JP2002075718A - Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core - Google Patents

Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core

Info

Publication number
JP2002075718A
JP2002075718A JP2000256808A JP2000256808A JP2002075718A JP 2002075718 A JP2002075718 A JP 2002075718A JP 2000256808 A JP2000256808 A JP 2000256808A JP 2000256808 A JP2000256808 A JP 2000256808A JP 2002075718 A JP2002075718 A JP 2002075718A
Authority
JP
Japan
Prior art keywords
thin plate
magnetic core
concentration
soft magnetic
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000256808A
Other languages
Japanese (ja)
Inventor
Atsushi Sunakawa
淳 砂川
Yoshio Bizen
嘉雄 備前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000256808A priority Critical patent/JP2002075718A/en
Publication of JP2002075718A publication Critical patent/JP2002075718A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic thin plate having superior soft magnetic characteristics, magnetic core using the same, a current transformer, and to provide a method of manufacturing the magnetic core. SOLUTION: A soft magnetic thin plate is formed on Fe-based nanocrystal alloy which contains 3 atm.% or lower Cu and has a structure composed of fine crystal grains 100 nm or lower in grain diameter. Fe is higher in atom concentration than oxygen in terms of SiO2 at a point deeper than 10 nm from the surface of the above soft magnetic thin plate, and Cu has its peak atom concentration at a point deeper than 5 nm from the surface of the thin plate. The above soft magnetic thin belts are laminated into a magnetic core, and a current transformer is formed by the use of the magnetic core. For instance, Fe-based amorphous ribbons, realizing a nanocrystal structure and containing 3 atm.% or lower Cu are laminated into the laminate. The laminate is heated and subjected to a crystallization treatment in an atmosphere of nonreactive gas for the formation of the magnetic core. Fe is higher in atom concentration than oxygen in terms of SiO2 at a point deeper than 10 nm from the surface, and Cu has its peak atom concentration at a point deeper than 5 nm from the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はナノ結晶合金で熱処
理により表層の組成を制御し優れた軟磁気特性を付与し
た薄板とその薄板からなる磁心、カレントトランス、お
よび磁心の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin plate made of a nanocrystalline alloy having a surface layer composition controlled by heat treatment to impart excellent soft magnetic properties, a magnetic core made of the thin plate, a current transformer, and a method of manufacturing a magnetic core. .

【0002】[0002]

【従来の技術】軟磁気特性を有する薄板は主に積層して
磁心として用いられ、カレントトランス、磁気増幅器等
に組み込まれる。例えばカレントトランスは電流センサ
ーの一種であり、電流計測、漏電ブレーカー等に用いら
れる。図1にその構成の一例を示す。カレントトランス
は一般に図1に示すようなリング状磁心からなる閉磁路
に巻線2をし、そこに計測したい電流の流れる線1を貫
通させ、この線を流れる電流によって巻線2に出力され
る電圧から線1に流れる電流を計測するものであり、一
般的には商用周波数から高くても数百Hzの周波数帯域
で用いられる。上記磁心として、アモルファス合金にみ
られる熱的不安定性がほとんどなく、経時変化も小さ
く、低磁歪で高い透磁率を有するFe基ナノ結晶合金の薄
板等をトロイダル状に巻き回すか、あるいは打抜き積層
したものが好適であることが特許第2501860号に示され
ている。ここで提案されるFe基ナノ結晶合金はパーマロ
イやCo基アモルファス合金に比べて飽和磁束密度が高い
ことから、計測可能な電流の範囲が大きい点でも有効で
ある。
2. Description of the Related Art Thin plates having soft magnetic characteristics are mainly laminated and used as a magnetic core, and are incorporated in a current transformer, a magnetic amplifier and the like. For example, a current transformer is a type of current sensor, and is used for current measurement, an earth leakage breaker, and the like. FIG. 1 shows an example of the configuration. The current transformer generally has a winding 2 passing through a closed magnetic path composed of a ring-shaped magnetic core as shown in FIG. 1 and a wire 1 through which a current to be measured flows passes therethrough, and is output to the winding 2 by the current flowing through this wire. It measures the current flowing through the line 1 from the voltage, and is generally used in a frequency band of several hundred Hz at most from the commercial frequency. As the above magnetic core, there is almost no thermal instability seen in the amorphous alloy, little change over time, a thin sheet of Fe-based nanocrystalline alloy having low magnetostriction and high magnetic permeability is wound in a toroidal shape, or stamped and laminated. It is shown in patent 2501860 that these are preferred. Since the Fe-based nanocrystalline alloy proposed here has a higher saturation magnetic flux density than permalloy and Co-based amorphous alloy, it is also effective in that the range of measurable current is large.

【0003】また、上記Fe基ナノ結晶合金の代表的な組
成は特公平4―4393号や特公平7―74419号等に記載のFe
―Si―B―(Nb、Ti、Hf、Mo、W、Ta)―Cu合金やFe―
(Co、Ni)―Cu―Si―B―(Nb、W、Ta、Zr、Hf、Ti、M
o)合金等が知られている。これらのFe基ナノ結晶合金
の製造方法としては、上記合金を液相または気相から急
冷して得られたアモルファス合金を熱処理して結晶化す
ることにより、結晶粒を微細化する方法が知られてい
る。液相からの急冷方法として、単ロール法、双ロール
法、アトマイズ法、回転液中紡糸法等が知られている。
気相からの急冷方法としては、スパッタ法や蒸着法等が
知られている。
A typical composition of the above-mentioned Fe-based nanocrystalline alloy is a Fe-based nanocrystalline alloy described in JP-B-4-4393 and JP-B-7-74419.
-Si-B- (Nb, Ti, Hf, Mo, W, Ta) -Cu alloy and Fe-
(Co, Ni) -Cu-Si-B- (Nb, W, Ta, Zr, Hf, Ti, M
o) Alloys and the like are known. As a method for producing these Fe-based nanocrystalline alloys, a method is known in which an amorphous alloy obtained by quenching the above alloy from a liquid phase or a gas phase is heat-treated and crystallized to refine crystal grains. ing. As a quenching method from a liquid phase, a single roll method, a twin roll method, an atomizing method, a spinning method in a rotating liquid, and the like are known.
As a quenching method from a gas phase, a sputtering method, an evaporation method, and the like are known.

【0004】[0004]

【発明が解決しようとする課題】上述したカレントトラ
ンス等においては特に装置の小型化、低コスト化のた
め、閉磁路に用いられる磁心の更なる透磁率の向上が求
められている。透磁率の向上は計測したい電流に対する
感度が良くなるばかりでなく、磁心の小型化および磁心
に対する巻線の巻数低減が可能となる。本発明の目的
は、ナノ結晶合金で熱処理により表層の組成を制御し優
れた軟磁気特性を付与した薄板とその薄板からなる磁
心、および軟磁気特性に優れた磁心の製造方法を提供す
ることである。
In the above-mentioned current transformer and the like, further improvement of the magnetic permeability of the magnetic core used for the closed magnetic circuit is required especially in order to reduce the size and cost of the device. The improvement of the magnetic permeability not only improves the sensitivity to the current to be measured, but also makes it possible to reduce the size of the magnetic core and to reduce the number of turns of the winding around the magnetic core. An object of the present invention is to provide a method of manufacturing a thin plate and a core made of the thin plate having excellent soft magnetic properties by controlling the composition of the surface layer by heat treatment with a nanocrystalline alloy, and a magnetic core having excellent soft magnetic properties. is there.

【0005】[0005]

【課題を解決するための手段】本発明者は、ナノ結晶合
金の透磁率の変動が、合金表面の各原子の濃度に極めて
敏感であることを知見し、表面元素濃度と透磁率の関係
を調べ、表面からある特定深さにおける酸素濃度をFeの
濃度以下とし、かつ表面からある特定深さ以上でCuの濃
度のピークが認められることが重要であることを見出し
た。すなわち本発明は、Cuを原子%で3%以下含み、100n
m以下の微細結晶粒でなる組織を有するFe基のナノ結晶
合金で構成され、かつSiO2換算で表面から10nmよりも深
い位置で、酸素よりFeの濃度が高く、SiO2換算で表面か
ら5nmよりも深い位置でCuの原子濃度のピークが認めら
れる軟磁性薄板である。また、磁心は本発明の軟磁性薄
板を積層したものである。
Means for Solving the Problems The present inventors have found that the fluctuation of the magnetic permeability of a nanocrystalline alloy is extremely sensitive to the concentration of each atom on the alloy surface, and have determined the relationship between the surface element concentration and the magnetic permeability. It was found that it was important that the oxygen concentration at a certain depth from the surface be lower than the Fe concentration and that a peak of the Cu concentration be recognized at a certain depth or more from the surface. That is, the present invention contains 3% or less by atomic% of Cu,
m is composed of nanocrystalline alloy of Fe group having the fine crystal grains consisting tissues and 5nm at a position deeper than 10nm from the surface in terms of SiO 2, a high concentration of Fe than the oxygen, from the surface in terms of SiO 2 This is a soft magnetic thin plate in which a peak of the atomic concentration of Cu is recognized at a deeper position. The magnetic core is formed by laminating the soft magnetic thin plates of the present invention.

【0006】上述した本発明の薄板または磁心は、ナノ
結晶組織を発現可能なアモルファスリボンを、例えばリ
ボン状態、あるいは平板を積み重ねたりトロイダルに巻
きまわした積層状態で非反応性ガス雰囲気中で加熱して
結晶化処理し、表面から10nmよりも深い位置で、酸素よ
りFeの濃度が高く、5nmより深い位置でCuの濃度が最大
となるように制御することによって得ることができる。
本発明においてナノ結晶合金は、たとえば単ロール法等
によってCuを原子%で3%以下含むFe基アモルファス合
金を作製し、それを結晶化温度以上に熱処理することに
よって得られるが、アモルファス形成能の点からメタロ
イド元素が原子%で5%以上含まれることが望ましい。
The above-described thin plate or magnetic core of the present invention is obtained by heating an amorphous ribbon capable of expressing a nanocrystalline structure in a non-reactive gas atmosphere, for example, in a ribbon state or in a laminated state in which flat plates are stacked or toroidally wound. And crystallization treatment, and controlling so that the concentration of Fe is higher than oxygen at a position deeper than 10 nm from the surface and the concentration of Cu is maximized at a position deeper than 5 nm from the surface.
In the present invention, the nanocrystalline alloy is obtained, for example, by producing a Fe-based amorphous alloy containing 3% or less of atomic% of Cu by a single roll method or the like and heat-treating the alloy to a temperature higher than the crystallization temperature. From the viewpoint, it is desirable that the metalloid element be contained at 5% or more in atomic%.

【0007】[0007]

【発明の実施の形態】上述したように、本発明の重要な
特徴は薄板の表面からSiO2換算で10nmより深い位置で、
酸素よりFeの濃度が高く、かつ表面から5nmより深い位
置でCuの濃度が最大であることである。薄板を磁心とし
たときに薄板が上記条件を満たさない場合、磁心の透磁
率は大幅に低下する。なお、本発明で、SiO2換算の深さ
と規定したのは、極めて浅い表面の正確な深さを直接計
るのは困難であり、光電子分光分析装置によるスパッタ
リング時間に対応するSiO2のスパッタリング深さを、実
際の深さとして評価したためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that at a position deeper than 10 nm in terms of SiO 2 from the surface of a thin plate,
That is, the concentration of Fe is higher than that of oxygen, and the concentration of Cu is maximum at a position deeper than 5 nm from the surface. When the thin plate does not satisfy the above conditions when the thin plate is used as a magnetic core, the magnetic permeability of the magnetic core is significantly reduced. In the present invention, the definition of the depth in terms of SiO 2 is that it is difficult to directly measure the exact depth of an extremely shallow surface, and the sputtering depth of SiO 2 corresponding to the sputtering time by a photoelectron spectrometer is required. Was evaluated as the actual depth.

【0008】表面で酸素濃度が高くなるのは、合金表面
に酸化物を形成しているためと考えられる。ナノ結晶合
金中に存在する元素はそれぞれ異なる酸化特性を有す
る。そのため、異なる雰囲気で結晶化処理を行った場
合、酸化物形成後に合金表層の元素濃度分布が異なると
考えられる。特にナノ結晶合金において磁気特性に極め
て敏感な影響を与えるメタロイド元素は非常に酸化しや
すいため、結晶化処理がメタロイド元素の濃度分布を変
動させてしまうことにもなっているものと推測される。
また、減圧雰囲気で結晶化処理を行った場合は、B等の
蒸気圧の高い元素が表面から蒸発し易く、Cuの濃度のピ
ークが認められる位置が極表層になる一因となると思わ
れる。
It is considered that the reason why the oxygen concentration increases on the surface is that an oxide is formed on the alloy surface. The elements present in the nanocrystalline alloy have different oxidation characteristics. Therefore, when the crystallization treatment is performed in different atmospheres, it is considered that the element concentration distribution of the alloy surface layer differs after the oxide is formed. In particular, in a nanocrystalline alloy, a metalloid element which has a very sensitive effect on magnetic properties is very easily oxidized, and it is presumed that crystallization treatment also fluctuates the concentration distribution of the metalloid element.
When the crystallization treatment is performed in a reduced-pressure atmosphere, elements having a high vapor pressure, such as B, are likely to evaporate from the surface, and the position where the peak of the concentration of Cu is recognized is considered to be a cause of the extreme surface layer.

【0009】本発明者の検討によれば、上述した理由に
より生じる極表面の微妙な酸化状態及びCuの濃度分布の
違いは、極めて著しい透磁率の変化となって現れる。こ
れはナノ結晶合金にとって極めて重大な問題である。
According to the study of the present inventors, the delicate oxidation state of the pole surface and the difference in the Cu concentration distribution caused by the above-mentioned reasons appear as extremely remarkable changes in the magnetic permeability. This is a critical issue for nanocrystalline alloys.

【0010】具体的に、本発明で規定するように表面の
酸素濃度及びCuの濃度分布を適正なものとするために、
たとえば、ナノ結晶組織を発現可能なアモルファスリボ
ンに対して、非反応性雰囲気ガスで加熱して結晶化処理
を行う。非反応性ガスの使用は表面の酸化の抑制に有効
である。加えて、減圧雰囲気を適用した場合よりもナノ
結晶合金を構成する元素で、蒸気圧の高いものが合金表
面から蒸発するのを防ぐのにも有効である。本発明者ら
の検討によれば、窒素ガスで熱処理した場合は十分な透
磁率が得られ、実質的に非反応性ガスとして扱える。も
ちろん非反応性ガスとしては、不活性ガスも使用するこ
ともできるが高価である。また水素はメタロイド元素と
反応し、濃度分布の変動を生じさせるため好ましくな
い。ナノ結晶合金表面からの上記蒸発を抑えるため非反
応性ガス雰囲気の圧力は大気圧、または大気圧より高い
0.1〜0.3MPa(絶対圧)で結晶化することが好ましい。
Specifically, in order to make the surface oxygen concentration and Cu concentration distribution appropriate as specified in the present invention,
For example, a crystallization process is performed by heating an amorphous ribbon capable of expressing a nanocrystal structure with a non-reactive atmosphere gas. Use of a non-reactive gas is effective in suppressing surface oxidation. In addition, it is more effective to prevent elements having a higher vapor pressure from evaporating from the alloy surface than elements constituting the nanocrystalline alloy as compared with the case where a reduced pressure atmosphere is applied. According to the study of the present inventors, when heat treatment is performed with nitrogen gas, a sufficient magnetic permeability is obtained, and it can be treated as a substantially non-reactive gas. Of course, an inert gas can be used as the non-reactive gas, but it is expensive. Hydrogen is not preferable because it reacts with the metalloid element to cause fluctuation in the concentration distribution. Pressure of non-reactive gas atmosphere is atmospheric pressure or higher than atmospheric pressure to suppress the above evaporation from nanocrystalline alloy surface
It is preferable to crystallize at 0.1 to 0.3 MPa (absolute pressure).

【0011】なお、薄板の結晶粒径を100nm以下とした
のは、100nmより大きくては結晶磁気異方性が大きいた
め十分な透磁率が得られないからである。また、Cuは
結晶化温度以上で熱処理した際の初晶の核の数を増加さ
せることから、ナノ結晶材料としての結晶粒を微細化す
る効果がある。Cuを原子%で3%以下としたのは、3
%を越えると薄板が脆くなるからである。また、Cuは
Feと分離しやすい元素であるため、あまり多いと液体
急冷法を用いてもFeと分離し、均一に固溶させること
ができなくなる点でも問題となるため、3%以下が良
い。この元素の効果を明確に得るためには、好ましく
は、0.1%以上添加する。
The reason why the crystal grain size of the thin plate is set to 100 nm or less is that if the thickness is larger than 100 nm, sufficient magnetic permeability cannot be obtained due to large crystal magnetic anisotropy. Further, Cu increases the number of primary crystal nuclei when heat-treated at a crystallization temperature or higher, and thus has an effect of making crystal grains as a nanocrystalline material fine. The reason why Cu is set to 3% or less in atomic% is that
%, The thin plate becomes brittle. Further, Cu is an element that is easily separated from Fe, so if it is too much, it will be separated from Fe even if the liquid quenching method is used, and it will not be possible to form a solid solution uniformly. . In order to clearly obtain the effect of this element, it is preferable to add 0.1% or more.

【0012】本発明におけるメタロイド元素とはC、
P、Si、Bのいずれかもしくは複合で存在するものを
意味している。これは前述したアモルファス合金を作製
する上で有効であり、5%より少ない場合、アモルファ
ス合金製造時部分的に結晶が生じ、脆化する可能性があ
るからである。
The metalloid element in the present invention is C,
It means any of P, Si, B or a compound existing in a composite. This is effective in producing the above-mentioned amorphous alloy, and if it is less than 5%, crystals may be partially formed during the production of the amorphous alloy, which may cause embrittlement.

【0013】本発明において、薄板を積層した磁心と
は、アモルファス合金薄板をトロイダル状に巻きまわし
たものを結晶化温度以上で熱処理しても良いし、アモル
ファス合金薄板を例えばリング状に打ち抜いた後、所定
の高さに積層することによって成形した磁心を結晶化温
度以上に熱処理するか、打ち抜いたものを熱処理した後
積層しても良い。特にトロイダル形状は打ち抜いて積層
したものに比べて工程が少ない点で有利である。また、
上記積層磁心は磁心の保護及び巻線との絶縁のため、樹
脂等からなるケースに入れるが、その際トロイダル状の
磁心は薄板が連続的につながっているため、取り扱いや
すい点でも有利である。
In the present invention, the magnetic core in which the thin plates are laminated may be obtained by winding an amorphous alloy thin plate in a toroidal shape and heat-treating the amorphous alloy thin plate at a crystallization temperature or higher. Alternatively, the magnetic core formed by laminating at a predetermined height may be heat-treated at a temperature higher than the crystallization temperature, or a punched product may be heat-treated and then laminated. In particular, the toroidal shape is advantageous in that the number of steps is smaller than that obtained by punching and laminating. Also,
The laminated magnetic core is placed in a case made of resin or the like to protect the magnetic core and insulate it from the windings. At this time, the toroidal magnetic core is advantageous in that it is easy to handle because the thin plates are continuously connected.

【0014】[0014]

【実施例】原子濃度でCu1%、Nb3.0%、Si15.1%、B6.8%残
部実質的にFeからなる合金の溶湯を単ロール法により急
冷し、幅27mm、厚さ19μmのアモルファス合金薄板を得
た。このアモルファス合金薄板を内径15mm、外径19mmに
巻きまわし、トロイダル状の未熱処理磁心を得た。ま
た、上記組成でCuを4%としたリボンを作製し、同様の磁
心を作製しようとしたところ、非常に脆いために、磁心
の作製ができなかった。そこで、Cu1%のアモルファス
合金薄板のみを用い、結晶化温度以上で熱処理し、磁気
特性及び表面層の分析を行うこととした。
Example: A 1% Cu, Nb 3.0%, Si 15.1%, B6.8% balance molten alloy melt consisting essentially of Fe was quenched by a single roll method, and was amorphous with a width of 27mm and a thickness of 19μm. An alloy sheet was obtained. This amorphous alloy thin plate was wound around an inner diameter of 15 mm and an outer diameter of 19 mm to obtain a toroidal unheated magnetic core. When a ribbon having the above composition and containing 4% of Cu was produced, and a similar magnetic core was produced, it was not possible to produce a magnetic core because it was very brittle. Therefore, using only a 1% Cu amorphous alloy sheet, heat treatment was performed at a temperature higher than the crystallization temperature to analyze the magnetic properties and the surface layer.

【0015】上記未熱処理磁心及び同一素材の薄板を10
mm角に切断したものを大気圧下及び0.3MPaの窒素雰囲気
中で525℃(該合金の結晶化温度は508℃)で熱処理し、
これらを本発明1、本発明2とした。また同様の未熱処
理磁心及び試料を真空度14Paの低真空度の雰囲気中及
び、真空度1.3×10 3Paの高真空度の雰囲気中同温度で
熱処理しこれらをそれぞれ比較例1、比較例2とした。
熱処理後、10mm角の試料は光電子分光分析装置にて表面
層の分析に供した。トロイダル状の磁心は樹脂製のケー
スに入れて1次、2次ともに10回ずつ巻線を施し、800A
/mの直流磁場における飽和磁束密度、及び50Hz、1kHzに
おける最大透磁率μmを測定した。
The unheated core and a thin plate of the same material
The material cut into mm-square is heat-treated at 525 ° C. (at a crystallization temperature of 508 ° C.) under atmospheric pressure and a nitrogen atmosphere of 0.3 MPa,
These were designated as Invention 1 and Invention 2. Similarly the non-heat-treated core and an atmosphere of a low degree of vacuum in the vacuum degree 14Pa the sample and a vacuum of 1.3 × 10 - 3 in an atmosphere of high vacuum in Pa treated at the same temperature Example compares them respectively 1, Comparative Example And 2.
After the heat treatment, a 10 mm square sample was subjected to analysis of a surface layer by a photoelectron spectrometer. The toroidal magnetic core is placed in a resin case, and the primary and secondary are wound 10 times for both, 800A
The saturation magnetic flux density in a DC magnetic field of / m and the maximum magnetic permeability μm at 50 Hz and 1 kHz were measured.

【0016】図2、3、4に本発明1、比較例1、比較例
2の光電子分光分析装置による分析結果を示す。なお、
本実施例で使用した光電子分光分析装置のスパッタリン
グ時間とSiO2における深さの関係は、100秒(sec)当た
り、3.3nmの深さに対応するものである。
FIGS. 2, 3 and 4 show the results of analysis by the photoelectron spectrometer of the present invention 1, Comparative Examples 1 and 2. FIG. In addition,
The relationship between the sputtering time and the depth in SiO 2 of the photoelectron spectrometer used in the present example corresponds to a depth of 3.3 nm per 100 seconds (sec).

【0017】窒素雰囲気で行った本発明を示す図2にお
いて、表層における酸素およびSiの濃度が内部に比べて
高く、逆にFeの濃度が非常に低いことが分かる。また、
若干ではあるがB、Nbも内部に比べて低い。これらか
ら、主にSiとFeの酸化物からなる層を形成していると思
われる。このとき、酸素よりFeの原子濃度が高くなるの
は表面から5nm以上の深さである。また、Cuの濃度のピ
ーク位置が約8nmの深さにある。即ち、表面から10nmよ
りも深い位置で酸素よりFeの原子濃度が高く、表面から
5nmよりも深い位置でCuの原子濃度のピークが認められ
る。
In FIG. 2 showing the present invention performed in a nitrogen atmosphere, it can be seen that the concentrations of oxygen and Si in the surface layer are higher than those inside, and conversely, the concentration of Fe is very low. Also,
B and Nb are slightly lower than inside. From these, it is considered that a layer mainly composed of an oxide of Si and Fe is formed. At this time, the atomic concentration of Fe becomes higher than oxygen at a depth of 5 nm or more from the surface. The peak position of the concentration of Cu is at a depth of about 8 nm. That is, the atomic concentration of Fe is higher than oxygen at a position deeper than 10 nm from the surface,
A peak of the atomic concentration of Cu is recognized at a position deeper than 5 nm.

【0018】これに対し低真空雰囲気で行った比較例1
を示す図3でも主にSiの酸化層と思われるFe、B、Nbの濃
度の低い層が認められる。このとき、酸素濃度よりFe濃
度が高くなるのは11nm以上であり、窒素中で行った場合
と比べ酸素濃度がFe濃度より高い領域は6nm深いことが
分かる。Cu濃度ピークの深さは14nmとなっている。ま
た、高真空雰囲気で行った比較例2を示す図4におい
て、酸素濃度よりFe濃度が高くなるのは2.5nm以上で、
酸化層は非常に薄いが、Cu濃度ピークは約2nmの深さに
ある。
Comparative Example 1 performed in a low vacuum atmosphere
In FIG. 3 which shows that the concentration of Fe, B, and Nb is low, which is considered to be mainly an oxide layer of Si. At this time, it is found that the Fe concentration becomes higher than the oxygen concentration at 11 nm or more, and the region where the oxygen concentration is higher than the Fe concentration is 6 nm deeper than the case where the treatment is performed in nitrogen. The depth of the Cu concentration peak is 14 nm. In FIG. 4 showing Comparative Example 2 performed in a high vacuum atmosphere, the Fe concentration was higher than the oxygen concentration at 2.5 nm or more,
The oxide layer is very thin, but the Cu concentration peak is at a depth of about 2 nm.

【0019】次に、表1に光電子分光分析装置での測定
結果、および飽和磁束密度と最大透磁率の測定結果を併
せて示す。表面から10nmよりも深い位置で酸素よりFeの
原子濃度が高く、表面から5nmよりも深い位置でCuの原
子濃度のピークが認められる本発明1及び本発明2で
は、それぞれμmが630000、595000と非常に高い値を示
し、Bsも1.2Tとカレントトランスに使用するには十分な
値であった。一方、表層での原子濃度が該条件を満たし
ていない比較例1、比較例2ではBsは同様の値となった
が、μmはそれぞれ135000、169000と本発明と比べて著
しく低い値となった。また1kHzにおけるμmは、本発明
1、本発明2、比較例1、比較例2それぞれμm12500
0、μm123000μm119000、μm121000と差がほ少なくな
り、本発明は数百Hz以下のカレントトランス用途に特
に適することがわかる。
Next, Table 1 also shows the measurement results of the photoelectron spectrometer and the measurement results of the saturation magnetic flux density and the maximum magnetic permeability. In the present invention 1 and the present invention 2 in which the atomic concentration of Fe is higher than that of oxygen at a position deeper than 10 nm from the surface and the peak of the atomic concentration of Cu is recognized at a position deeper than 5 nm from the surface, μm is 630000 and 595000, respectively. It showed a very high value, and Bs was 1.2T, which was enough for use in a current transformer. On the other hand, in Comparative Examples 1 and 2 in which the atomic concentration in the surface layer did not satisfy the condition, Bs had the same value, but μm was 135000 and 169000, respectively, which were significantly lower than those of the present invention. . Further, μm at 1 kHz is μm12500 of the present invention 1, the present invention 2, the comparative examples 1 and 2, respectively.
0, μm123000 μm119000, μm121000, the difference is very small, indicating that the present invention is particularly suitable for current transformer applications at several hundred Hz or less.

【0020】[0020]

【表1】 [Table 1]

【0021】また、上記3種類の磁心にそれぞれ検出用
巻線を100回巻き回したものに周波数50Hz、0.3〜3mAの
電流が流れる線を貫通させ、その出力電圧を測定した。
図5にその結果を示す。明らかに窒素中で熱処理した本
発明で高い検出電圧が得られており、本発明の積層磁心
を用いたカレントセンサーの優位性が確認された。な
お、いずれの熱処理雰囲気で行った場合においてもその
組織は実質的に100nm以下であることを透過電子顕微鏡
にて確認した。また、上記窒素中での処理品を窒素では
なくアルゴン中で熱処理しても、窒素中とほぼ同様のμ
mおよび出力電圧が得られることも確認した。
Further, a wire through which a current of 50 Hz and a current of 0.3 to 3 mA flows was passed through each of the above three types of magnetic cores, each of which was wound with detection winding 100 times, and the output voltage was measured.
Fig. 5 shows the results. Obviously, a high detection voltage was obtained in the present invention heat-treated in nitrogen, confirming the superiority of the current sensor using the laminated magnetic core of the present invention. It was confirmed by a transmission electron microscope that the structure was substantially 100 nm or less in any of the heat treatment atmospheres. Further, even if the treated product in nitrogen is heat-treated in argon instead of nitrogen, μ is almost the same as that in nitrogen.
It was also confirmed that m and output voltage were obtained.

【0022】[0022]

【発明の効果】上述した本発明の薄板は軟磁気特性に優
れ、高い透磁率が要求されるすべての磁性応用品に適用
可能である。その薄板を積層した磁心は、特に高い透磁
率を要求されるカレントトランス等に適用した場合、装
置の小型化および磁心に対する巻線の巻数低減が可能と
なり、その工業的価値は大きい。
The thin plate of the present invention described above is excellent in soft magnetic properties and can be applied to all magnetic applications requiring high magnetic permeability. When applied to a current transformer or the like that requires a particularly high magnetic permeability, the magnetic core obtained by laminating the thin plates can reduce the size of the device and reduce the number of turns of the windings with respect to the magnetic core, and thus have a great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】カレントトランスの一例を説明する図である。FIG. 1 is a diagram illustrating an example of a current transformer.

【図2】本発明の磁心の表面の元素濃度の分布の一例を
示す図である。
FIG. 2 is a diagram showing an example of a distribution of element concentrations on the surface of a magnetic core according to the present invention.

【図3】比較例の磁心の表面の元素濃度の分布の一例を
示す図である。
FIG. 3 is a diagram showing an example of a distribution of element concentrations on the surface of a magnetic core of a comparative example.

【図4】比較例の磁心の表面の元素濃度の分布の一例を
示す図である。
FIG. 4 is a diagram showing an example of a distribution of element concentrations on the surface of a magnetic core of a comparative example.

【図5】本発明のカレントトランスを想定した検出電圧
を測定した図である。
FIG. 5 is a diagram in which a detection voltage is measured assuming the current transformer of the present invention.

【符号の説明】[Explanation of symbols]

1 線、2 巻線 1 wire, 2 windings

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Cuを原子%で3%以下含み、100nm以下の
微細結晶粒でなる組織を有するFe基ナノ結晶合金で構成
され、かつSiO2換算で表面から10nmよりも深い位置で、
酸素よりFeの原子濃度が高く、表面から5nmよりも深い
位置でCuの原子濃度のピークが認められることを特徴と
する軟磁性薄板。
1. An Fe-based nanocrystalline alloy containing 3% or less by atomic% of Cu and having a structure of fine crystal grains of 100 nm or less, and at a position deeper than 10 nm from the surface in terms of SiO 2 ,
A soft magnetic thin plate wherein the atomic concentration of Fe is higher than that of oxygen and the peak of the atomic concentration of Cu is recognized at a position deeper than 5 nm from the surface.
【請求項2】 メタロイド元素の合計が原子%で5%以
上含まれることを特徴とする請求項1に記載の軟磁性薄
板。
2. The soft magnetic thin plate according to claim 1, wherein the total amount of metalloid elements is 5% or more in atomic%.
【請求項3】 請求項1または請求項2に記載の軟磁性
薄板を積層した磁心。
3. A magnetic core obtained by laminating the soft magnetic thin plates according to claim 1 or 2.
【請求項4】 請求項3に記載の磁心を用いたカレント
トランス。
4. A current transformer using the magnetic core according to claim 3.
【請求項5】 ナノ結晶組織を発現可能なCuを原子%で
3%以下含むFe基アモルファスリボンを積層し、非反応
性ガス雰囲気中で加熱して結晶化処理し、SiO2換算で表
面から10nmよりも深い位置で、酸素よりFeの濃度が高
く、表面から5nmよりも深い位置でCuの原子濃度のピー
クが認められるように制御することを特徴とする磁心の
製造方法。
5. An atomic percentage of Cu capable of expressing a nanocrystalline structure.
Laminate Fe-based amorphous ribbon containing 3% or less, heat it in a non-reactive gas atmosphere and crystallize it.At a position deeper than 10 nm from the surface in terms of SiO 2 , the concentration of Fe is higher than oxygen, A method for manufacturing a magnetic core, characterized in that control is performed so that a peak of Cu atomic concentration is recognized at a position deeper than 5 nm.
JP2000256808A 2000-08-28 2000-08-28 Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core Pending JP2002075718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000256808A JP2002075718A (en) 2000-08-28 2000-08-28 Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256808A JP2002075718A (en) 2000-08-28 2000-08-28 Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core

Publications (1)

Publication Number Publication Date
JP2002075718A true JP2002075718A (en) 2002-03-15

Family

ID=18745360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256808A Pending JP2002075718A (en) 2000-08-28 2000-08-28 Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core

Country Status (1)

Country Link
JP (1) JP2002075718A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114605A1 (en) * 2007-03-22 2008-09-25 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
WO2009123100A1 (en) 2008-03-31 2009-10-08 日立金属株式会社 Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP2010229466A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Nano crystal soft magnetic alloy and magnetic core
CN101641455B (en) * 2007-03-22 2012-05-30 日立金属株式会社 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247555A (en) * 1988-03-30 1989-10-03 Hitachi Metals Ltd Hyperfine-crystal fe-base alloy excellent in corrosion resistance and its production
JPH07320920A (en) * 1994-05-27 1995-12-08 Hitachi Metals Ltd Nano-crystal alloy magnetic core and heat-treatment method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247555A (en) * 1988-03-30 1989-10-03 Hitachi Metals Ltd Hyperfine-crystal fe-base alloy excellent in corrosion resistance and its production
JPH07320920A (en) * 1994-05-27 1995-12-08 Hitachi Metals Ltd Nano-crystal alloy magnetic core and heat-treatment method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114605A1 (en) * 2007-03-22 2008-09-25 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
US7935196B2 (en) 2007-03-22 2011-05-03 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
CN101641455B (en) * 2007-03-22 2012-05-30 日立金属株式会社 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
WO2009123100A1 (en) 2008-03-31 2009-10-08 日立金属株式会社 Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
US8414712B2 (en) 2008-03-31 2013-04-09 Hitachi Metals, Ltd. Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
EP2261385A4 (en) * 2008-03-31 2016-01-20 Hitachi Metals Ltd Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP2010229466A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Nano crystal soft magnetic alloy and magnetic core

Similar Documents

Publication Publication Date Title
JP7028290B2 (en) Manufacturing method of nanocrystal alloy magnetic core
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5182601B2 (en) Magnetic core made of amorphous alloy ribbon, nanocrystalline soft magnetic alloy and nanocrystalline soft magnetic alloy
US5611871A (en) Method of producing nanocrystalline alloy having high permeability
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP2008231462A (en) Magnetic alloy, amorphous alloy strip and magnetic component
JPH01242755A (en) Fe-based magnetic alloy
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
US5211767A (en) Soft magnetic alloy, method for making, and magnetic core
JP2008231534A5 (en)
JP2008231534A (en) Soft magnetic thin band, magnetic core, and magnetic component
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JPH0375341A (en) Soft magnetic alloy, its manufacture and magnetic core
JP2002075718A (en) Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JPH02236259A (en) Alloy excellent in iso-permeability and its production
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP4217038B2 (en) Soft magnetic alloy
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2001155946A (en) Current transformer and method of manufacturing therefor
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JP4445195B2 (en) Amorphous alloy ribbon and magnetic core using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100326