JPS62119450A - Decision on characteristic of exhaust density detector - Google Patents

Decision on characteristic of exhaust density detector

Info

Publication number
JPS62119450A
JPS62119450A JP60260578A JP26057885A JPS62119450A JP S62119450 A JPS62119450 A JP S62119450A JP 60260578 A JP60260578 A JP 60260578A JP 26057885 A JP26057885 A JP 26057885A JP S62119450 A JPS62119450 A JP S62119450A
Authority
JP
Japan
Prior art keywords
sensor
value
ratio
time
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60260578A
Other languages
Japanese (ja)
Inventor
Tokuo Inamoto
稲元 徳雄
Takahiro Minowa
箕輪 高広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60260578A priority Critical patent/JPS62119450A/en
Publication of JPS62119450A publication Critical patent/JPS62119450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To judge an exhaust concentration detector accurately without erroneous diagnosis, by determining the ratio of time until a change in the actual concentration is detected after it shifts from a low to high to time until a change in the actual concentration is detected after it shifts to a low from high value. CONSTITUTION:A mixed gas supply tester 15 forcibly changes the air/fuel ratio of a mixed gas to be supplied into an engine to a specified value on the lean side from a specified value on the rich side and measures the elapse time TRL -- how long it takes for the output voltage V02 of an O2 sensor 13 to come down to a reference value Vref. It also forcibly changes the air/fuel ratio to a specified value on the rich side from a specified value on the lean side and measures the elapse time TLR -- how long it taken for the output voltage V02 of the sensor 13 to go up to the reference value Vref. Then, the ratio K=TLR /TRL is determined. When the response ratio K is within a specified range, the O2 sensor is determined to be acceptable but when it is outside the specified range, it is determined to be rejectable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃エンジンの排気系に配されて排気中の成分
濃度を検出する排気濃度検出器の特性判定方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for determining the characteristics of an exhaust gas concentration detector that is placed in the exhaust system of an internal combustion engine and detects the concentration of components in exhaust gas.

(従来技術及びその問題点) 従来、内燃エンジンへの燃料供給量を、例えばエンジン
回転数および吸気管内絶対圧に応じた基準値に、エンジ
ンの排気系に配された排気濃度検出器(以下「02セン
サ」と云う)により検出された排気中の酸素濃度を含む
パラメータに応じた補正値により補正することにより設
定し、エンジンに供給される混合気の空燃比をエンジン
の排気系に配された三元触媒の最大変換効率が得られる
理論混合比になるように制御する空燃比フィードバック
制御装置が一般に使用されている(特開昭箱57−13
7633号)。
(Prior Art and its Problems) Conventionally, an exhaust concentration detector (hereinafter referred to as " The air-fuel ratio of the air-fuel mixture supplied to the engine is set by correcting the air-fuel ratio of the air-fuel mixture supplied to the engine by adjusting the air-fuel ratio of the air-fuel mixture supplied to the engine. An air-fuel ratio feedback control device that controls the stoichiometric mixture ratio at which the maximum conversion efficiency of the three-way catalyst can be obtained is generally used (Japanese Patent Application Laid-Open No. 2003-130013).
No. 7633).

かかる装置に使用されている02センサは酸化ジルコニ
ウム等をセンサ素子として用い、その酸化ジルコニウム
等の゛内部を透過する酸素イオンの量が大気中の酸素分
圧と排気ガス中の酸素分圧の差によって変化するのを利
用してこの変化に応じた02センサの出力電圧の変化に
より排気ガス中の酸素濃度を検出するものである。
The 02 sensor used in such devices uses zirconium oxide or the like as a sensor element, and the amount of oxygen ions passing through the zirconium oxide is determined by the difference between the oxygen partial pressure in the atmosphere and the oxygen partial pressure in the exhaust gas. The oxygen concentration in the exhaust gas is detected by changing the output voltage of the 02 sensor in response to this change.

上述した空燃比フィードハック制御装置において使用さ
れる02センサが不良品である場合エンジンに供給され
る混合気の空燃比は異常値を示し適正なエンジン制御が
不可能となる。
If the 02 sensor used in the air-fuel ratio feedhack control device described above is defective, the air-fuel ratio of the air-fuel mixture supplied to the engine will exhibit an abnormal value, making proper engine control impossible.

このため、従来は、主に02センサの出力電圧値が正常
動作時に執り得る最大値及び最小値により規定される範
囲を外れたとき02センサが不良であると判定する方法
や02センサの出力電圧レベルが所定の基準値を基準と
してリッチ側からり−ン側に又はその逆に変化する所謂
02センサの反転が所定時間以上に亘り生じないとき0
2センサが不良であると判定する方法により02センサ
の良否を判別していた。
For this reason, conventional methods have mainly been used to determine that the 02 sensor is defective when the output voltage value of the 02 sensor is out of the range defined by the maximum and minimum values that can occur during normal operation, and the method of determining that the 02 sensor is defective. 0 when the so-called 02 sensor reversal, in which the level changes from the rich side to the lean side or vice versa, does not occur for a predetermined time or more based on a predetermined reference value.
The quality of the 02 sensor was determined by the method of determining that the 02 sensor was defective.

しかしながら、前者の方法では、o2センサの出力電圧
レベルが上記最大値及び最小値間の範囲内に留まる場合
である限り02センサが出力電圧がリッチ側又はリーン
側のいずれか一方に偏るような出力特性をもつようなと
きでも該02センサは不良と判定されることがなく、か
かる特性の02センサを使用すると、混合気の空燃比が
リーン側又はリッチ側にずれてしまう。同様に、後者の
方法においても、02センサの出力反転が前記所定時間
内に生じる限り、上述のようなリッチ側又はリーン側に
偏る出力特性の02センサの不良を判定することができ
ない。
However, in the former method, as long as the output voltage level of the O2 sensor remains within the range between the maximum value and the minimum value, the O2 sensor outputs an output that biases the output voltage toward either the rich side or the lean side. The 02 sensor is not determined to be defective even when the 02 sensor has such characteristics, and if the 02 sensor with such characteristics is used, the air-fuel ratio of the air-fuel mixture will shift to the lean side or rich side. Similarly, in the latter method, as long as the output reversal of the 02 sensor occurs within the predetermined time period, it is not possible to determine whether the 02 sensor has an output characteristic biased towards the rich side or the lean side as described above.

従来一般に、上述の方法により良品と判定された02セ
ンサを、車輌の量産ラインにおいてエンジンの排気系に
組込んだ後完成車を実際に運転して所謂10モードテス
ト法により排気ガス中の有害成分量の測定を行っている
が、このテストの結果上述のように一旦良品と判定され
た02センサを使用したエンジンが排気ガス中の所要の
HC規制値又はNOx規制値の要件を満たさないと判定
されることがしばしばあり、かかる場合02センサを交
換する必要があり、多大な時間と労力を要していた。
Conventionally, in general, the 02 sensor determined to be a good product by the above-mentioned method is installed in the engine exhaust system on the vehicle mass production line, and then the finished vehicle is actually driven and the harmful components in the exhaust gas are tested using the so-called 10-mode test method. However, as a result of this test, it was determined that the engine using the 02 sensor, which was once determined to be good as described above, does not meet the requirements for the required HC regulation value or NOx regulation value in exhaust gas. In such cases, it is necessary to replace the 02 sensor, which requires a great deal of time and effort.

(発明の目的) 本発明は上述した不具合を解消するためになされたもの
で、本発明の目的は02センサの特性の判定を誤診なく
正確に行うことができる排気濃度検出器の特性判定方法
を提供することにある。
(Object of the Invention) The present invention has been made to solve the above-mentioned problems, and the purpose of the present invention is to provide a method for determining the characteristics of an exhaust gas concentration detector that can accurately determine the characteristics of the 02 sensor without misdiagnosis. It is about providing.

(発明の概要) 上述の目的を達成するめに、本発明に依れば、内燃エン
ジンの排気系に配された排気濃度検出器に供給される排
気成分の実際の濃度が所定の成分濃度よりも低い値から
高い値に変化した時点から前記排気濃度検出器によって
該変化が検知されるまでの第1の時間と、前記実際の濃
度が前記所定の成分濃度よりも高い値から低い値に変化
した時点から前記排気濃度検出器によって該変化が検知
されるまでの第2の時間との比を求め、斯く求めた第1
の時間と第2の時間との比によって前記排気濃度検出器
が良品であるか否かを判定する排気濃度検出器の特性判
定方法が提供される。
(Summary of the Invention) According to the present invention, the actual concentration of exhaust components supplied to an exhaust concentration detector disposed in the exhaust system of an internal combustion engine is lower than a predetermined concentration of components. a first time period from when the concentration changes from a low value to a high value until the change is detected by the exhaust gas concentration detector; and when the actual concentration changes from a value higher than the predetermined component concentration to a value lower than the predetermined component concentration. The ratio between the time and the second time until the change is detected by the exhaust gas concentration detector is determined, and the ratio of the first
A method for determining characteristics of an exhaust gas concentration detector is provided, which determines whether or not the exhaust gas concentration detector is a good product based on a ratio between a time period of 1 and a second time period.

(発明の実施例) 以下本発明の02センサの特性判定方法について図面を
参照しながら説明する。
(Embodiments of the Invention) A method for determining characteristics of an 02 sensor according to the present invention will be described below with reference to the drawings.

第1図は02センサを使用した内燃エンジンの燃料供給
制御装置の一例を示す構成図であり、符号1は例えば4
気筒の内燃エンジンを示し、エンジン1には吸気管2が
接続されている。吸気管2の途中にはスロットルボディ
3が設けられ、内部にスロットル弁3′が設けられてい
る。スロットル弁3°にはスロットル弁開度(θTH)
センサ4が連結されてスロットル弁3“の弁開度を電気
的信号に変換し電子コントローユニット(以下rEcU
Jと云う)5に送るようにされている。
FIG. 1 is a configuration diagram showing an example of a fuel supply control device for an internal combustion engine using a 02 sensor, and the reference numeral 1 is, for example, a 4
A cylinder internal combustion engine is shown, and an intake pipe 2 is connected to the engine 1. A throttle body 3 is provided in the middle of the intake pipe 2, and a throttle valve 3' is provided inside. Throttle valve opening degree (θTH) for throttle valve 3°
The sensor 4 is connected to convert the valve opening of the throttle valve 3'' into an electrical signal, and an electronic control unit (hereinafter rEcU)
J) 5.

吸気管2のエンジン1及びスロットルボディ3間には各
気筒毎に、各気筒の吸気弁(図示せず)の少し上流に夫
々燃料噴射弁6が設けられている。
A fuel injection valve 6 is provided in the intake pipe 2 between the engine 1 and the throttle body 3 for each cylinder, slightly upstream of the intake valve (not shown) of each cylinder.

燃料噴射弁6は図示しない燃料ポンプに接続されている
と共にECU3に電気的に接続されており、ECU3か
らの信号によって燃料噴射弁6の開弁時間が制御される
The fuel injection valve 6 is connected to a fuel pump (not shown) and electrically connected to the ECU 3, and the opening time of the fuel injection valve 6 is controlled by a signal from the ECU 3.

一方、前記スロットルボディ3のスロットル弁3°の下
流には管7を介して絶対圧(PBA)センサ8が設けら
れており、この絶対圧センサ8によって電気的信号に変
換された絶対圧信号は前記ECU3に送られる。
On the other hand, an absolute pressure (PBA) sensor 8 is provided downstream of the throttle valve 3° of the throttle body 3 via a pipe 7, and the absolute pressure signal converted into an electrical signal by the absolute pressure sensor 8 is It is sent to the ECU 3.

エンジン1本体にはエンジン冷却水温センサ(以下rT
wセンサ」と云う)9が設けられ、Twセンサ9はサー
ミスタ等からなり、冷却水が充満したエンジン気筒周壁
内に挿着されて、その検出水温信号をECU3に供給す
る。エンジン回転数センサ(以下rNeセンサ」と云う
)10がエンジンの図示しないカム軸周囲又はクランク
軸周囲に取り付けられており、Neセンサ10はエンジ
ンのクランク軸180°回転毎に所定のクランク角度位
置で、即ち、各気筒の吸気行程開始時の上死点(TDC
)に関し所定クランク角度前のクランク角度位置でクラ
ンク角度位置信号(以下これをrTDC信号」と云う)
を出力するものであり、このTDC信号はECU3に送
られる。
The engine cooling water temperature sensor (rT) is installed on the engine 1 body.
The Tw sensor 9 is made of a thermistor or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to the ECU 3. An engine rotation speed sensor (hereinafter referred to as "rNe sensor") 10 is attached around the camshaft or crankshaft (not shown) of the engine, and the Ne sensor 10 rotates at a predetermined crank angle position every 180° rotation of the engine crankshaft. , that is, the top dead center (TDC) at the start of the intake stroke of each cylinder.
), a crank angle position signal (hereinafter referred to as "rTDC signal") is generated at a crank angle position before a predetermined crank angle.
This TDC signal is sent to the ECU 3.

エンジン1の排気管11には三元触媒12が配置され排
気ガス中のHC,Go、NOx成分の浄化作用が行われ
る。この三元触媒12の上流側にはo2センサ(排気濃
度検出器)13が排気管11に挿着されている。02セ
ンサ13の検出値VO2は、排気中の酸素濃度が低いと
きには大きな値、該酸素濃度が高いときには小さな値と
なり、該検出値Vo2と詳細は後述する基準値Vref
  (第3図)との偏差信号はECU3に送られる。
A three-way catalyst 12 is disposed in the exhaust pipe 11 of the engine 1 to purify HC, Go, and NOx components in the exhaust gas. Upstream of this three-way catalyst 12, an O2 sensor (exhaust gas concentration detector) 13 is inserted into the exhaust pipe 11. The detected value VO2 of the 02 sensor 13 is a large value when the oxygen concentration in the exhaust gas is low, and a small value when the oxygen concentration is high, and the detected value Vo2 and the reference value Vref, which will be detailed later, are
(FIG. 3) A deviation signal is sent to the ECU 3.

更に、ECU3には例えば大気圧センサ等の他のパラメ
ータセンサ14が接続されており、他のパラメータセン
サ14はその検出値信号をECU3に供給する。
Furthermore, other parameter sensors 14 such as an atmospheric pressure sensor are connected to the ECU 3, and the other parameter sensors 14 supply their detected value signals to the ECU 3.

ECU3は各種センサからの入力信号波形を成形し、電
圧レベルを所定レベルに修正し、アナログ信号値をデジ
タル信号値に変換する等の機能を有する入力回路5a、
中央演算処理回路(以下rCPUJと云う”)5b、C
PU5bで実行される各種演算プログラム及び演算結果
等を記憶する記憶手段5c、及び前記燃料噴射弁6に駆
動信号を供給する出力回路5d等から構成される。
The ECU 3 includes an input circuit 5a having functions such as shaping input signal waveforms from various sensors, correcting voltage levels to predetermined levels, and converting analog signal values into digital signal values.
Central processing circuit (hereinafter referred to as rCPUJ) 5b, C
It is comprised of a storage means 5c for storing various calculation programs and calculation results executed by the PU 5b, an output circuit 5d for supplying a drive signal to the fuel injection valve 6, and the like.

CPU5 bは前記TDC信号が入力する毎に入力回路
5aを介して供給された前述の各種センサからのエンジ
ンパラメータ信号に基づいて、次式で与えられる燃料噴
射弁6の燃料噴射時間TouTを算出する。
Every time the TDC signal is input, the CPU 5b calculates the fuel injection time Tout of the fuel injection valve 6 given by the following equation based on the engine parameter signals from the various sensors described above supplied via the input circuit 5a. .

Touv=Ti xKo2 XK1  +に2 ・・・
(1)ここに、Tiは燃料噴射弁6の基本燃料噴射時間
を示しこの基本噴射時間は例えば吸気管内絶対圧PBA
とエンジン回転数Neとに基づいて記憶手段5Cから読
み出される。Ko2は後述する02フイードバツク補正
係数である。K1及びに2は夫々各種エンジンパラメー
タ信号に応じて演算される補正係数及び補正変数であり
、エンジン運転状態に応じて燃費特性、排気ガス特性等
の最適化が図られるような所要値に設定される。
Touv=Ti xKo2 XK1 +2...
(1) Here, Ti indicates the basic fuel injection time of the fuel injection valve 6, and this basic injection time is, for example, the absolute pressure in the intake pipe PBA.
and the engine rotational speed Ne from the storage means 5C. Ko2 is an 02 feedback correction coefficient which will be described later. K1 and K2 are a correction coefficient and a correction variable respectively calculated according to various engine parameter signals, and are set to required values to optimize fuel consumption characteristics, exhaust gas characteristics, etc. according to engine operating conditions. Ru.

上述の02フイードバツク補正係数KO2は、エンジン
の空燃比フィードバック領域において第1図の02セン
サ13の出力に応じて値が設定され、上記基本噴射時間
Tiに乗算されて、これを補正するものであり、この結
果得られる噴射時間Touvはエンジン1に供給される
混合気の空燃比が三元触媒12の変換効率が最大となる
理論混合比(例えは14.7)に制御される。具体的に
は、CPU5 b内で02センサ13の酸素濃度を表わ
す出力値(電圧値)が所定の基準値(例゛えば0.59
ボルト)と比較され、該出力値が該所定の基準値に関し
てリッチ側からリーン側又はその逆に変化したときその
変化毎に補正係数Ko2に第1の補正値Piが加減され
(P項制御)、02センサ13の出力値が前記所定の基
準値に関してリーン側又はリッチ側に留まる限りは所定
時間経過毎、例えばTDC信号が所定パルス数発生する
度毎に補正係数KO2に第2の補正値Δkが加減される
(1項制御)。
The above-mentioned 02 feedback correction coefficient KO2 has a value set according to the output of the 02 sensor 13 shown in FIG. 1 in the air-fuel ratio feedback region of the engine, and is multiplied by the above-mentioned basic injection time Ti to correct it. The resulting injection time Touv is controlled to a stoichiometric mixture ratio (for example, 14.7) at which the air-fuel ratio of the air-fuel mixture supplied to the engine 1 maximizes the conversion efficiency of the three-way catalyst 12. Specifically, in the CPU 5 b, the output value (voltage value) representing the oxygen concentration of the 02 sensor 13 is set to a predetermined reference value (for example, 0.59
volt), and when the output value changes from the rich side to the lean side or vice versa with respect to the predetermined reference value, the first correction value Pi is added or subtracted to the correction coefficient Ko2 for each change (P-term control). , as long as the output value of the 02 sensor 13 remains on the lean side or rich side with respect to the predetermined reference value, the second correction value Δk is set to the correction coefficient KO2 every time a predetermined period of time elapses, for example, every time the TDC signal generates a predetermined number of pulses. is adjusted (one term control).

第2図は上述した様に内燃エンジンの燃料供給制御装置
等に使用される02センサについて本発明の特性判定方
法を実施する応答比(K)測定装置のブロック図である
。測定に供される02センサ13は、それが適用される
内燃エンジン1の排気系に取り付けられる。混合気供給
テスト装置15は、エンジン1に供給される混合気の空
燃比をリッチ側の所定値(例えば13.1)からリーン
側の所定値(例えば16.1)に、又はリーン側の所定
値からリッチ側の所定値に一定時間(例えば2sec)
経過毎に強制的に切換えるものである。02センサ13
の出力側には応答比(K)測定装置16が接続され、0
2センサ13の応答比Kを測定する。
FIG. 2 is a block diagram of a response ratio (K) measuring device that implements the characteristic determination method of the present invention for the 02 sensor used in the fuel supply control device of an internal combustion engine, etc., as described above. The 02 sensor 13 used for measurement is attached to the exhaust system of the internal combustion engine 1 to which it is applied. The air-fuel mixture supply test device 15 changes the air-fuel ratio of the air-fuel mixture supplied to the engine 1 from a predetermined value on the rich side (for example, 13.1) to a predetermined value on the lean side (for example, 16.1) or to a predetermined lean side. A certain period of time (for example, 2 seconds) from the value to the predetermined value on the rich side.
It is forcibly switched as the time passes. 02 sensor 13
A response ratio (K) measuring device 16 is connected to the output side of the 0
The response ratio K of the two sensors 13 is measured.

第3図に示すように、この応答比には、例えば、前記混
合気供給テスト装置15がエンジンに供給される混合気
の空燃比をリッチ側の所定値がらリーン側の所定値に強
制的に変化させた時点(第3図、11)から02センサ
13の出力により該空燃比のリーン側への変化が検知さ
れる時点、即ち該センサ13の出力電圧Vo2が低下し
て所定の基準値Vref  (例えば0.59ボルト)
となる時点(L2)までの経過時間TRLと、前記混合
気供給テスト装置15が前記空燃比をリーン側の所定値
からリッチ側の所定値に強制的に変化させた時点(t3
)から02センサ13の出力により該空燃比のリッチ側
への変化が検知される時点、即ち該センサ13の出力電
圧Vo2が上昇して前記基準値Vrefとなる時点(t
4)までの経過時間TLRとの比TL R/TRLであ
り、この応答比にはその値が1より大きいときo2セン
サ13が混合気の空燃比をリーン側と判定する時間の方
が長くなることを、反対に1より小さいとき該センサ1
3が空燃比をリッチ側と判定する時間の方が長くなるこ
を夫々表わす。従って、この応答比Kが所定範囲(KL
〜KH)内にあれば、当該o2センサが良品であると判
定され、該範囲外にあれば不良品であると判定される。
As shown in FIG. 3, this response ratio includes, for example, when the air-fuel mixture supply test device 15 forcibly changes the air-fuel ratio of the air-fuel mixture supplied to the engine from a predetermined value on the rich side to a predetermined value on the lean side. From the time when the change is made (FIG. 3, 11), a change in the air-fuel ratio to the lean side is detected by the output of the 02 sensor 13, that is, the output voltage Vo2 of the sensor 13 decreases to the predetermined reference value Vref. (e.g. 0.59 volts)
The elapsed time TRL up to the point in time (L2) and the point in time (t3) when the air-fuel ratio is forcibly changed from the predetermined value on the lean side to the predetermined value on the rich side by the air-fuel mixture supply test device 15.
) to the point in time when a change in the air-fuel ratio toward the rich side is detected by the output of the 02 sensor 13, that is, the point in time when the output voltage Vo2 of the sensor 13 rises to the reference value Vref (t
4) is the ratio TL R/TRL to the elapsed time TLR until 4), and when this response ratio is larger than 1, the time for the O2 sensor 13 to determine the air-fuel ratio of the air-fuel mixture as lean is longer. On the other hand, when the sensor 1 is smaller than 1,
3 indicates that the time required to determine the air-fuel ratio to be rich is longer. Therefore, this response ratio K is within a predetermined range (KL
~KH), it is determined that the O2 sensor is a good product, and if it is outside this range, it is determined that it is a defective product.

第4図は応答比にの前記所定範囲の設定方法を説明する
図である。空燃比フィードバック制御方法において02
センサの応答比Kが1より大きい場合、理論混合比の混
合気をエンジンに供給すると混合気はリーンと判定され
て空燃比はリッチ側に制御され、一方、応答比Kが1よ
り小さい場合は反対にリーン側に制御される。
FIG. 4 is a diagram illustrating a method of setting the predetermined range for the response ratio. 02 in the air-fuel ratio feedback control method
When the response ratio K of the sensor is greater than 1, when the mixture at the stoichiometric mixture ratio is supplied to the engine, the mixture is determined to be lean and the air-fuel ratio is controlled to the rich side.On the other hand, when the response ratio K is less than 1 On the contrary, it is controlled to the lean side.

一般に知られている如く、混合気がリッチなときは排気
ガス中のCo、HCが多くなる一方、混合気がリーンな
ときはNOxが多(なるので、02センサの良否を判別
する上述の応答比にの所定範囲は上限値が排気ガス規制
において定められるco。
As is generally known, when the air-fuel mixture is rich, the amount of Co and HC in the exhaust gas increases, while when the air-fuel mixture is lean, there is a lot of NOx. The upper limit of the predetermined range for the ratio is determined by exhaust gas regulations.

HCの規制目標値(最大許容値)  (g/km)に対
応する値KH(第4図(a))に、同様に下限値がNO
xの規制目標値(最大目標値)  (g/km)に対応
する値KL (第4図(b))に夫々設定される。従っ
て、応答比Kが上限値KHを土建る02センサを使用す
ると、理論混合気をエンジンエに供給しても前述したフ
ィードバック制御作用により第4図(a)に示す斜線領
域AでCo、HCの排出量が規制目標値を超えて増加し
、同様に下限値KLを上進る02センサを使用すると同
図(b)に示す斜線領域BでNOxの排出量が規制目標
値を超えて増加する。
Similarly, the lower limit of the value KH (Fig. 4 (a)) corresponding to the regulation target value (maximum allowable value) (g/km) of HC is NO.
The value KL (FIG. 4(b)) corresponding to the regulation target value (maximum target value) (g/km) of x is set respectively. Therefore, when using the 02 sensor in which the response ratio K reaches the upper limit value KH, even if the stoichiometric mixture is supplied to the engine, the feedback control action described above will result in Co, HC in the shaded area A shown in Fig. 4(a). When using the 02 sensor, which also increases above the lower limit value KL, the NOx emissions increase beyond the regulatory target value in the shaded area B shown in Figure (b). do.

従って、応答比KがCo、HC及びNOxの総ての規制
目標値を満足する範囲KL−KH内にある02センサが
良品とされる。
Therefore, the 02 sensor whose response ratio K is within the range KL-KH that satisfies all regulation target values of Co, HC, and NOx is considered to be a good product.

尚、第4図(al (blにおける曲線I、  IIは
に値の変化に伴うCo、HC及びNOxの排出量の変化
を示す。
Curves I and II in FIG. 4 (al (bl) show changes in Co, HC, and NOx emissions with changes in values.

(発明の効果) 以上説明したように、本発明の排気濃度検出器の特性判
定方法に依れば、内燃エンジンの排気系に配された排気
濃度検出器に供給される排気成分の実際の濃度が所定の
成分濃度よりも低い値から高い値に変化した時点から前
記排気濃度検出器によって該変化が検知されるまでの第
1の時間と、前記実際の濃度が前記所定の成分濃度より
も高い値から低い値に変化した時点から前記排気濃度検
出器によって該変化が検知されるまでの第2の時間との
比を求め、斯く求めた第1の時間と第2の時間との比に
よって前記排気濃度検出器が良品であるか否かを判定す
るようにしたので、02センサの特性の判定を誤診なく
正確に行うことができ、完成車に組込んだ後に不良02
センサの交換を行うことがほとんどなくなり、時間、労
力の大幅な節約が可能になる。
(Effects of the Invention) As explained above, according to the method for determining characteristics of an exhaust concentration detector of the present invention, the actual concentration of exhaust components supplied to the exhaust concentration detector arranged in the exhaust system of an internal combustion engine can be determined. a first time period from when the change occurs from a value lower than a predetermined component concentration to a value higher than the predetermined component concentration until the change is detected by the exhaust gas concentration detector; and the actual concentration is higher than the predetermined component concentration. The ratio of the second time from the time when the value changes to a lower value until the change is detected by the exhaust gas concentration detector is determined, and the ratio between the first time and the second time thus determined is determined. Since it is determined whether the exhaust gas concentration detector is a good product or not, it is possible to accurately determine the characteristics of the 02 sensor without misdiagnosis, and it is possible to accurately determine the characteristics of the 02 sensor after it is installed in a finished vehicle.
There is almost no need to replace sensors, making it possible to significantly save time and labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はo2センサの使用例としての燃料供給制御装置
の全体構成図、第2図は本発明方法を実施するための応
答比測定装置を示すブロック図、第3図はエンジンに供
給される混合気の空燃比の変化と02センサの出力電圧
の変化との関係を示すタイミングチャート、第4図は排
気ガス成分排出量と応答比にとの関係を示すグラフであ
る。 1・・・内燃エンジン、12・・・三元触媒、13・・
・02センサ、15・・・混合気供給テスト装置、16
・・・応答比(K)測定装置。
Fig. 1 is an overall configuration diagram of a fuel supply control device as an example of the use of an O2 sensor, Fig. 2 is a block diagram showing a response ratio measuring device for carrying out the method of the present invention, and Fig. 3 is a diagram showing a fuel supply control device as an example of the use of an O2 sensor. FIG. 4 is a timing chart showing the relationship between the change in the air-fuel ratio of the air-fuel mixture and the change in the output voltage of the 02 sensor, and FIG. 4 is a graph showing the relationship between the exhaust gas component emission amount and the response ratio. 1... Internal combustion engine, 12... Three-way catalyst, 13...
・02 sensor, 15...Mixture supply test device, 16
...Response ratio (K) measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1、内燃エンジンの排気系に配された排気濃度検出器に
供給される排気成分の実際の濃度が所定の成分濃度より
も低い値から高い値に変化した時点から前記排気濃度検
出器によって該変化が検知されるまでの第1の時間と、
前記実際の濃度が前記所定の成分濃度よりも高い値から
低い値に変化した時点から前記排気濃度検出器によって
該変化が検知されるまでの第2の時間との比を求め、斯
く求めた第1の時間と第2の時間との比によって前記排
気濃度検出器が良品であるか否かを判定する排気濃度検
出器の特性判定方法。
1. From the time when the actual concentration of the exhaust components supplied to the exhaust concentration detector arranged in the exhaust system of the internal combustion engine changes from a value lower than a predetermined component concentration to a value higher than the predetermined component concentration, the exhaust concentration detector detects the change. a first time until is detected;
Determine the ratio to a second time from the time when the actual concentration changes from a value higher than the predetermined component concentration to a value lower than the predetermined component concentration until the change is detected by the exhaust gas concentration detector, and A method for determining characteristics of an exhaust gas concentration detector, in which it is determined whether or not the exhaust gas concentration detector is a good product based on a ratio between a first time and a second time.
JP60260578A 1985-11-19 1985-11-19 Decision on characteristic of exhaust density detector Pending JPS62119450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60260578A JPS62119450A (en) 1985-11-19 1985-11-19 Decision on characteristic of exhaust density detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60260578A JPS62119450A (en) 1985-11-19 1985-11-19 Decision on characteristic of exhaust density detector

Publications (1)

Publication Number Publication Date
JPS62119450A true JPS62119450A (en) 1987-05-30

Family

ID=17349895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60260578A Pending JPS62119450A (en) 1985-11-19 1985-11-19 Decision on characteristic of exhaust density detector

Country Status (1)

Country Link
JP (1) JPS62119450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117986A1 (en) * 1990-06-01 1991-12-05 Hitachi Ltd METHOD AND DEVICE FOR CONTROLLING THE AIR / FUEL RATIO FOR COMBUSTION ENGINE
WO2005042957A1 (en) 2003-10-31 2005-05-12 Toyota Jidosha Kabushiki Kaisha Water-cooled engine and cylinder block thereof
US7322320B2 (en) 2004-08-17 2008-01-29 Toyota Jidosha Kabushiki Kaisha Engine cylinder block

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117986A1 (en) * 1990-06-01 1991-12-05 Hitachi Ltd METHOD AND DEVICE FOR CONTROLLING THE AIR / FUEL RATIO FOR COMBUSTION ENGINE
US5179924A (en) * 1990-06-01 1993-01-19 Hitachi, Ltd. Method and apparatus for controlling air-fuel ratio in internal combustion engine
WO2005042957A1 (en) 2003-10-31 2005-05-12 Toyota Jidosha Kabushiki Kaisha Water-cooled engine and cylinder block thereof
US7322320B2 (en) 2004-08-17 2008-01-29 Toyota Jidosha Kabushiki Kaisha Engine cylinder block

Similar Documents

Publication Publication Date Title
US4887576A (en) Method of determining acceptability of an exhaust concentration sensor
KR970010317B1 (en) Apparatus for detecting abnormality of oxygen sensor and controlling air/fuel ratio
US5806306A (en) Deterioration monitoring apparatus for an exhaust system of an internal combustion engine
US4844038A (en) Abnormality detecting method for exhaust gas concentration sensor for internal combustion engines
EP0423792B1 (en) Air/fuel ratio feedback control system for internal combustion engine
JPH0674025A (en) Catalyst deterioration diagnosis device for internal combustion engine
US20100037683A1 (en) Method and device for monitoring an exhaust gas probe
JPS6340268B2 (en)
JP2876544B2 (en) Catalyst temperature sensor deterioration detection device
US4509489A (en) Fuel supply control method for an internal combustion engine, adapted to improve operational stability, etc., of the engine during operation in particular operating conditions
JPH0215010B2 (en)
US4878472A (en) Air-fuel ratio feedback control method for internal combustion engines
JPH03944A (en) Air-fuel ratio controller for internal combustion engine
US4763628A (en) Method of compensating output from oxygen concentration sensor of internal combustion engine
JPS62119450A (en) Decision on characteristic of exhaust density detector
JPH0799110B2 (en) Air-fuel ratio feedback control method for internal combustion engine
JP2663072B2 (en) Apparatus for detecting fuel concentration in blow-by gas
JP2547380B2 (en) Air-fuel ratio feedback control method for internal combustion engine
US6176080B1 (en) Oxygen concentration sensor abnormality-detecting system for internal combustion engines
JP3182357B2 (en) Lean combustion control limit detection method for internal combustion engine
US4617901A (en) Air-fuel ratio feedback control method for internal combustion engines
JPS60212643A (en) Air-fuel ratio controller for internal-combustion engine
JPS59136543A (en) Control apparatus for internal-combustion engine
JP2657713B2 (en) Fuel leak diagnosis system for electronically controlled fuel injection type internal combustion engine
JP3563435B2 (en) Cylinder-specific combustion control method