, Nd2.5%, 5i13.5 in atomic %
%, 87.3% The remainder was quenched by a single roll method to form a molten alloy with a width of 25ffi.

厚さ19mの非晶質合金薄帯を作製した。次にこの合金
薄帯表面に電気泳動法によりMgO粉末をつけながらこ
の合金4帯を巻き回し、第2図(a)に示すような形状
の巻磁心を作製した。
An amorphous alloy ribbon with a thickness of 19 m was produced. Next, the four alloy strips were wound while applying MgO powder to the surface of the alloy ribbon by electrophoresis to produce a wound core having the shape shown in FIG. 2(a).

次にこの磁心を450”Cに保った炉中に入れ1時間保
持後2.5℃/minの昇温速度で550°Cまで昇温
し1時間保持後約5℃/minの速度で200℃まで冷
却し炉から取り出し室温まで冷却した。透過電子顕微鏡
による観察の結果この合金は約100人の粒径の超微細
結晶粒組織を有してした。次にこの磁心をエポキシ樹脂
で含浸硬化させた後、外周スライサーで切断し第2図(
b)に示すようなカットコアを作製した。次にカット部
端面を手研し、M n −Z nフェライト板を付き合
せ部につけカットした磁心を第2図(C)に示すように
組合せ作成した。この磁心の100KHz、 2KGに
おける磁心損失を測定した− 450mV/ccの値で
あった。飽和磁束密度は13.5KGであった。
Next, this magnetic core was placed in a furnace maintained at 450"C and held for 1 hour, then raised to 550°C at a rate of 2.5°C/min, held for 1 hour, and then heated to 200°C at a rate of approximately 5°C/min. ℃ and then taken out of the furnace and cooled to room temperature.As a result of observation using a transmission electron microscope, this alloy had an ultrafine grain structure with a grain size of approximately 100 μm.Next, this magnetic core was impregnated with epoxy resin and hardened. After that, cut it with a peripheral slicer as shown in Figure 2 (
A cut core as shown in b) was produced. Next, the end faces of the cut portions were hand-polished, and Mn-Zn ferrite plates were attached to the mating portions, and the cut magnetic cores were assembled as shown in FIG. 2(C). The core loss of this core was measured at 100 KHz and 2 KG and was found to be -450 mV/cc. The saturation magnetic flux density was 13.5KG.

次に付き合せ部に厚さ50IUの非磁性のスペーサーを
はさみ同様に磁心損失を測定した。磁心損失は450 
mW/ccであり、はとんど変化は認められなかった。
Next, a non-magnetic spacer with a thickness of 50 IU was inserted between the mating portions, and the core loss was measured in the same manner. Core loss is 450
mW/cc, and almost no change was observed.

100μsのスペーサーをはさんだ場合も同様であった
に れに対し、フェライトを配置しない場合はギャップを形
成すると著しい磁心損失の増加が詔められた。
The same thing happened when a 100 μs spacer was inserted, but when no ferrite was placed, it was reported that the core loss significantly increased when a gap was formed.

比較のために同形状のF e、、CrlS i、、B。For comparison, F e,, CrlS i,, B with the same shape.

(at%)非晶質合金コアを作製したが磁心損失は18
00 mW/ccであり、本発明磁心より著しく磁心損
失が大きかった。これはFe基非晶質合金の場合磁歪が
著しく大きいため含浸により特性劣化したものと考えら
れる。
(at%) An amorphous alloy core was produced, but the core loss was 18
00 mW/cc, and the core loss was significantly larger than that of the magnetic core of the present invention. This is considered to be because the magnetostriction of the Fe-based amorphous alloy is extremely large, so that its properties deteriorate due to impregnation.

このように本発明磁心は高飽和磁束密度でかつ低損失で
あるため、高周波トランスや平滑チョークコイル等に最
適である。
As described above, since the magnetic core of the present invention has a high saturation magnetic flux density and low loss, it is ideal for high frequency transformers, smooth choke coils, and the like.

実施例2 原子%でCu1.2%、Nd3%、5i17%。Example 2 Cu1.2%, Nd3%, 5i17% in atomic%.

85%残部実質的にFeからなる合金溶湯を単ロール法
により急冷し、厚さ17 ttm 、幅19mmの非晶
質合金リボンを作製した。次にこの合金リボンを打ち抜
き第3図(a)に示す様な形状の薄板としこれを530
℃で1時間熱処理を行った。合金のミクロ組織は実施例
1と同様であった。
A molten alloy consisting essentially of 85% Fe was rapidly cooled by a single roll method to produce an amorphous alloy ribbon having a thickness of 17 ttm and a width of 19 mm. Next, this alloy ribbon was punched out to form a thin plate with a shape as shown in Fig. 3(a).
Heat treatment was performed at ℃ for 1 hour. The microstructure of the alloy was similar to Example 1.

次にこの合金を積層し接着しこの磁心の付き合せ部にM
 n −Z nフェライトつけ第3図(b)に示すよう
に付き合せ巻線をほどこし、磁心損失を測定した。10
0K)12.2KGの磁心損失は390mW/CCであ
った。この値はCO基アモルファスを用いた場合と同等
である。また、飽和磁束密度は約12KGであった。
Next, this alloy is laminated and bonded, and M
As shown in FIG. 3(b), a dowel winding was provided with n-Zn ferrite, and the core loss was measured. 10
0K) 12.2KG core loss was 390mW/CC. This value is equivalent to the case where CO-based amorphous is used. Moreover, the saturation magnetic flux density was about 12KG.

飽和磁束密度はCo基アモルファス合金を用いた場合の
5〜9にGより大きく磁心を小型化することができる。
The saturation magnetic flux density is 5 to 9 when a Co-based amorphous alloy is used, which is larger than G, allowing the magnetic core to be miniaturized.

実施例3 第1表に示す組成の合金溶湯を単ロール法により急冷し
、厚さ18/ffi、幅5膿の非晶質合金リボンを作製
した。
Example 3 A molten alloy having the composition shown in Table 1 was rapidly cooled by a single roll method to produce an amorphous alloy ribbon having a thickness of 18/ffi and a width of 5 mm.

次にこの合金リボン表面にAf1203電界付着法電界
付着−ディングした後巻き回し5巻磁心を作製した。
Next, the surface of this alloy ribbon was subjected to electric field adhesion using Af1203 and then wound to produce a 5-turn magnetic core.

次にこの磁心を550℃に保った炉中に入れ1時間保持
後約20℃/minの速度で室温まで冷却した。この磁
心をシリコンフェスで含浸硬化させた後外周スライサー
で切断し、カットコアを作製した。
Next, this magnetic core was placed in a furnace maintained at 550° C. for 1 hour, and then cooled to room temperature at a rate of about 20° C./min. This magnetic core was impregnated and hardened with a silicone face, and then cut with an outer peripheral slicer to produce a cut core.

次にカット部端面を手研し、Mn−Znフェライト板を
付き合せ100KHz、2KGにおける磁心損失Pc’
を測定した。次にこの磁心を120℃に保持し磁路方向
100eの磁場を印加しながら500時間保持後室温で
磁心損失を測定した。比較のため同一形状のCobal
、F e4.Cr4.S i、、。
Next, the end face of the cut part was polished by hand, and a Mn-Zn ferrite plate was attached to the core loss Pc' at 100KHz and 2KG.
was measured. Next, this magnetic core was held at 120° C. while applying a magnetic field in the magnetic path direction 100e for 500 hours, and then the core loss was measured at room temperature. Cobal of the same shape for comparison
, F e4. Cr4. Si...

B1.アモルファス合金を用いた磁心の磁心損失Pc’
およびP c5011を測定した。
B1. Core loss Pc' of a magnetic core using an amorphous alloy
and P c5011 were measured.

第1表に磁心損失の比P c ’ nn/ P c ″
を示す。
Table 1 shows the ratio of core loss P c ' nn/ P c ″
shows.

表かられかるように本発明磁心は従来のCo基アモルフ
ァス磁心を用いたカットコアより磁心損失の経時変化が
小さく、実用的な磁心であることがわかる。
As can be seen from the table, the magnetic core of the present invention has a smaller change in core loss over time than a cut core using a conventional Co-based amorphous magnetic core, and is a practical magnetic core.

[発明の効果] 本発明によれば、低損失で動作磁束密度を大きくするこ
とが可能なギャップ付きコアやカットコアを提供するこ
とができるため、その効果は著しいものがある。
[Effects of the Invention] According to the present invention, it is possible to provide a core with a gap or a cut core that can increase the operating magnetic flux density with low loss, so the effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a )、(b )、(C)は、本発明の低損失
磁心の形状例を示した図、第2図(a )、(b )、
(c )は。 本発明の磁心の作成工程を示した説明図、第3図(a)
、(b’)は、本発明の他の実施例の説明図である。 第2図 (b) ソフトフェライト 手続補正書 (自発) 平成01年特許願第003031号 事件との関係  特許出願人 住所 東京都千代田区丸の内二丁目1番2号補正の内容 (1)第4頁5行の「また、」の後に、rCo基アモル
ファス磁心は」と加える。 (2)第4頁6行の「小さく」を「小さいため」と訂正
する。 (3)第4頁18行の「場合には、」を「場合であり、
」と訂正する。 (4)第3頁17行から18行の「主スィッチ」を「副
スィッチ」と訂正する。 (5)第5頁5行の「形成する際に」を「形成するため
に」と訂正する。 (乙)図面。第zit1g’l釈のゑす袖工13・ 以
上明細書の 「発明の詳細な説明」 の欄および図面。
FIGS. 1(a), (b), and (C) are diagrams showing examples of the shapes of the low-loss magnetic cores of the present invention, and FIGS. 2(a), (b),
(c) is. Explanatory diagram showing the process of creating the magnetic core of the present invention, FIG. 3(a)
, (b') are explanatory diagrams of other embodiments of the present invention. Figure 2 (b) Written amendment to soft ferrite procedure (voluntary) Relationship to Patent Application No. 003031 of 1999 Address of patent applicant 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Contents of the amendment (1) Page 4 After "Also," in the 5th line, "The rCo-based amorphous magnetic core is" is added. (2) Correct "small" in line 6 of page 4 to "because it is small." (3) On page 4, line 18, change “in the case,” to “in the case,
” he corrected. (4) Correct "main switch" in lines 17 to 18 of page 3 to "sub switch." (5) In page 5, line 5, "in forming" is corrected to "in order to form." (B) Drawings. 13. The "Detailed Description of the Invention" column and drawings of the above specification.

Claims (2)

【特許請求の範囲】[Claims] (1)Fe,CuおよびM(ただしMはNb,W,Ta
,Zr,HF,Ti及びMoからなる群から選ばれた少
なくとも一種の元素)を必須元素として含み、組織の少
なくとも50%以上が結晶粒からなる超微結晶磁性合金
から形成された磁心であって、該磁心の磁路の少なくと
も一箇所以上ギャップを有し、該ギャップ部にソフトフ
ェライトを配置したことを特徴とする低損失磁心。
(1) Fe, Cu and M (where M is Nb, W, Ta
, Zr, HF, Ti, and Mo) as an essential element, and at least 50% of the structure is composed of crystal grains. A low-loss magnetic core, characterized in that a magnetic path of the magnetic core has a gap at at least one location, and a soft ferrite is disposed in the gap.
(2)Fe,CuおよびM(ただしMはNb,W,Ta
,Zr,HF,Ti及びMoからなる群から選ばれた少
なくとも一種の元素)を必須元素として含み、組織の少
なくとも50%以上が結晶粒からなる超微結晶磁性合金
から形成された磁心であって、該磁心は突き合わせ部に
ソフトフェライトを配置してなるカット磁心あるいは組
み合わせ磁心であることを特徴とする低損失磁心。
(2) Fe, Cu and M (where M is Nb, W, Ta
, Zr, HF, Ti, and Mo) as an essential element, and at least 50% of the structure is composed of crystal grains. A low-loss magnetic core characterized in that the magnetic core is a cut magnetic core or a combination magnetic core in which soft ferrite is arranged in the abutting portion.
JP1003031A 1989-01-10 1989-01-10 Low-loss core Pending JPH02183508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1003031A JPH02183508A (en) 1989-01-10 1989-01-10 Low-loss core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1003031A JPH02183508A (en) 1989-01-10 1989-01-10 Low-loss core

Publications (1)

Publication Number Publication Date
JPH02183508A true JPH02183508A (en) 1990-07-18

Family

ID=11545945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1003031A Pending JPH02183508A (en) 1989-01-10 1989-01-10 Low-loss core

Country Status (1)

Country Link
JP (1) JPH02183508A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007300A1 (en) * 1992-09-24 1994-03-31 Kabushiki Kaisha Toshiba Snubber circuit, switching power-supply, and saturable inductor used for them
KR100518677B1 (en) * 1997-03-18 2005-10-05 메트글라스, 인코포레이티드 Electrical choke
JP2016115836A (en) * 2014-12-16 2016-06-23 東芝産業機器システム株式会社 Transformer
JP2017204498A (en) * 2016-05-09 2017-11-16 東芝産業機器システム株式会社 Wound core
CN108231315A (en) * 2017-12-28 2018-06-29 青岛云路先进材料技术有限公司 A kind of iron cobalt-based nanometer crystal alloy and preparation method thereof
CN111235495A (en) * 2020-02-21 2020-06-05 中国电力科学研究院有限公司 Amorphous nanocrystalline alloy, iron core and method for measuring wide-range current transformer
CN111370208A (en) * 2020-04-16 2020-07-03 佛山市顺德区国力电力电子科技有限公司 Ultra-microcrystalline soft magnetic alloy transformer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007300A1 (en) * 1992-09-24 1994-03-31 Kabushiki Kaisha Toshiba Snubber circuit, switching power-supply, and saturable inductor used for them
US5745353A (en) * 1992-09-24 1998-04-28 Kabushiki Kaisha Toshiba Snubber circuit that suppresses surge and rush current flowing to a switching element of a self excitation-type flyback power supply
KR100518677B1 (en) * 1997-03-18 2005-10-05 메트글라스, 인코포레이티드 Electrical choke
JP2016115836A (en) * 2014-12-16 2016-06-23 東芝産業機器システム株式会社 Transformer
JP2017204498A (en) * 2016-05-09 2017-11-16 東芝産業機器システム株式会社 Wound core
CN108231315A (en) * 2017-12-28 2018-06-29 青岛云路先进材料技术有限公司 A kind of iron cobalt-based nanometer crystal alloy and preparation method thereof
CN111235495A (en) * 2020-02-21 2020-06-05 中国电力科学研究院有限公司 Amorphous nanocrystalline alloy, iron core and method for measuring wide-range current transformer
CN111235495B (en) * 2020-02-21 2022-10-04 中国电力科学研究院有限公司 Amorphous nanocrystalline alloy, iron core manufacturing method and wide-range current transformer measuring method
CN111370208A (en) * 2020-04-16 2020-07-03 佛山市顺德区国力电力电子科技有限公司 Ultra-microcrystalline soft magnetic alloy transformer

Similar Documents

Publication Publication Date Title
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
KR910002375B1 (en) Magnetic core component and manufacture thereof
EP0635853B1 (en) Nanocrystalline alloy having pulse attenuation characteristics, method of producing the same, choke coil, and noise filter
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP2008231462A (en) Magnetic alloy, amorphous alloy strip and magnetic component
JPH0680611B2 (en) Magnetic core
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JPH02183508A (en) Low-loss core
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH01169905A (en) Magnetic core for choke coil
JPS61261451A (en) Magnetic material and its production
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JP2005187917A (en) Soft magnetic alloy, and magnetic component
JPH06163235A (en) Transformer
JP2859286B2 (en) Manufacturing method of ultra-microcrystalline magnetic alloy
JPH0645128A (en) Magnetic core comprising ultra-fine crystalline alloy excellent in dc-superimposed characteristic and manufacturing method thereof, and choke coil and transformer using the core
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
JPH0257683B2 (en)
JP2000252111A (en) High-frequency saturable magnetic core and device using the same
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP2561573B2 (en) Amorphous ribbon saturable core
JPS6229105A (en) Co radical amorphous wound magnetic core
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core