JPS59198052A - Phase locked circuit - Google Patents

Phase locked circuit

Info

Publication number
JPS59198052A
JPS59198052A JP7220183A JP7220183A JPS59198052A JP S59198052 A JPS59198052 A JP S59198052A JP 7220183 A JP7220183 A JP 7220183A JP 7220183 A JP7220183 A JP 7220183A JP S59198052 A JPS59198052 A JP S59198052A
Authority
JP
Japan
Prior art keywords
phase
signals
complex multiplier
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7220183A
Other languages
Japanese (ja)
Other versions
JPH0151110B2 (en
Inventor
Tomohiko Taniguchi
智彦 谷口
Shigeyuki Umigami
重之 海上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7220183A priority Critical patent/JPS59198052A/en
Publication of JPS59198052A publication Critical patent/JPS59198052A/en
Publication of JPH0151110B2 publication Critical patent/JPH0151110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To attain quickly the initial phase locking by using a complex conjugation value of two signals in a base band as the correction of the initial phase difference, and feeding back the product of two output signals of a complex multiplier as the input of a phase locked loop. CONSTITUTION:An AM-PM-VSB signal is branched into two, and applied to multipliers 11, 12, where the products f1, f2 between the signals and two orthogonal carrier waves having the same frequency as the carrier frequency are obtained respectively. The signals are converted into two orthogonal base band signals via a low pass filter 13. The signals are doubled by multipliers 14, 15 into signals g1(t) and g2(t) and added to a complex multiplier 17. An output of the 1st integration device 19 is applied to a correction vector forming section 20. This output is added to a vector correcting section 21 and the internal phase of this time is decided by multiplying a correction vector to the preceding value of the 2nd integration device 23 in terms of complex number. A vector AGC section 22 controls the gain so that the internal phase vector is traced on the unit circle.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は例えばファクシミリ等のデータ伝送において用
いられる残留側波帯振幅・位相変調信号全復調する位相
同期回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a phase synchronization circuit that fully demodulates a vestigial sideband amplitude/phase modulated signal used in data transmission such as facsimile.

(2)技術の背景 本回路の対象となる残留側波帯振幅・位相変調(AM 
−PM −VSB )信号について第1図を用いて説明
する。第1図(1)にはファクシミリ等に用いられる2
値のデータ信号が示される。データ信号においては、例
えば「0」は白を、「1」は黒を表わす。データ信号は
2値−3値変換(振幅変調(AM) )されて3値デ一
タ信号(x (t) )となシ第1図(2)に示される
。3値デ一タ信号によって搬送波が位相変調(PM )
されると第1図(3)に示されるAM −PM倍信号な
る。AM −PM倍信号3値デ一タ信号の「+1」に対
応する部分は搬送波の位相がO相であり、「−1」に対
応する部分はπ相である。AM −PM −VSB匍号
はAM @PM信号を更にVSBフィルタによってろ波
して得られる信号である。
(2) Technical background The residual sideband amplitude/phase modulation (AM) target of this circuit is
-PM-VSB) signal will be explained using FIG. Figure 1 (1) shows 2
A value data signal is shown. In the data signal, for example, "0" represents white and "1" represents black. The data signal is subjected to binary-to-ternary conversion (amplitude modulation (AM)) to become a ternary data signal (x (t)), as shown in FIG. 1(2). Carrier wave is phase modulated (PM) by ternary data signal
Then, the AM-PM multiplied signal shown in FIG. 1(3) is obtained. The carrier wave phase of the portion corresponding to "+1" of the AM-PM multiplied signal ternary data signal is O phase, and the portion corresponding to "-1" is π phase. The AM-PM-VSB signal is a signal obtained by further filtering the AM @PM signal with a VSB filter.

このようにして得られたAM −PM−VSB信号f 
(t)は次式の形で表わされる。fcは搬送波の周波数
である。
AM-PM-VSB signal f obtained in this way
(t) is expressed in the following form. fc is the frequency of the carrier wave.

t (t) = x(t)cos 2πf Ct + 
0(t)sin 2πfctなお仝(t)= 2πfc
tの項はVSBフィルタの特性によ△ って生じる直交成分の項であり、X(t)は、(1)に
対し90度位相回転した信号である。
t (t) = x(t) cos 2πf Ct +
0(t) sin 2πfct where (t) = 2πfc
The term t is a term of an orthogonal component caused by Δ due to the characteristics of the VSB filter, and X(t) is a signal whose phase is rotated by 90 degrees with respect to (1).

(3)従来技術と問題点 従来、上述のようなAM −PM −VSB信号を復調
する回路は、まず搬送周波数に等しい2つの直交した搬
送波(瀉2πfctおよび5ln2πfct)によって
ベースバンドに復調し、得られた2つの信号を複素乗算
器の一方の入力に加え、複素乗算器の出力を適尚に重み
づけして、第1積分器、補正ベクトル作成部、ベクトル
補正部、ベクトルAGC部。
(3) Prior art and problems Conventionally, a circuit for demodulating an AM-PM-VSB signal as described above first demodulates the signal to baseband using two orthogonal carrier waves (2πfct and 5ln2πfct) equal to the carrier frequency, and then The two signals thus obtained are added to one input of a complex multiplier, and the output of the complex multiplier is appropriately weighted, and the output is then outputted to a first integrator, a correction vector generation section, a vector correction section, and a vector AGC section.

および第2積分器で構成される位相同期ループを介して
複素乗算器の他方の入力に加えて同期検波する。この回
路は、初期の位相同期に時間かがかシかつその精度が必
ずしも満足できるものでなく、特に位相反転の頻繁に生
じるAM −PM −VSB信号の場合位相誤差の正し
い補正が難しいという問題点があった。さらに直交成分
の干渉によシ、送信データの変化点において位相同期が
外れたシ、搬送波が跡絶えている区間には、このような
劣化の影響が累積されるという問題点があった。
In addition to the other input of the complex multiplier, synchronous detection is performed via a phase-locked loop composed of a second integrator and a second integrator. This circuit has the problem that the initial phase synchronization takes time and its accuracy is not always satisfactory, and it is difficult to correctly correct the phase error especially in the case of AM-PM-VSB signals where phase inversion occurs frequently. was there. Furthermore, due to the interference of orthogonal components, there is a problem that the influence of such deterioration accumulates in sections where phase synchronization is lost at a change point of the transmitted data, or where the carrier wave disappears.

(4)発明の目的 本発明の1つの目的は、前述の従来形の回路における問
題点にかんがみ、初期位相差の補正としてベースバンド
の2つの信号の複素共役値を用い、位相同期ループの入
力として複素乗算器の2つの出力信号の積を帰還すると
いう着想に基づき、初期の位相同期を迅速に行うことが
でき、位相反転の頻繁に生じる信号の場合でも符号変化
の影響ヲ受けず位相誤差を抽出でき、位相差の正しい補
正が可能となシ、その結果良質な復調信号を得ることに
おる。
(4) Object of the Invention One object of the present invention is to solve the above-mentioned problems in the conventional circuit by using the complex conjugate value of two baseband signals as a correction for the initial phase difference, and by using the complex conjugate value of the two baseband signals as the input of the phase-locked loop. Based on the idea of feeding back the product of two output signals of a complex multiplier as It is possible to extract the phase difference, correct the phase difference, and obtain a high-quality demodulated signal.

本発明の他の目的は、イニシャライズ判定回路およびル
ープ接続判定回路を設け、それぞれ初期設定および位相
同期ループへの帰還を制御するという構想に基づき、適
切な時期にのみ初期設定および位相同期ループへの帰還
を行うようにし、直交成分の干渉による影響を受けず搬
送波の跡絶えている期間にも正しい復調動作全続けるよ
うにすることにある。
Another object of the present invention is to provide an initialization determination circuit and a loop connection determination circuit, and based on the concept of controlling initialization and feedback to the phase-locked loop, respectively, initialization and feedback to the phase-locked loop are performed only at appropriate times. The purpose is to carry out feedback so that the correct demodulation operation can continue even during the period when the carrier wave is lost without being affected by the interference of orthogonal components.

(5)発明の構成 本発明の1つの形態においては、残留側波帯振幅・位相
変調された信号の同期検波を、搬送周波数と等しい周波
数の直交した2つの搬送波を乗じて低域フィルタを通し
、原信号に対して同相成分と直交成分のベースバンド信
号を作り、該2つの信号を複素乗算器の一方の入力に加
え、該複素乗算器の出力を位相同期ループを介して該複
素乗算器の他方の入力に帰還して行う位相同期回路にお
いて、初期位相差の補正として該複素乗算器の他方の入
力に前記ベースバンド信号の複素共役値を入力するよう
にしたことを特徴とする位相同期回路が提供される。
(5) Structure of the Invention In one form of the present invention, synchronous detection of a residual sideband amplitude/phase modulated signal is performed by multiplying two orthogonal carrier waves having a frequency equal to the carrier frequency and passing the signal through a low-pass filter. , generate baseband signals of in-phase and quadrature components for the original signal, add these two signals to one input of a complex multiplier, and send the output of the complex multiplier to the complex multiplier via a phase-locked loop. A phase synchronization circuit that performs feedback to the other input of the baseband signal, wherein a complex conjugate value of the baseband signal is input to the other input of the complex multiplier as correction of the initial phase difference. A circuit is provided.

本発明の他の形態においては、残留1Illl波帯振幅
・位相変調された信号の同期検波を、搬送周波数と等し
い周波数の直交した2つの搬送波を乗じて低域フィルタ
を通し、原信号に対して同相成分と直交成分のベースバ
ンド信号全作シ、該2つの信号を複素乗算器の一方の入
力に加え、該複素乗算器の出力を位相同期ループを介し
て該複素乗算器の他方の入力に帰還して行う位相同期回
路において、該ベースバンド信号の絶対レベルおよび変
動量を検出して或あらかじめ定められたしきい値と比較
するイニシャライズ判定回路および該複素乗算器の円方
の絶対レベルおよび変動量を検出して前記或あらかじめ
定められたしきい値と比較するループ接続判定回路全具
備し、該イニシャライズ判定回路の判定に従って初期位
相差の補正として該複素乗算器の他方の入力に前記ベー
スバンドの2つの信号の複素共役値をベクトル的鈍初期
設定するようにし、該ループ接続判定回路の判定に従っ
て該複素乗算器の2つの出力信号の積を該位相同期ルー
プへ帰還するようにし、搬送波が跡絶えている区間につ
いては該位相同期ループを切離し、今迄に求めた位相変
動量で自走させるようにしたことを特徴とする位相同期
回路が提供される。
In another embodiment of the present invention, the synchronous detection of the amplitude and phase modulated signal in the residual 1Ill waveband is performed by multiplying the signal by two orthogonal carrier waves having a frequency equal to the carrier frequency and passing the resultant signal through a low-pass filter. All baseband signals of in-phase and quadrature components are applied to one input of a complex multiplier, and the output of the complex multiplier is passed through a phase-locked loop to the other input of the complex multiplier. In a phase synchronization circuit that performs feedback, an initialization judgment circuit detects the absolute level and amount of variation of the baseband signal and compares it with a predetermined threshold, and the absolute level and variation of the circle of the complex multiplier. a loop connection determination circuit for detecting the amount and comparing it with the predetermined threshold; The complex conjugate value of the two signals is vectorally blunt initialized, and the product of the two output signals of the complex multiplier is fed back to the phase-locked loop according to the judgment of the loop connection judgment circuit, so that the carrier wave is There is provided a phase-locked circuit characterized in that the phase-locked loop is disconnected from the remaining section and allowed to run freely with the amount of phase fluctuation determined so far.

(6)発明の実施例 本発明の第1の実施例としての位相同期回路のブロック
回路図が第2図に示される。本回路は乗算器11.12
,14,15.16および18゜低域フィルタ(LPF
)13.複素乗算器17.および位相同期ループを構成
する第1積分器19゜補正ベクトル作成部20.ベクト
ル補正部21゜ベクトルAGC部22および第2積分器
23を具備する。AM −PM −VSB信号は2つに
分岐されて、乗算器11および12に加えられ、搬送周
波数と等しい周波数の直交した2つの戯送波(部2πf
ctおよび龜2πfct )との積がそれぞれ求められ
る。
(6) Embodiment of the Invention A block circuit diagram of a phase locked circuit as a first embodiment of the invention is shown in FIG. This circuit is multiplier 11.12
, 14, 15, 16 and 18° low pass filter (LPF
)13. Complex multiplier 17. and a first integrator 19 that constitutes a phase-locked loop; and a correction vector creation section 20. The vector correction section 21 includes a vector AGC section 22 and a second integrator 23. The AM-PM-VSB signal is branched into two and applied to multipliers 11 and 12, where they are divided into two orthogonal transmission waves (part 2πf) having a frequency equal to the carrier frequency.
ct and 2πfct) are determined.

求められた2つの信号f1およびf2は抵域フイ#り1
3を通して、直交した2つのベースバンド信号に変換さ
れる。変換された2つのベースバンドの信号はそれぞれ
乗算器14および15によって2倍され信号、F+(t
)および=V2(t)となシ、複素乗算器17の一方の
入力へ加えられる。一方信号L(t)はそのまま、信号
g2(t)は乗算器16によりて−1が乗じられて第2
積分器23に加えられる。すなわち複素共役値が第2棟
分器23に加えられる(第2図の破線参照)。
The two obtained signals f1 and f2 are in the resistance range 1
3, the signal is converted into two orthogonal baseband signals. The two converted baseband signals are doubled by multipliers 14 and 15, respectively, and the signal F+(t
) and =V2(t) are applied to one input of the complex multiplier 17. On the other hand, the signal L(t) remains as it is, and the signal g2(t) is multiplied by -1 by the multiplier 16 and the second
is added to the integrator 23. That is, the complex conjugate value is added to the second block divider 23 (see the broken line in FIG. 2).

複素乗算器17の2つの出力h !(t)およびh+(
t)は乗算器18によってその積が求められ、第1棟分
器19に加えられる。またh 1 (t)はそのまま復
調出力となる。第1積分器19は位相誤差Δを積分して
ザンプルととの内部位相の補正スカラー量を算出する。
The two outputs h of the complex multiplier 17! (t) and h+(
t) is multiplied by the multiplier 18 and added to the first divider 19. Moreover, h 1 (t) becomes the demodulated output as it is. The first integrator 19 integrates the phase error Δ to calculate a correction scalar amount of the internal phase between the sample and the sample.

第1&分器19の出力は補正ベクトル作成部2oへ供給
される。補正ベクトル作成部20には第2槓分器23の
出力も供給されており、補正ベクトル作成部20は第1
積分器19の出力と第2積分器23の前回の値から、今
回補正すべきベクトル量を算出する。補正ベクトル作成
部20の出力はベクトル補正部21に加えられる。ベク
トル補正部21は第2積分器23の前回の値(前回の内
部位相)に補正ベクトルを複素乗算して今回の内部位相
葡決定する。ベクトル補正部21の出力はベクトルAG
C(自動利得制御)部22へ供給され、ベクトルAGC
部22は位相誤差に対して補正を受けた今回の内部位相
ベクトルに対して、単位円」二に乗るように利得制御を
行い、今回の内部位相として信号j1(りおよびν2(
t)が第2積分器23へ供給される。第2ねt分器23
においては初期設定時には信号fi t (t)および
−92(t) k 、初期設定時以外の時には信号71
(t)およびg2(t)を、複素乗算器17の他方の入
力へ供給する。
The output of the first divider 19 is supplied to the correction vector creation section 2o. The correction vector generation unit 20 is also supplied with the output of the second divider 23, and the correction vector generation unit 20 is supplied with the output of the second divider 23.
The vector amount to be corrected this time is calculated from the output of the integrator 19 and the previous value of the second integrator 23. The output of the correction vector creation section 20 is applied to the vector correction section 21. The vector correction unit 21 complex multiplies the previous value (previous internal phase) of the second integrator 23 by a correction vector to determine the current internal phase. The output of the vector correction unit 21 is the vector AG
C (automatic gain control) section 22, vector AGC
The unit 22 performs gain control on the current internal phase vector that has been corrected for the phase error so that it rides on the unit circle, and uses signals j1(ri and ν2() as the current internal phase.
t) is supplied to the second integrator 23. 2nd net separator 23
In the initial setting, the signals fi t (t) and -92(t) k are used, and at other times than the initial setting, the signal 71 is used.
(t) and g2(t) to the other input of the complex multiplier 17.

上述の各回路構成資素の動作について数式を用いて説明
する。第2図の回路の大刀信号f(1)が初期位相θ0
および回線の影響による位相変動φ(1)をもつとする
と、 f(t)= x(t)cz(2πfct+θ0+φ(t
) ) +0(t)sin (2πfct十θ0+φ(
t))であり、LPF 13の入力は、 f 1 (t)= x(t)cos (2πfct十θ
0+φ(t))・coS2πfct+’5t)sin 
(2πfct+00+φ(t)) ・cos 2πfc
tf 2 (t) = x (t)cos(2πf(t
+θ0+φ(t))11sLn2πfct+”(t)s
tn (2πfat+θ0+φ(t))・5ln2πf
ct   となる。
The operation of each of the circuit components described above will be explained using mathematical formulas. The long sword signal f(1) of the circuit in Figure 2 has an initial phase of θ0.
and phase fluctuation φ(1) due to the influence of the line, then f(t)=x(t)cz(2πfct+θ0+φ(t
) ) +0(t)sin (2πfct+θ0+φ(
t)), and the input of the LPF 13 is f 1 (t) = x(t) cos (2πfct + θ
0+φ(t))・coS2πfct+'5t)sin
(2πfct+00+φ(t)) ・cos 2πfc
tf 2 (t) = x (t) cos(2πf(t
+θ0+φ(t))11sLn2πfct+”(t)s
tn (2πfat+θ0+φ(t))・5ln2πf
ct.

辷れ全変形すると、 χ(1> f2(t)=−[5ln(4πfct+θθ+φ(t)
)  5in(θI)+φ(1)))−染〔箕(4πf
Ct十θ0+φ(←(θ0+φ(1)))となる。LP
F出力は倍周波成分が除かれて、91(t)=x(t)
cos (θ0+φ(t) ) +4t)s+z+ (
θ。+φ(1))   −・・(1)、!92(t)=
−X(t)8石(θ。+φ(t) ) +”(t)α3
(θ。十φ(t))  ・(2)となる。これはAM 
−PM −VSB信号から搬送波成分が除かれたベース
バンドの信号である。ここで送出データ信号、(1)と
金(1)の関係は第3図に示される。
When fully deformed, χ(1> f2(t)=-[5ln(4πfct+θθ+φ(t)
) 5in(θI)+φ(1)))-dyed [winter (4πf
Ct+θ0+φ(←(θ0+φ(1))). LP
The double frequency component is removed from the F output, and 91(t) = x(t)
cos (θ0+φ(t) ) +4t)s+z+ (
θ. +φ(1)) −...(1),! 92(t)=
-X(t) 8 stones (θ.+φ(t) ) +”(t)α3
(θ. 1φ(t)) ・(2). This is AM
-PM - This is a baseband signal obtained by removing the carrier component from the VSB signal. Here, the relationship between the sending data signal (1) and the gold (1) is shown in FIG.

本回路における初期位相差の補正は、復調すべき信号1
1(t)およびjl 2 (t)に対し、位相同期回路
内でもつ位相、Fl(t)および、!i’z(t)を、
@1(1)および12 (t)によって初期設定するこ
とで実現される。
In this circuit, the initial phase difference is corrected by the signal 1 to be demodulated.
1(t) and jl 2 (t), the phases Fl(t) and ! i'z(t),
This is achieved by initializing with @1(1) and 12(t).

第3図の矢印の区間では式(1)および(2)が以下の
ように表わせるので1 、F 、 (t)二x(t)cos(θ0+φ(t))
92 (t) −x (t)sin (θ0+φ(t)
)x(t)=1であるような区間において、g + (
0) −g 1(0) −x(0)cos (θ0+φ
(0) ) =cos (θθ+φ(0))g2 (0
) −−g2 (0) = x(0)sin (θ0+
φ(0)) =s石(θθ+φ(0))と初期設定する
と、位相同期回路の内部位相が入力の初期位相に一致す
ることになる。初期設定以降の処理は位相同期ループの
各機能の処理が行われる。
In the section indicated by the arrow in Figure 3, equations (1) and (2) can be expressed as follows, so 1, F, (t)2x(t)cos(θ0+φ(t))
92 (t) −x (t) sin (θ0+φ(t)
)x(t)=1, g + (
0) -g 1(0) -x(0)cos (θ0+φ
(0) ) = cos (θθ+φ(0))g2 (0
) −−g2 (0) = x(0)sin (θ0+
If the initial setting is φ(0))=s stone(θθ+φ(0)), the internal phase of the phase locked circuit will match the initial phase of the input. Processing after initial setting is performed for each function of the phase-locked loop.

複素乗算器17においては次式のような処理が行われる
The complex multiplier 17 performs processing as shown in the following equation.

h 1(t)=、F 1ft)・L (t)  92(
t)・g2(t)h 2 (t)=91(t)・、!i
’2(t)+ハ(1)・、9z(t)第3図における矢
印の区間では入力信号の位相をΦ11位相同期回路の内
部位相金Φ2とすると、h 1 (t)−x(t) I
IcosΦ1”cosΦ2+ x(t)sΦI0S石Φ
2−x(t)μs(Φ2−の1) h 2 (t)−x(t) −cosΦ111SIfl
Φ、 −x(t)slnΦ1・瀉Φ2= x(t)si
n (Φ2−Φ1) となシ、Φ1=Φ2の時には、1z(t)としてデータ
信号、 (1)が復調出力として得られ、b2(t)は
0となってループ帰還量は0になる。Φ2=Φl+Δの
時には、 h 1 (t) = x (t)いΔ h 2 (t) = x (t)si+]Δとな)、位
相差Δが抽出される。
h 1(t)=,F 1ft)・L(t) 92(
t)・g2(t)h 2 (t)=91(t)・,! i
'2(t)+c(1)・,9z(t) In the section indicated by the arrow in FIG. ) I
IcosΦ1”cosΦ2+ x(t)sΦI0S stoneΦ
2-x(t) μs (1 of Φ2-) h 2 (t)-x(t) -cosΦ111SIfl
Φ, -x(t)slnΦ1・瀉Φ2= x(t)si
n (Φ2 - Φ1) When Φ1 = Φ2, the data signal (1) is obtained as 1z(t) as the demodulated output, b2(t) becomes 0, and the loop feedback amount becomes 0. . When Φ2=Φl+Δ, h 1 (t) = x (t) Δ h 2 (t) = x (t)si+]Δ), the phase difference Δ is extracted.

位相反転に対する帰還量の制御は、複素乗算器1702
つの出力hI(t)およびh 2 (t)の積y (t
)’iとって帰還量に決定することで実現される。
The feedback amount for phase inversion is controlled by a complex multiplier 1702.
The product y (t
)'i and determine it as the feedback amount.

y(t)−h + (t)・h2(1)= 、(t) 
2勇Δ幽Δ=x(t)2−zg石2Δ このようにして得られたy (t)は、Δが小さい時y
 (t)# x (t)2Δとして位相誤差を評価する
ことができ、X(t)2はO相およびπ相の位相反転に
対応する。 (1)の符号変化に影響を受けず、位相誤
差Δを抽出できる。
y(t)−h+(t)・h2(1)= ,(t)
2YongΔYuΔ=x(t)2−zgstone2Δ y(t) obtained in this way is y when Δ is small.
The phase error can be evaluated as (t) # x (t)2Δ, where X(t)2 corresponds to the phase reversal of the O phase and the π phase. The phase error Δ can be extracted without being affected by the sign change in (1).

第4図には位相同期回路のベクトル補正方式を解説する
図が示される。図中Rは実軸をIは虚軸を示す。
FIG. 4 shows a diagram explaining the vector correction method of the phase locked circuit. In the figure, R indicates the real axis and I indicates the imaginary axis.

本発明の第2の実施例としての位相同期回路のブロック
回路図が第5図に示される。本回路は第1の実施例に比
較してイニシャライズ判定回路31、ループ接続判定回
路32および乗算器33が追加されている点が異なる。
A block circuit diagram of a phase locked circuit as a second embodiment of the present invention is shown in FIG. This circuit differs from the first embodiment in that an initialization determination circuit 31, a loop connection determination circuit 32, and a multiplier 33 are added.

動作の初期に位相同期回路の第2積分器23に入力信号
の複素共役値を初期設定して内部位相を信号の初期位相
差だけ補正する(イニシャライズ)には、直交成分の干
渉がなく、シかも賊送阪の持続している期間であること
が必俄である。このような期間(第3図のA、Eおよび
Jを検出するには、信号v ヘルV(t)= 111 
(t)2+172 (t)2= x(t)2+仝(t)
”f!r:求めて、そのレベルをしきい値Th。
In order to initialize the complex conjugate value of the input signal to the second integrator 23 of the phase-locked circuit at the beginning of operation and correct the internal phase by the initial phase difference of the signals (initialization), there is no interference of orthogonal components, and the system It is inevitable that this is a period in which the pirates are still active. To detect such periods (A, E and J in Fig. 3, the signal v = 111
(t)2+172 (t)2= x(t)2+you(t)
``f!r: Find the level as the threshold value Th.

およびTh2と比較する。第3図のA、EおよびJの期
間であれば、V(t) = x(t)2#1.0となる
。また第3図のB、D、FおよびHのようなデータの変
化点で、直交成分の干渉を受ける期間でないことを判定
するために、gl(t)および、Vz(t)について前
回のサンプルとの差分、 ΔL (t) = l 、fi’+ (t)−、!i’
t (t−π)1およびΔJ’z (t)=I fi2
(t)  g2(tfs ) Iを求め、Δg+(t)
およびΔ、92(t)をしきい値Th3 およびTh4
とそれぞれ比較する。ここにfBはサンプリング周波数
を表わす。上述の動作を流れ図で示すと第6図のように
なる。イニシャライズの場合には信号g+(t)および
、!i’2(t)の複素共役値が第2槓分器23を介し
て複素乗算器17に加えられることになり、定常処理の
場合は位相同期ループからの帰還信号が供給される。
and Th2. For periods A, E, and J in FIG. 3, V(t) = x(t)2#1.0. In addition, in order to determine that the data change points such as B, D, F, and H in Fig. 3 are not periods where interference from orthogonal components occurs, the previous samples for gl(t) and Vz(t) are used. The difference between ΔL (t) = l, fi'+ (t)-,! i'
t (t-π)1 and ΔJ'z (t)=I fi2
(t) g2(tfs) Find I, Δg+(t)
and Δ,92(t) as thresholds Th3 and Th4
Compare each. Here, fB represents the sampling frequency. The above-mentioned operation is shown in a flowchart as shown in FIG. In the case of initialization, the signal g+(t) and ! The complex conjugate value of i'2(t) is applied to the complex multiplier 17 via the second divider 23, and in the case of steady processing, a feedback signal from the phase-locked loop is supplied.

ループ接続判定回路への入力となるbl(t)およびb
z(t)はgl(t)および、!i’z(t)と内部位
相ベクトルとの複素乗算の結果、次式のようになる。
bl(t) and b which are input to the loop connection determination circuit
z(t) is gl(t) and ! The result of complex multiplication of i'z(t) and the internal phase vector is as follows.

b+ (t) −9s (t)・cos分(t) −、
!? 2 (t)・出金(1)= x(t)[cos 
(θ(t) ’(t)))4t)(:=((’(t) 
’(t)):)h 2 (t) =ハ(t) ・sln
分(t) + g2 (t)・J(t)−−x(t)(
sln (θ(1)−分(t)):)+’5を疋邸(θ
(t)−償t))〕ここで信号位相θ(1)と内部位相
’Th(t)の位相差をΔと置くと、 h 1(t)= x(t)cosΔ+0(t)sinΔ
/\ hz(t)=   x(すS石Δ+x(t)cosΔと
なる。Δrよ位相差金遂次修正していくことにより定常
状態では、はぼΔ=0となる。従って、h + (t)
舞、 (1) h 2 (t) #仝(1) と考えられるので、この人力h 1 (t)およびh 
2 (t)に対しても、イニシャライズ判定と同様に信
号レベルV ’(t) ” h 1(t)2+ bz 
(t)2をしきい値ThlおよびTh2 と比較し、 Δh2(t)−1hz(t)  hz(を−±)IS をしきい値Th3およびTh4  と比較する。このよ
うにして判定を行い、第3図のA、EおよびJの期間に
誤差量を帰還させて補正を行い、それ以外の期間には、
誤差量として(l帰還することで、それ以前に設定され
ている補正ベクトルで補正を続ける。この動作の流れ図
は第7図に示される。
b+ (t) -9s (t)・cos minute (t) -,
! ? 2 (t)・Withdrawal (1) = x(t) [cos
(θ(t) '(t)))4t)(:=(('(t)
'(t)):)h 2 (t) =ha(t) ・sln
min(t) + g2(t)・J(t)−−x(t)(
sln (θ(1)-min(t)):)+'5 as Hikitei(θ
(t) - Compensation t))]Here, if the phase difference between the signal phase θ(1) and the internal phase 'Th(t) is Δ, then h 1(t)=x(t)cosΔ+0(t)sinΔ
/\hz(t)=x(S stone Δ+x(t)cosΔ. By successively correcting the phase difference metal by Δr, in the steady state, Δ=0. Therefore, h + ( t)
Mai, (1) h 2 (t) #仝(1) Therefore, this human power h 1 (t) and h
2 (t) as well, the signal level V'(t) '' h 1(t)2+ bz as in the initialization judgment.
(t)2 is compared with thresholds Thl and Th2, and Δh2(t)-1hz(t)hz(-±)IS is compared with thresholds Th3 and Th4. Judgment is made in this way, and the error amount is fed back and corrected during periods A, E, and J in Figure 3, and during other periods,
By feeding back the error amount (l), correction is continued using the previously set correction vector. A flowchart of this operation is shown in FIG.

なおループ接続判定回路321−i上述の判定結果を乗
算器33へ「1」まfc、は「0」の信号を送ることに
よって、「0」の場合には誤差量0を帰還し、「1」の
場合は誤差量Δを帰還する。
Note that by sending the above-described determination result of the loop connection determination circuit 321-i to the multiplier 33 as a signal of "1" or "0", if it is "0", an error amount of 0 is fed back, and the error amount is "1". ”, the error amount Δ is fed back.

以上によシ、直交成分の干渉による影暫を受けず、搬送
波の跡絶えている期間にも正しい復調動作を続けること
のできる位相同期回路が実現できる。
As described above, it is possible to realize a phase synchronization circuit which is not affected by the interference of orthogonal components and can continue correct demodulation operation even during the period when the carrier wave is lost.

なお本実施例においては、ループ接続の判定は内部搬送
波との複素乗算結果について行ったが、θ(1)の時間
的変化が充分小さいとみなせる時には、イニシャライズ
判定を行っている部分でループ接続の判定を同時に行っ
ても効果は変らず、この場合処理量の点で有利となる。
In this example, loop connection was determined based on the result of complex multiplication with the internal carrier wave, but when the temporal change in θ(1) can be considered to be sufficiently small, the loop connection is determined in the part where the initialization determination is performed. Even if the determinations are made simultaneously, the effect remains the same, and in this case it is advantageous in terms of processing amount.

(7)発明の効果 本発明によれば、初期の位相同期を迅速に行うことがで
き、位相反転の頻繁に生じる信号の場合でも符号変化の
影11’fr受けず位相誤差を抽出でき、位相差の正し
い補正が可能となシ、その結果良質な復調信号を得るこ
とができる。
(7) Effects of the Invention According to the present invention, initial phase synchronization can be performed quickly, phase errors can be extracted without being affected by sign changes even in the case of signals with frequent phase inversions, and phase errors can be extracted without being affected by sign changes. Correct correction of the phase difference is possible, and as a result, a high quality demodulated signal can be obtained.

また、適切な時期にのみ初期設定および位相同期ループ
への帰還を行うようにし、直交成分の干渉による影14
i1?受けず搬送波の跡絶えている期間にも正しい復調
動作金紗けることができる。
In addition, initial settings and feedback to the phase-locked loop are performed only at appropriate times, and the effects of orthogonal component interference are reduced.
i1? Correct demodulation operation can be performed even during periods when no trace of the carrier wave is received.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適用されるAM −PM −VSB信
号を説明するための波形図、第2図は本発明の第1の実
施例としての位相同期回路のブロック回路図、第3図は
第2図の回路における信号波形を説明するための波形図
、第4図は第2図の回路の信号の位相関係を説明するベ
クトル図、第5図は本発明の第2の実施例の位相同期回
路のブロック回路図、および、第6図および第7図は第
5図の回路の動作を説明する流れ図である。 11.12・・・乗算器、13・・・低域フィルタ、1
4.15.16・・・乗算器、17・・・複素乗算器、
18・・・乗算器、19・・・第1積分器、20・・・
補正ベクトル作成部、21・・・ベクトル補正部、22
・・・ベクトル補正部、23・・・第2積分器、31・
・・イニシャライズ判定回路、32・・・ループ接続判
定回路、33・・・乗算器。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士 内  1) 幸  男 弁理士 山 口 昭 之 第1図 (3)  AM−PM信号 O相  尤相    O相 第6図 第7図
FIG. 1 is a waveform diagram for explaining the AM-PM-VSB signal applied to the present invention, FIG. 2 is a block circuit diagram of a phase synchronization circuit as the first embodiment of the present invention, and FIG. 3 is a waveform diagram for explaining the AM-PM-VSB signal applied to the present invention. FIG. 2 is a waveform diagram for explaining the signal waveform in the circuit of FIG. 2, FIG. 4 is a vector diagram for explaining the phase relationship of the signals in the circuit of FIG. 2, and FIG. 5 is a phase diagram of the second embodiment of the present invention. A block circuit diagram of the synchronous circuit and FIGS. 6 and 7 are flowcharts explaining the operation of the circuit of FIG. 5. 11.12... Multiplier, 13... Low pass filter, 1
4.15.16... Multiplier, 17... Complex multiplier,
18... Multiplier, 19... First integrator, 20...
Correction vector creation unit, 21... Vector correction unit, 22
. . . vector correction unit, 23 . . . second integrator, 31.
. . . Initialization determination circuit, 32 . . . Loop connection determination circuit, 33 . . . Multiplier. Patent applicant Fujitsu Ltd. Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate (1) Yukio Patent attorney Akira Yamaguchi Figure 1 (3) AM-PM signal O phase Y phase O phase Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、残留側波帯振幅・位相変調された信号の同期検波を
、搬送周波数と等しい周波数の直交した2つの搬送波を
乗じて低域フィルタを通し、原信号に対して同相成分と
直交成分のベースバンド信号全作り、該2つの信号を複
素乗算器の一方の入力に加え、該複素乗算器の出力を位
相同期ループを介して該複素乗算器の他方の入力に帰還
して行う位相同期回路において、初期位相差の補正とし
て該複素乗算器の他方の入力に前記ベースバンド信号の
複素共役値を入力するようにしたことを特徴とする位相
同期回路。 2、残留側波帯振幅・位相変調された信号の同期検波を
、搬送周波数と等しい周波数の直交した2つの搬送波を
乗じて低域フィルタを通し、原信号に対して同相成分と
直交成分のベースバンド信号を作り、該2つの信号を複
素乗算器の一方の入力に加え、該複素乗算器の出力を位
相同期ループを介して該複素乗算器の他方の入力に帰還
して行う位相同期回路において、該ベースバンド信号の
絶対レベルおよび変動量を検出して或あらかじめ定めら
れたしきい値と比較するイニンヤライズ判定回路および
該複素乗算器の出力の絶対レベルおよび変動量を検出し
て前記或すらかしめ定められたしきい値と比較するルー
プ接続判定回路を具備し、該イニクヤライズ判定回路の
判定に従って初期位相差の補正として該複素乗算器の他
方の入カニ前記ベースバンドの2つの信号の複素共役値
をベクトル的に初期設定するようにし、該ループ接続判
定回路の判定に従って該複素乗算器の2つの出力信号の
積を該位相同期ループへ帰還するようにし、搬送波が跡
絶えている区間については該位相同期ループを切離し、
今迄に求めた位相変動量で自走させるようにしたとと全
特徴とする位相同期回路。
[Claims] 1. Synchronous detection of a residual sideband amplitude/phase modulated signal is multiplied by two orthogonal carrier waves with a frequency equal to the carrier frequency, passed through a low-pass filter, and is in phase with the original signal. component and quadrature component baseband signals, apply the two signals to one input of a complex multiplier, and feed the output of the complex multiplier to the other input of the complex multiplier via a phase-locked loop. 1. A phase synchronized circuit for performing a phase synchronization circuit, characterized in that a complex conjugate value of the baseband signal is input to the other input of the complex multiplier to correct an initial phase difference. 2. Synchronous detection of the residual sideband amplitude/phase modulated signal is multiplied by two orthogonal carrier waves with a frequency equal to the carrier frequency and passed through a low-pass filter, and the base of the in-phase and quadrature components is calculated with respect to the original signal. In a phase-locked circuit that generates a band signal, applies the two signals to one input of a complex multiplier, and feeds back the output of the complex multiplier to the other input of the complex multiplier via a phase-locked loop. , an initialization determination circuit that detects the absolute level and amount of variation of the baseband signal and compares it with a predetermined threshold; and a circuit that detects the absolute level and amount of variation of the output of the complex multiplier to determine the amount of caulking. A loop connection determination circuit is provided for comparing with a predetermined threshold value, and according to the determination of the initialization determination circuit, the complex conjugate value of the two baseband signals is input to the other complex multiplier to correct the initial phase difference. is initialized in a vectorial manner, and the product of the two output signals of the complex multiplier is fed back to the phase-locked loop according to the judgment of the loop connection judgment circuit. Disconnect the phase-locked loop,
This phase-locked circuit is characterized by being able to run freely with the amount of phase fluctuation determined so far.
JP7220183A 1983-04-26 1983-04-26 Phase locked circuit Granted JPS59198052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220183A JPS59198052A (en) 1983-04-26 1983-04-26 Phase locked circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7220183A JPS59198052A (en) 1983-04-26 1983-04-26 Phase locked circuit

Publications (2)

Publication Number Publication Date
JPS59198052A true JPS59198052A (en) 1984-11-09
JPH0151110B2 JPH0151110B2 (en) 1989-11-01

Family

ID=13482378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220183A Granted JPS59198052A (en) 1983-04-26 1983-04-26 Phase locked circuit

Country Status (1)

Country Link
JP (1) JPS59198052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508741A2 (en) * 1991-04-11 1992-10-14 GEC-Marconi Limited Vestigial sideband modulator
US6046618A (en) * 1997-05-12 2000-04-04 Samsung Electronics Co., Ltd. Phase correction circuit and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508741A2 (en) * 1991-04-11 1992-10-14 GEC-Marconi Limited Vestigial sideband modulator
US6046618A (en) * 1997-05-12 2000-04-04 Samsung Electronics Co., Ltd. Phase correction circuit and method therefor

Also Published As

Publication number Publication date
JPH0151110B2 (en) 1989-11-01

Similar Documents

Publication Publication Date Title
US4519084A (en) Matched filter for combating multipath fading
US5590158A (en) Method and apparatus for estimating PSK modulated signals
KR100738732B1 (en) Circuit and Methood for Recovering a Carrier
JP2971028B2 (en) Phase detection method and phase tracking loop circuit for digital vestigial sideband modulation communication device
KR0148140B1 (en) The recovery apparatus of symbol timing
AU678950B2 (en) Digital demodulator
JPS59198052A (en) Phase locked circuit
JPS6324347B2 (en)
US5912930A (en) Phase shift keying signal demodulation method and device
US6647074B2 (en) Removal of clock related artifacts from an offset QAM generated VSB signal
JP4594202B2 (en) Method and circuit arrangement for suppressing orthogonal perturbation
CA2341873C (en) Carrier reproducing circuit
JP3968546B2 (en) Information processing apparatus and method, and providing medium
JP3578650B2 (en) Carrier synchronization circuit, quadrature demodulation circuit and interference wave canceller
US6285721B1 (en) Method for assisting simple synchronization to the carrier of a dispersed-energy QPSK signal
JP2004064682A (en) Quadrature synchronous detector, rake receiver, interference wave canceller, and impedance measuring device
JPH0583314A (en) Demodulation circuit
JP4182594B2 (en) PAL sequence discrimination method and circuit
JPH02172322A (en) Sampling clock regenerating device
JPH09261285A (en) Multilevel vsb demodulator
JPH06105898B2 (en) Interference compensation circuit
JPS59208948A (en) Synchronism detecting system for data transmission
JPH07226781A (en) Phase error detection circuit and clock recovery circuit
JPS6013348B2 (en) Timing signal correction circuit
JPH04349739A (en) Coherent agc system for psk demodulation