JPS59196933A - Air-fuel ratio controlling apparatus for internal-combustion engine - Google Patents

Air-fuel ratio controlling apparatus for internal-combustion engine

Info

Publication number
JPS59196933A
JPS59196933A JP7142083A JP7142083A JPS59196933A JP S59196933 A JPS59196933 A JP S59196933A JP 7142083 A JP7142083 A JP 7142083A JP 7142083 A JP7142083 A JP 7142083A JP S59196933 A JPS59196933 A JP S59196933A
Authority
JP
Japan
Prior art keywords
change
fuel ratio
air
engine
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7142083A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7142083A priority Critical patent/JPS59196933A/en
Publication of JPS59196933A publication Critical patent/JPS59196933A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable to correct deviation of the air-fuel ratio from a preset value within a short while when the operational conditions of an engine are changed drastically, by varying the time constant of O2-feedback control in case that the rate of change in the operational conditions of the engine is greater than a prescribed value. CONSTITUTION:The rate of change in the flow rate of intake air is detected once per one rotation of an engine by a means 10 for detecting the rate of change in the flow rate of intake air. When the rate of change in the flow rate of intake air exceeds a prescribed value, the time constant of O2-feedback control using the output signal of an O2-sensor 3 is varied. By employing such a method, deviation of the air-fuel ratio from an aimed value caused when the operational conditions of an engine are changed drastically can be corrected within a short while.

Description

【発明の詳細な説明】 (技術分野) この発明は、内燃機関の空燃比(空気と燃料の混合比)
制御装置に関する。
Detailed Description of the Invention (Technical Field) This invention relates to the air-fuel ratio (mixture ratio of air and fuel) of an internal combustion engine.
Regarding a control device.

(背景技術) 従来の内燃機関の空燃比制御装置としては、例えば第1
図に示すようなものがある。1は機関に吸入される吸入
空気流量を検出するエアフロメータ、2は機関の回転数
を検出する回転数検出器、3は機関の排気ガス通路にあ
シ排気ガス中の酸素濃度に応じて出力電圧が変化し空燃
比に応じた信号を出力する0□センサ、4は機関のクラ
ンク軸が曝発間隔(4サイクル4気筒エンジ/では18
00.4サイクル6気筒エンジンでは120°)毎に信
号を発生する基準信号発生器、5は前記各種の信号を入
力し燃料噴射量(噴射時間)全演算し出力する制御回路
、6は前記燃料噴射量に応してインジェクタ7のH閉を
制御するトランジスタ、7は機関の各気筒の吸気弁近傍
においてイノテークマフホールドに取p付けられたイン
ジェクタ(燃料噴射弁)、81−1:バッテリである。
(Background Art) As a conventional air-fuel ratio control device for an internal combustion engine, for example, a first
There is something like the one shown in the figure. 1 is an air flow meter that detects the flow rate of intake air taken into the engine, 2 is a rotation speed detector that detects the engine rotation speed, and 3 is a reed in the exhaust gas passage of the engine that outputs according to the oxygen concentration in the exhaust gas. 0□ sensor whose voltage changes and outputs a signal according to the air-fuel ratio, 4 is the engine's crankshaft at the firing interval (18
00. A reference signal generator that generates a signal every 120° for a 4-cycle 6-cylinder engine, 5 a control circuit that inputs the various signals mentioned above, calculates the entire amount of fuel injection (injection time), and outputs it; 6 a control circuit that outputs the fuel injection amount (injection time); A transistor that controls the H close of the injector 7 according to the injection amount, 7 is an injector (fuel injection valve) attached to the innotech muff hold near the intake valve of each cylinder of the engine, 81-1: battery be.

第2図は、第1図に示す従来の空燃比制御装置の動作を
示すフローチャートである。この処理ルーチンは、エン
ジン1回転につき1回処理される。
FIG. 2 is a flowchart showing the operation of the conventional air-fuel ratio control device shown in FIG. This processing routine is processed once per engine revolution.

先ずステップ11で、制御回路5は機関の回転数Nの演
算、エアフロメータの出力Q及び0□セフすの出力02
の読込みを行なう。次にステップ12で御御9 回路5は基本燃料噴射量’L’、  、、に1を演算す
る。
First, in step 11, the control circuit 5 calculates the engine speed N, the output Q of the air flow meter, and the output 02 of the air flow meter.
Read. Next, in step 12, the control circuit 5 calculates 1 for the basic fuel injection amount 'L', .

ただし、K1は定数である。次にステップ13で、02
センサ3の出力02と所定値■(2とを比較する。02
>K2のトキハステップ14へ、02≦に2のときはス
テップ17へ進む。ここで、Fはフラグで、F−1は前
回(1回転前)に02〉K2であったことを示し、F−
0u前回O7≦に、であったことを示している。ステッ
プ】4では、先ずフラグIi” 2チエツクする。F−
0のとき(前回(−)2≦に2であった)はステップ1
6へ進み、Ii”−1とし、α=α−Pとする。ここで
αは02センサにより決定される帰還制御変数であシ、
Pは時定数である。I?−1のときはステップ15へ進
み、α=α−■とする。ここで■は時定数である。一方
ステップ17でもステップ14と同様にフラグFのチェ
ックを行なう。F=1のときはステップ19へ進み、p
=0、α=α+Pとし、F =0のときはステップ18
へ進み、α=α+1とする。
However, K1 is a constant. Next, in step 13, 02
Compare the output 02 of the sensor 3 and the predetermined value ■(2.02
If >K2, proceed to step 14; if 02≦2, proceed to step 17. Here, F is a flag, F-1 indicates that it was 02>K2 last time (one rotation ago), and F-
0u indicates that O7≦ last time. In Step 4, first check flag Ii"2.F-
When it is 0 (previously (-)2≦2), step 1
Proceed to step 6, set Ii”-1, and α=α-P. Here, α is the feedback control variable determined by the 02 sensor,
P is a time constant. I? When the value is -1, the process proceeds to step 15 and α=α−■ is set. Here ■ is a time constant. On the other hand, in step 17, flag F is checked similarly to step 14. When F=1, proceed to step 19 and p
= 0, α = α + P, and when F = 0, step 18
Proceed to and set α=α+1.

第3図(a) 、 (b)及び(C)に02センサの出
力、77 りF及び帰還制御変数αの変化の様子をそれ
ぞれ示す。
Figures 3(a), 3(b) and 3(c) show the changes in the output of the 02 sensor, 77F, and the feedback control variable α, respectively.

このようにして得られた帰還制御変数αを用いて実際の
燃料噴射量T2= T、 xαを演算しくステップ20
)、この結果を出力レジスタ(図示しない)に出力しく
ステップ21)、処理を終える。尚、出力レジスタはレ
ジスタ、カウンタ及び比較器から構成されておシ、レジ
スタの値に対応した時間(燃料噴射量T2)だけ、イン
ジェクタ7が開くように制御する。
Step 20: Calculate the actual fuel injection amount T2=T,xα using the feedback control variable α obtained in this way.
), the result is output to an output register (not shown), step 21), and the process ends. The output register is composed of a register, a counter, and a comparator, and controls the injector 7 to open for a time corresponding to the value of the register (fuel injection amount T2).

しかしなから、このような従来の空燃比制御装置にあっ
ては、機関の運転条件によらず時定数P及び■を一定と
しているために、エアクロメータの誤差等によシ運転条
件が急変した時に生ずる空燃比の目標値からのズレが修
正されるまでに時間を要し、これが排気性能に悪影響を
与えるという問題点がある。第4図にこの一例を示す。
However, in such conventional air-fuel ratio control devices, the time constants P and ■ are kept constant regardless of the engine operating conditions, so when the operating conditions suddenly change due to an error in the air chromator, etc. There is a problem in that it takes time to correct the deviation of the air-fuel ratio from the target value, which adversely affects exhaust performance. An example of this is shown in FIG.

車速か同図(a)のように急変した場合、エアクロメー
タの出力は真値に対して同図(b)の破線で示すような
値をとシ、また帰還制御変数αは同図(C)に示すよう
な値をとる。この結果空燃比は目標値に対して同図(d
)に示すように変化し、領域Aでは空燃比が濃くなって
Co 、)(Cの排出が犬となシ、領域Bでは空燃比が
薄くなってNQxの排出が犬となる。
When the vehicle speed suddenly changes as shown in (a) of the same figure, the output of the air chromator will change to the value shown by the broken line in (b) of the same figure relative to the true value, and the feedback control variable α will change as shown in (C) of the same figure. It takes the value shown in . As a result, the air-fuel ratio is the same as the target value (d
) In region A, the air-fuel ratio becomes rich and the emission of Co and )(C becomes constant, and in region B, the air-fuel ratio becomes lean and the emission of NQx becomes constant.

(発明の目的) この発明は、このような従来の問題点に着目してなされ
たもので、運転状態の急変を検出し、これが検出された
場合は帰還制御変数αの変化速度を大きくすることで空
燃比の目標値からのズレを修正する時間全短縮すること
によシ、上記問題点を解決することを目的とする。
(Objective of the Invention) This invention was made by focusing on such conventional problems, and detects a sudden change in the operating state, and when this is detected, increases the rate of change of the feedback control variable α. The purpose of this invention is to solve the above problems by reducing the total time required to correct the deviation of the air-fuel ratio from the target value.

(発明の構成及び作用) 以下、この発明を図面に基づいて説明する。第5図はこ
の発明の一実施例を示す図である。′=!ず構成を説明
すると、1はエアフロメータ、2は回転数検出器、3は
O2セフす、4は基準信号発生器、5は制御回路、6は
トランジスタ、7はインジェクタ、8はバッテリ、10
は吸入空気流量変化幅検出器である。ここで吸入空気流
量変化幅検出器はこの発明の特徴部分で、基準信号発生
器4及びエアフロメータ1の各出力信号を入力し、第6
図に示すフローチャートで吸入空気流量Qの変化ft 
d Qを検出する装置である。第6図において、エンジ
ン1回転にrずつエアフロメータの出力Qを読込み(ス
テップ30 )、この今回値Qと前回値Q′との差dQ
を演算しくステップ3])、この差dQを制御回路5へ
出力する。この実施例では上述のように、吸入空気流量
の変化に基づき運転状態の急変を検出する。
(Structure and operation of the invention) The present invention will be explained below based on the drawings. FIG. 5 is a diagram showing an embodiment of the present invention. ′=! To explain the configuration, 1 is an air flow meter, 2 is a rotation speed detector, 3 is an O2 safety valve, 4 is a reference signal generator, 5 is a control circuit, 6 is a transistor, 7 is an injector, 8 is a battery, 10
is an intake air flow rate variation width detector. Here, the intake air flow rate change width detector is a characteristic part of the present invention, and inputs each output signal of the reference signal generator 4 and the air flow meter 1, and
In the flowchart shown in the figure, the change in intake air flow rate Q ft
This is a device that detects dQ. In Fig. 6, the output Q of the airflow meter is read by r per engine revolution (step 30), and the difference dQ between this current value Q and the previous value Q' is
Step 3]), and outputs this difference dQ to the control circuit 5. In this embodiment, as described above, a sudden change in the operating state is detected based on a change in the intake air flow rate.

次に第7図のフローチャートを用いて動作を説明する。Next, the operation will be explained using the flowchart shown in FIG.

先ずステップ40で、制御回路5は回転数検出器2から
の検出信号により機関の回転数N−2演算するとともに
、エアフロメータ1からの吸入空気流量Q、02センサ
3からの出力信号02及び吸入空気流量変化幅検出器1
0からの吸入空気流量の変化量dQとを読込む。次にス
テップ41で、フラグFOのチェックを行なう。ここで
、フラグi”0はdQの絶対値1 dQlが所定値に3
を越えたか否かを判断するフラグで、1dQ1〉K3で
1となり、その後O,セ/す3の出力か所定値に2を2
回通過したときにOになる。捷たカラ/りは、上述のよ
うにしてフラグFOf、(Oにリセットするために用い
られ、カウンタ値が02センサの出力が所定値に2を通
過することで2→1→0と変化し、カウンター0でフラ
グFO−0とする。ステップ41でPO=0のときはス
テップ42へ進み、1dQl>K、であるか否かを判別
する。1dQl<Iぐ、のときはステップ47へ進み、
基本噴射量T1を演算する。1dQl>Iぐ。
First, in step 40, the control circuit 5 calculates the engine rotation speed N-2 based on the detection signal from the rotation speed detector 2, and also calculates the intake air flow rate Q from the air flow meter 1, the output signal 02 from the 02 sensor 3, and the intake Air flow rate change width detector 1
The amount of change dQ in the intake air flow rate from 0 is read. Next, in step 41, flag FO is checked. Here, the flag i"0 is the absolute value of dQ 1 and dQl is 3 to the predetermined value.
It is a flag to judge whether or not it exceeds 1dQ1>K3, and then it becomes 1 when 1dQ1>K3, and then 2 is set to 2 to the output of O, SE/S3 or the predetermined value.
It becomes O when it passes twice. The broken color is used to reset the flag FOf, (O as described above, and the counter value changes from 2 to 1 to 0 when the output of the sensor passes through 2 to a predetermined value. , the flag FO-0 is set at counter 0. If PO=0 in step 41, the process advances to step 42, and it is determined whether 1dQl>K. If 1dQl<Ig, the process advances to step 47. ,
Calculate the basic injection amount T1. 1dQl>Igu.

のときは、運転状態が急変したと判断し、ステップ43
でFO=1とするとともにカラ/り値を2にセットし、
ステップ46へ進む。一方ステップ41でFO−1のと
きはステップ44へ進み、カウンタ値がOであるか否か
の判定を行ない、カウンタ値がOでないとき(カウンタ
ベO)はステップ46へ進み、時定数■:=Lとしステ
ップ47へ進み、カウノタイ直がOであるとき(カウン
ター0)はステップ。
If so, it is determined that the operating condition has suddenly changed, and the process proceeds to step 43.
Set FO=1 and set the color/color value to 2,
Proceed to step 46. On the other hand, if it is FO-1 in step 41, the process proceeds to step 44, where it is determined whether or not the counter value is O. If the counter value is not O (counter value O), the process proceeds to step 46, where the time constant ■:= Set L and proceed to step 47. If the cow tie is O (counter 0), step.

45へ進み、時定数l−11とするとともにFO−0と
しステップ47へ進む。尚、■1と■2とはl2)I、
の関係がある。ステップ47で制御回路5は基本燃料噴
射量T1−骨・K、を演算する。次にステップ48で、
0、センサ3の出力値02と所定値に2とを比較する。
The process proceeds to step 45, where the time constant is set to l-11 and FO-0, and the process proceeds to step 47. Furthermore, ■1 and ■2 are l2)I,
There is a relationship between In step 47, the control circuit 5 calculates the basic fuel injection amount T1 - bone K. Next, in step 48,
0, the output value 02 of the sensor 3 is compared with a predetermined value 2.

02)K2のときはステップ49へ進み、02≦に2の
ときはステップ52へ進む。ステップ49ではフラグF
をチェックし、p=1のときはα=α−■としくステッ
プ50)、p=oのときはF=1、α=α−Pとすると
ともにカウンタ値を1減らす(ステップ51)。ステッ
プ52でも同様にフラグlit 全チェックし、p=Q
のときはα=α+■とじ(ステップ53)ド−1のとき
1F=o、α=α十Pとするとともにカウンタ値を1減
らす(ステップ54)。このようにして得られた帰還制
御変数αを用いて、ステップ55で実際の燃料噴射量T
2−T□×αを演算し、これを制御回路5内に具備され
た出力レジスタに出力し処理を終える。出力レジスタは
前述のようにレジスタ、カウンタ及び比較器から構成さ
れておシ、レジスタに書込まれた燃料噴射量T2とこの
書込みと同時にクロックパルスのカウントを開始するカ
ウンタのカウンタ値とを比較器によシ比較し、両者が一
致するまでトランジスタ6をオンとし、インジェクタ7
を開弁する。
02) If K2, proceed to step 49; if 02≦2, proceed to step 52. In step 49, the flag F
is checked, and when p=1, α=α−■ is set (step 50), and when p=o, F=1 and α=α−P are set, and the counter value is decremented by 1 (step 51). Similarly, in step 52, all flags lit are checked, and p=Q
If α=α+■ binding (step 53), if do-1, 1F=o, α=α+P, and the counter value is decremented by 1 (step 54). Using the feedback control variable α obtained in this way, the actual fuel injection amount T is determined in step 55.
2-T□×α is calculated and outputted to the output register provided in the control circuit 5 to complete the process. As mentioned above, the output register is composed of a register, a counter, and a comparator, and the output register is a comparator that compares the fuel injection amount T2 written in the register with the counter value of the counter that starts counting clock pulses at the same time as this writing. Compare the two and turn on transistor 6 until the two match, and then turn on injector 7.
Open the door.

第8図に第4図(a)と同一の車速の変化(第8図(a
):に対するフラグFO値(同図[有]))、帰還制御
変数α(同図(C))及び空燃比(同図(d))の変化
の様子を示す。同図(d)から明らかなように、空燃比
の目標値に対するズレは極めて短時間で修正されている
ことがわかる。
Figure 8 shows the same change in vehicle speed as in Figure 4 (a) (Figure 8 (a)
): shows changes in the flag FO value ((existed in the figure)), the feedback control variable α ((C) in the figure), and the air-fuel ratio ((d) in the figure). As is clear from the figure (d), it can be seen that the deviation of the air-fuel ratio from the target value is corrected in an extremely short time.

(発明の効果) 以上説明してきたように、この発明によれば運転状態の
急変時における空燃比の目標値からのズレを短かい時間
で修正することができ、排気性能に悪影響を与えること
がな(なるという効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to correct the deviation of the air-fuel ratio from the target value in a short period of time when the operating condition suddenly changes, and the exhaust performance is not adversely affected. You can get the effect of becoming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空燃比制御装置のブロック図、第2図は
同装置の動作を示すフローチャート、第3図は目標値に
対する02センサの出力値とフラグFの値と帰還制御変
数αとの関係を示す図、第4図は従来装置における車速
とエアフロメータの出力とαと空燃比との関係を示す図
、第5図はこの発明の一実施例を示すブロック図、第6
図は第5図に示す装置内の吸入空気流量変化幅検出器1
0の動作を示すフローチャート、第7図は第5図に示す
装置の動作を示すフローチャート及び第8図は第5図に
示す装置における車速とフラグPOとαと空燃比との関
係を示す図である。 1−・エアフロメータ  2・・・回転数検出器3・・
・02センサ     4・・基準信号発生器5・・制
御回路     6・・・トランジスタ7・・インジェ
クタ   8・・・バッテリ10・・・吸入空気流量変
化幅検出器 N・・・機関の回転数   Q・・吸入空気流量02・
・・O2セフす出力値  T□・・・基本燃料噴射量T
2・実際の燃料噴射量 K□、 K2. K3−・定数
P、I、I、、I2・・・時定数 F 、 FO・・フラグ α・・・帰還制御変数 #/図 竿、2 図
Fig. 1 is a block diagram of a conventional air-fuel ratio control device, Fig. 2 is a flowchart showing the operation of the device, and Fig. 3 shows the relationship between the output value of the 02 sensor, the value of flag F, and the feedback control variable α with respect to the target value. FIG. 4 is a diagram showing the relationship between vehicle speed, airflow meter output, α, and air-fuel ratio in a conventional device; FIG. 5 is a block diagram showing an embodiment of the present invention; FIG.
The figure shows an intake air flow rate variation width detector 1 in the device shown in Figure 5.
7 is a flowchart showing the operation of the device shown in FIG. 5, and FIG. 8 is a diagram showing the relationship between vehicle speed, flag PO, α, and air-fuel ratio in the device shown in FIG. be. 1- Air flow meter 2... Rotation speed detector 3...
・02 sensor 4・・Reference signal generator 5・・Control circuit 6・・Transistor 7・・・Injector 8・・Battery 10・・Intake air flow rate variation width detector N・・Engine rotation speed Q・・Intake air flow rate 02・
・・O2 output value T□・・・Basic fuel injection amount T
2.Actual fuel injection amount K□, K2. K3-・Constant P, I, I,, I2...Time constant F, FO...Flag α...Feedback control variable #/Figure rod, 2

Claims (2)

【特許請求の範囲】[Claims] (1)  m関の回転数Nと吸入空気流量Qとを検出し
て基本燃料噴射量T、−に−N(Kは定数)を演算する
と共に、機関の排出ガス成分を検出し該検出値に応じて
所定の時定数を用いて帰還制御変数αを演算し、実際の
燃料噴射量T2== rp、・αを演算して機関に供給
して空燃比を制御する内燃機関の空燃比制御装置におい
て、運転状態の変化量を検出する手段を有し、該変化量
を所定値と比較し該変化量が所定値を越えるときは前記
時定数を変更し、一方越えないときは前記所定の時定数
を用いて前記αを演算することを特徴とする内燃機関の
空燃比制御装置。
(1) Detect the engine rotation speed N and the intake air flow rate Q, calculate the basic fuel injection amount T, -N (K is a constant), and detect the exhaust gas components of the engine and calculate the detected value. Air-fuel ratio control for an internal combustion engine in which a feedback control variable α is calculated using a predetermined time constant according to The device has means for detecting the amount of change in the operating state, and compares the amount of change with a predetermined value, and when the amount of change exceeds the predetermined value, changes the time constant, and when the amount does not exceed the predetermined value. An air-fuel ratio control device for an internal combustion engine, characterized in that the α is calculated using a time constant.
(2)前記運転状態の変化量が吸入空気流量の変化に応
じて求められることを特徴とする特許請求の範囲第1狽
に記載の空燃比制御装置。
(2) The air-fuel ratio control device according to claim 1, wherein the amount of change in the operating state is determined according to a change in intake air flow rate.
JP7142083A 1983-04-25 1983-04-25 Air-fuel ratio controlling apparatus for internal-combustion engine Pending JPS59196933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7142083A JPS59196933A (en) 1983-04-25 1983-04-25 Air-fuel ratio controlling apparatus for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7142083A JPS59196933A (en) 1983-04-25 1983-04-25 Air-fuel ratio controlling apparatus for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59196933A true JPS59196933A (en) 1984-11-08

Family

ID=13459997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7142083A Pending JPS59196933A (en) 1983-04-25 1983-04-25 Air-fuel ratio controlling apparatus for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59196933A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313640A (en) * 1988-06-13 1989-12-19 Mazda Motor Corp Air-fuel ratio controller for engine
JPH03100348A (en) * 1989-09-11 1991-04-25 Honda Motor Co Ltd Air-fuel ratio feedback control method for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313640A (en) * 1988-06-13 1989-12-19 Mazda Motor Corp Air-fuel ratio controller for engine
JPH03100348A (en) * 1989-09-11 1991-04-25 Honda Motor Co Ltd Air-fuel ratio feedback control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH08338286A (en) Exhaust system failure diagnostic device for internal combustion engine
JP3412290B2 (en) Exhaust gas purification catalyst deterioration inspection device
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JPH0645646Y2 (en) Misfire determination device for internal combustion engine
KR100465609B1 (en) Method for detecting periodic combustion fluctuations of internal combustion engine
JP2858406B2 (en) Oxygen sensor deterioration detection device
JPS59196933A (en) Air-fuel ratio controlling apparatus for internal-combustion engine
JP2814718B2 (en) Oxygen sensor deterioration detection device
JPH04279742A (en) Fuel injection control device of internal combustion engine
US6192310B1 (en) Device and method for diagnosing the condition of a probe upstream from a catalytic converter
JPH0684741B2 (en) Air flow meter deterioration detection device
JPH07167697A (en) Intake air flow rate detector for internal combustion engine
JPS62253936A (en) Electronically controlled fuel injection equipment for internal combustion engine
JPH10176594A (en) Combustion fluctuation detecting method for internal combustion engine
JPS61200348A (en) Air-fuel ratio control system
JPS59136539A (en) Method of controlling air-fuel ratio of internal-combustion engine
JPH0666188A (en) Self diagnostic unit in fuel supply device of internal combustion engine
JP2627826B2 (en) Fuel supply control device for internal combustion engine
JPS62139943A (en) Air-fuel ratio control method for internal combustion engine
JPS62119450A (en) Decision on characteristic of exhaust density detector
JPH0710050Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH06137193A (en) Air-fuel ratio control device for internal combustion engine
JPS62258143A (en) Electronic control fuel injection device for internal combustion engine
JPS6059415B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0634590Y2 (en) Fuel control device for electronic fuel injection engine