JPS5919637A - Power source circuit employed in electrolytic discharge machining - Google Patents

Power source circuit employed in electrolytic discharge machining

Info

Publication number
JPS5919637A
JPS5919637A JP12506782A JP12506782A JPS5919637A JP S5919637 A JPS5919637 A JP S5919637A JP 12506782 A JP12506782 A JP 12506782A JP 12506782 A JP12506782 A JP 12506782A JP S5919637 A JPS5919637 A JP S5919637A
Authority
JP
Japan
Prior art keywords
discharge
inductance
power source
section
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12506782A
Other languages
Japanese (ja)
Inventor
Akio Kuromatsu
黒松 彰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO JIKI KENKYUSHO KK
Original Assignee
OYO JIKI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO JIKI KENKYUSHO KK filed Critical OYO JIKI KENKYUSHO KK
Priority to JP12506782A priority Critical patent/JPS5919637A/en
Publication of JPS5919637A publication Critical patent/JPS5919637A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To obtain high voltage necessary for discharge even from a low voltage power source, by providing an inductance in a conduction circuit in complex working such as electrolytic discharge mechanical grinding where a grindstone having conductive section and insulative section is employed. CONSTITUTION:A grindstone 1 has a conductive section 2 and an insulative grinding section 3 to perform complex machining of electrolytic discharge and mechanical grinding is performed by supplying power to the working section while feeding electrolyte. A current limit resistor R and an inductance L are provided in a conduction circuit from a power source PW. High voltage is produced in the working gap at the instance when the conductive section 2 and the workpiece 4 are separated through counter-electromotive force of the inductance L sufficient for starting discharge.

Description

【発明の詳細な説明】 本発明は特殊な電解放電加工に用いる電源回路に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply circuit used for special electrolytic discharge machining.

まず本発明の発明者によりなされた特殊な電解放電加工
方法の概要を説明する。
First, an outline of a special electrolytic discharge machining method developed by the inventor of the present invention will be explained.

第1図において(1)は非導電性の砥石でsbこの非導
電性砥石(1)の円周面には導電帯(2)が形成しであ
る。
In FIG. 1, (1) is a non-conductive grindstone, and a conductive band (2) is formed on the circumferential surface of this non-conductive grindstone (1).

円周面のうち導電帯(2)以外の部分は非導電性の砥石
が、そ、の′8:ま露出した研摩帯(3)として構成と
が交互に接触するから電解作用と機械的研摩作用の外に
放電作用も行なわれ、難削材を効率よく研削できること
が判明した。
The part of the circumferential surface other than the conductive band (2) is alternately contacted with the non-conductive grinding wheel and the exposed polishing band (3), so that electrolytic action and mechanical polishing are possible. It was found that in addition to the action, an electric discharge action was also performed, and that difficult-to-cut materials could be efficiently ground.

各作用のメカニズムについて検討すると次のようになる
The mechanism of each action is considered as follows.

〈イ〉 電解作用 だす。<A> Electrolytic action Start.

1物(1)が作用して金属酸化物が生じる。1 substance (1) acts to produce a metal oxide.

〈口〉 機械研削作用 この直後に砥石(1)の研摩帯(3)が通過するので砥
粒は溶解部分や酸化膜を削り取ってしまう。このように
酸化膜等が発生後直ちに除去されるため常に加工面は活
性化されている。
<Exposure> Mechanical grinding action Immediately after this, the abrasive band (3) of the whetstone (1) passes through, so the abrasive grains scrape off the dissolved parts and oxide film. In this way, the processed surface is always activated because the oxide film and the like are removed immediately after they are generated.

そのため従来の電解研削よりもずっと小さい電流によっ
て電解が可能となる。
Therefore, electrolysis is possible with a much smaller current than in conventional electrolytic grinding.

〈ノ・〉 放電作用 従来の電解研削用の砥石と異なり導電帯(2)が不連続
に存在している。
<No.> Discharge action Unlike conventional electrolytic grinding wheels, the conductive band (2) exists discontinuously.

そのためひとつの導電帯(2)は>6710 T、 f
9 (41)と−瞬間接触するだけである。
Therefore, one conductive band (2) is >6710 T, f
9 (41) - only momentary contact.

その結果パルス電流による放電現象が生じ接触の瞬間両
者間に火花が飛ぶ。
As a result, a discharge phenomenon occurs due to the pulsed current, and sparks fly between the two at the moment of contact.

の一点を溶かして吹き飛ばす。Melt one point and blow it away.

このようにして放電加工が行なわれることになる。Electric discharge machining is performed in this manner.

本発明の加工方法における電解作用にとっては、以上の
ように被加工物の加工面が砥石の研摩帯(3)によって
常に活性化され、その結果電流、電圧とも従来の電解研
削加工より小さくて足りるという現象は有利である。
For the electrolytic action in the processing method of the present invention, the machined surface of the workpiece is constantly activated by the abrasive band (3) of the grindstone as described above, and as a result, both current and voltage need to be smaller than in the conventional electrolytic grinding process. This phenomenon is advantageous.

しかし一方放電作用の側からみると大電圧が得られない
点は不利である。
However, from the viewpoint of discharge action, it is disadvantageous in that a large voltage cannot be obtained.

本発明はこのような点についてなされたもので、機械的
研削作用と組合せたことによって小電流、小電圧で電解
研削を行うことができ、かつ同時に高電圧による放電も
可能な電解放電加工方法を提供することを目的とする。
The present invention has been made to address these points, and provides an electrolytic discharge machining method that allows electrolytic grinding to be performed with a small current and low voltage by combining it with a mechanical grinding action, and at the same time enables discharge with a high voltage. The purpose is to provide.

次に実施例について説明する。Next, an example will be described.

〈イ〉 基本回路 前記で説明した(第1図)、導電帯(2)と非導電性の
研摩帯(3)とを局面に設けた砥石(1)の回転軸(5
)には例えばスリップリングブラシ(6)などの摺動電
極を設け、このスリップリング(6)を第1端子(P)
に接続する。
<A> Basic circuit As explained above (Fig. 1), the rotating shaft (5
) is provided with a sliding electrode such as a slip ring brush (6), and this slip ring (6) is connected to the first terminal (P).
Connect to.

一方杖加工物(4)を載置するベース(7)を第2端子
(E)に接続する。
On the other hand, the base (7) on which the cane workpiece (4) is placed is connected to the second terminal (E).

そして入力電源(pw)と第1端子(P)の間には、逆
起電圧を発生させるためのインダクタンス(L)、電流
を適当に制限するための限流抵抗(川との直列回路を接
続する。
And between the input power supply (pw) and the first terminal (P), there is an inductance (L) to generate a back electromotive voltage, and a current limiting resistor (a series circuit with a river is connected to appropriately limit the current). do.

一方入力電源(FW)と第2端子(E)とは直接に接続
する。
On the other hand, the input power source (FW) and the second terminal (E) are directly connected.

すなわち基本回路ではすべて電源(FW)に対しかでき
る。
In other words, all basic circuits can be used only for the power supply (FW).

スリップリング(6)と砥石(1)局面の導電帯(2)
とは砥石(1)側面に埋設した導電路(8)によって電
気的に接続しである。
Slip ring (6) and grinding wheel (1) conductive band (2)
and are electrically connected by a conductive path (8) buried in the side surface of the grindstone (1).

〈口〉 作用 〈ロー1〉放電 入力電源(FW)から砥石(1)の導電帯(2)と被加
工物(4)との間を電気的に接続し、砥石(1)を回転
して被加工物(4)に接触させると、砥石(1)が回転
することによって被加工物(4)には断続的に導電帯(
2)が接触して両者間には電気的な開閉がくり返される
<Open> Action <Low 1> Electrically connect between the conductive band (2) of the grinding wheel (1) and the workpiece (4) from the discharge input power source (FW), and rotate the grinding wheel (1). When brought into contact with the workpiece (4), the rotation of the grindstone (1) intermittently creates a conductive band (
2) come into contact and electrical switching is repeated between the two.

そこで導電帯(2)と被加工物(4)とが接触するとき
とj、によって流れる電流がインダクタンス(L)を盗
電することになる。そして離れる瞬間、すなわち回路が
閉成する瞬間にはインダクタンス(L)による逆起電圧
によって両者間に電源(FW)!圧の数十倍の高電圧が
発生する。
Therefore, when the conductive band (2) and the workpiece (4) come into contact with each other, a current flows through the inductance (L). Then, at the moment of separation, that is, the moment when the circuit is closed, there is a power supply (FW) between them due to the back electromotive force caused by the inductance (L)! A high voltage several tens of times higher than the actual pressure is generated.

この高電圧によって離九る瞬間に火花放電、グロー放電
が生じこの電流密度の高い電子の流れが被加工物の一点
を溶かして吹き飛ばし効果の良好な放電加工を行うこと
ができる。
Spark discharge and glow discharge occur at the moment of separation due to this high voltage, and this flow of electrons with high current density melts one point of the workpiece, allowing electrical discharge machining with a good blow-off effect to be performed.

このときインダクタンス(L)と直列に限流抵抗(FL
)が位置しているから電流を適当に制限して、放電効率
の良い低電流、高電圧が得られる。
At this time, the current limiting resistor (FL) is connected in series with the inductance (L).
), it is possible to appropriately limit the current and obtain low current and high voltage with good discharge efficiency.

〈ロー2〉研削、電解 放電によってわずかに溶かされた加工面には次の瞬間に
は機械的強度の大きい研摩帯(3)が接触し、溶解部分
を削り取ってゆく。
<Row 2> Grinding: The machined surface, which has been slightly melted by electrolytic discharge, comes into contact with the grinding band (3), which has high mechanical strength, at the next moment and scrapes off the melted portion.

その他の作用は前記したとうりである。Other effects are as described above.

ぐ) その他の回路 以上の回路はインダクタンス(L)と抵抗(R)を直列
に接続したものであるが、インダクタンス(L)だけを
入力電源(FW)と並列に接続しても(第2.3図)同
様に高電圧による放電を得ることができる。
(G) Other circuits and above circuits are those in which an inductance (L) and a resistance (R) are connected in series, but even if only the inductance (L) is connected in parallel with the input power supply (FW) (Second. (Figure 3) Similarly, high voltage discharge can be obtained.

その場合ダイオード(D)により逆流防止を行う。In that case, a diode (D) is used to prevent backflow.

本発明は上記したように、被加工物に対して電気的に開
閉する砥石の電源回路にインダクタンスを設けて逆起電
圧を発生させ、被加工物と砥石の導電帯が離れる瞬間に
高電圧による放電を生じるように構成した電源回路であ
る。
As described above, the present invention provides an inductance in the power supply circuit of the grinding wheel that electrically opens and closes with respect to the workpiece, generates a back electromotive force, and generates a high voltage at the moment the conductive band of the grindstone separates from the workpiece. This is a power supply circuit configured to generate electric discharge.

従って、通常は低い電源電圧の下で作業を行うことがで
き危険性が少なくしかも従来の加工方法では処理できな
かった難削材の加工が可能となった。
Therefore, work can be carried out under a normally low power supply voltage, with little danger, and it has become possible to process difficult-to-cut materials that could not be processed using conventional processing methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図二本発明の前提となる特殊加工方法に組合せた電
源回路の一実施例の説明図、 第2.3図:他の実施例の説明図、 1:砥石、2:導電帯、3:研摩帯、L:インダクタン
ス、R:限流抵抗
Fig. 1 2 An explanatory diagram of one embodiment of a power supply circuit combined with the special processing method that is the premise of the present invention, Fig. 2.3: An explanatory diagram of another embodiment, 1: Grinding wheel, 2: Conductive band, 3 : Polishing band, L: Inductance, R: Current limiting resistance

Claims (1)

【特許請求の範囲】 被加工物妬対して電気的に開閉する砥石の電源回路にイ
ンダクタンスを設けて逆起電圧を発生させ、 被加工物と砥石が電気的に開成する時に高電圧による放
電が生じるよう構成した、 電解放電加工に用いる電源回路
[Claims] An inductance is provided in the power supply circuit of the grinding wheel that electrically opens and closes with respect to the workpiece to generate a back electromotive force, and when the workpiece and the grindstone are electrically opened, a discharge due to high voltage is generated. A power supply circuit used for electrolytic discharge machining configured to generate
JP12506782A 1982-07-20 1982-07-20 Power source circuit employed in electrolytic discharge machining Pending JPS5919637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12506782A JPS5919637A (en) 1982-07-20 1982-07-20 Power source circuit employed in electrolytic discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12506782A JPS5919637A (en) 1982-07-20 1982-07-20 Power source circuit employed in electrolytic discharge machining

Publications (1)

Publication Number Publication Date
JPS5919637A true JPS5919637A (en) 1984-02-01

Family

ID=14900995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12506782A Pending JPS5919637A (en) 1982-07-20 1982-07-20 Power source circuit employed in electrolytic discharge machining

Country Status (1)

Country Link
JP (1) JPS5919637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108188511A (en) * 2018-01-02 2018-06-22 南京航空航天大学 It is electrolysed the efficiently coarse-fine process integration processing method of milling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107837A (en) * 1980-02-01 1981-08-27 Akio Kuromatsu Grinding wheel for electrolytic electrospark machining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107837A (en) * 1980-02-01 1981-08-27 Akio Kuromatsu Grinding wheel for electrolytic electrospark machining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108188511A (en) * 2018-01-02 2018-06-22 南京航空航天大学 It is electrolysed the efficiently coarse-fine process integration processing method of milling

Similar Documents

Publication Publication Date Title
US4849599A (en) Machining method employing cutting or grinding by conductive grindstone
US3098150A (en) Spark discharge metal depositing apparatus
KR100594082B1 (en) Micro discharge truing device and fine processing method using the same
JPH05131365A (en) Method and device for seting grinding wheel
JPS5919637A (en) Power source circuit employed in electrolytic discharge machining
EP0034477B1 (en) A power source circuit for an electric discharge machine
JPS6141690B2 (en)
US3474013A (en) Method of and apparatus for the electrochemical machining of a conductive workpiece
JP3530562B2 (en) Lens grinding method
JPS5947126A (en) Electric discharge grinding method
JPS5959321A (en) Electrolytic discharge method
JPS5976721A (en) Electrolytic and electric discharge machining method
JPS59152019A (en) Electrolytic, electric discharge and grind wheel machining
JPS59152020A (en) Grind wheel used for electrolytic and electric discharge machining
JPS58165926A (en) Electrolytic machining method
CN219113114U (en) Micro electric spark power supply for electric spark machining
SU1020197A1 (en) Method of electric erosion machining
JPS6154908A (en) Method of processing ceramics
WO1987007860A1 (en) Discharge machining controller
SU412267A1 (en)
GB1045355A (en) Improvements in the electrolytic and mechanical removal of metal
SU112170A1 (en) Method for electrofusion of metal or alloy
JPS5919636A (en) Surface grinder
JPH0192026A (en) Electric discharge machining method for insulating material
JP3194621B2 (en) Method and apparatus for generating spherical surface